Model Checking Flat Freeze LTL on One-Counter
Automata*

Antonia Lechner!, Richard Mayr?, Joél Ouaknine’?, Amaury
Pouly'4, and James Worrell®

1 Department of Computer Science, University of Oxford, UK
antonia.lechner@cs.ox.ac.uk

2 School of Informatics, LFCS, University of Edinburgh, UK
http://homepages.inf.ed.ac.uk/rmayr/

3 Department of Computer Science, University of Oxford, UK
joel.ouaknine@cs.ox.ac.uk

4 Department of Computer Science, University of Oxford, UK
amaury.pouly@cs.ox.ac.uk

5 Department of Computer Science, University of Oxford, UK
james.worrell@cs.ox.ac.uk

—— Abstract

Freeze LTL is a temporal logic with registers that is suitable for specifying properties of data
words. In this paper we study the model checking problem for Freeze LTL on one-counter
automata. This problem is known to be undecidable in full generality and PSPACE-complete for
the special case of deterministic one-counter automata. Several years ago, Demri and Sangnier

investigated the model checking problem for the flat fragment of Freeze LTL on several classes of
counter automata and posed the decidability of model checking flat Freeze LTL on one-counter
automata as an open problem. In this paper we resolve this problem positively, utilising a known
reduction to a reachability problem on one-counter automata with parameterised equality and
disequality tests. Our main technical contribution is to show decidability of the latter problem
by translation to Presburger arithmetic.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases One-counter automata, disequality tests, reachability, freeze LTL, Pres-
burger arithmetic

Digital Object Identifier 10.4230/LIPIcs. CONCUR.2016.29

1 Introduction

Runs of infinite-state machines, such as counter automata, can naturally be seen as data
words, that is, sequences in which each position is labelled by a letter from a finite alphabet
and a datum from an infinite domain. Freeze LTL is an extension of Linear Temporal Logic
with registers (or variables) and a binding mechanism, which has been introduced to specify
properties of data words [3, 4, 8, 11]. The registers allow to compare data at different
positions along the same computation.

An example of a freeze LTL formula is

F(v A L XF(u A1) (1)

t Supported by ERC grant AVS-ISS (648701).
* See full version at https://arxiv.org/abs/1606.02643

© Antonia Lechner, Richard Mayr, Joél Ouaknine, Amaury Pouly, and James Worrell;
37 licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).

Editors: Josée Desharnais and Radha Jagadeesan; Article No. 29; pp.29:1-29:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.29
https://arxiv.org/abs/1606.02643
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

29:2

Model Checking Flat Freeze LTL on One-Counter Automata

Evaluated on a run of a one-counter automaton, this formula is true if and only if there
are at least two different positions in the run which both have control state v and the same
counter value. Intuitively the operator |, binds the current counter value to register r, while
the operator 1, tests whether the current counter value is equal to the content of register r.

This paper concerns the model checking problem for Freeze LTL on one-counter automata.
It is known that this problem is undecidable in general, but PSPACE-complete if one restricts
to deterministic one-counter automata [5]. Rather than restricting the class of one-counter
automata, one can seek to identify decidable syntactic fragments of Freeze LTL. This approach
was pursued in [6], which studied the flat fragment of Freeze LTL. The flatness condition
places restrictions on the occurrence of the binding construct |, in relation to the until
operator (see Section 2.2 for details). For example, in a flat formula in negation normal form
the binding operator |, can occur within the scope of F but not G. (Thus formula (1) is flat.)
The flatness restriction for Freeze LTL has a similar flavour to the flatness restriction for
constraint LTL [2] and for Metric Temporal Logic [1].

Demri and Sangnier [6] considered the decidability of model checking flat Freeze LTL
across a range of different counter-machine models. For one-counter automata they showed
decidability of model checking for a certain fragment of flat Freeze LTL and they left open
the problem of model checking flat Freeze LTL in general.

The approach taken in [6] was to reduce the model checking problem for fragments of
Freeze LTL on a class of counter automata to a repeated reachability problem in counter
automata of the same class with certain kinds of parameterised tests. In particular, under
their approach the model checking problem for flat Freeze LTL on one-counter automata
reduces to a repeated reachability problem for the class of one-counter automata extended
with parameterised equality and disequality tests. This problem considers one-counter
automata whose transitions may be guarded by equality or disequality tests that compare
the counter value to integer-valued parameters, and it asks whether there exist parameter
values such that there is an infinite computation that visits an accepting location infinitely
many times. The main technical contribution of this paper is to show decidability of the
latter problem by reduction to the decision problem for Presburger arithmetic.

A related work is [9], which considers one-counter automata with parameterised updates
and equality tests. It is shown in [9] that reachability in this model is inter-reducible with
the satisfiability problem for quantifier-free Presburger arithmetic with divisibility, and
therefore decidable. In contrast to [9], in the present paper the counter automata do not
have parameterised updates but they do have parameterised disequality tests. The results
in this paper do not appear to be straightforwardly reducible to those of [9] nor vice versa.
Both reachability problems can be seen as special cases of a long-standing open problem
identified by Ibarra et al. [10] which asks to decide reachability on a class of automata with
a single integer-valued counter, sign tests, and parameterised updates.

2 Preliminaries

2.1 One-Counter Automata with Equality and Disequality Tests

We consider automata with an associated single counter, which ranges over the nonnegative
integers, and with both equality and disequality tests on counter values. Formally, a one-
counter automaton (1-CA) is a tuple C = (V,E,\,7), where V is a finite set of states,
E CV xV is a finite set of edges between states, A : E — Op labels each edge with an
element from Op = {add(a) : a € Z} U{eq(a) : a € N}, and 7 : V — 2~ maps each state v to
a finite set 7(v) of invalid counter values at state v. Intuitively the operation add(a) adds a

A. Lechner, R. Mayr, J. Ouaknine, A. Pouly, and J. Worrell

to the counter and eq(a) tests the counter for equality with a. The association of invalid
counter values with each state can be seen as a type of disequality test. This feature is not
present in classical presentations of 1-CA, but we include it here to facilitate our treatment
of freeze LTL.

For any edge e = (v,v’) with A(e) = op(a), define start(e) = v, end(e) = v’, and
weight(e) = a if op = add, weight(e) = 0 if op = eq. A path + is a finite word on the alphabet
E: v =e;---e, such that end(e;) = start(e;41) for every i. The length of -, denoted |v|,
is m. The state sequence of ~ is start(ey), end(ey), end(ez), ..., end(e,). The start of =,
denoted start(7y), is start(e1). The end of v, denoted end(7), is end(e,,). A path is simple if

it contains no repeated vertices. The weight of v, denoted by weight(), is > .-, weight(e;).

A subpath ~' of v is any factor of v: v/ = e;je;41...¢;. If v and 7/ are two paths such that
end(vy) = start(y’), 7y’ is the concatenation of both paths.

A cycle w is a path such that start(w) = end(w). A cycle is simple if there are no repeated
vertices except for the starting point, which appears twice. A cycle is positive if it has positive
weight, negative if it has negative weight and zero-weight if it has weight zero. We denote by
WP = ww - -w the sequence of k iterations of cycle w.

——

k times

A configuration of a 1-CA C = (V, E, \, 7) is a pair (v, ¢) with v € V and ¢ € Z. Intuitively,
(v,) corresponds to the situation where the 1-CA is in state v with counter value c. Since
counter values range over the nonnegative integers, configurations (v, ¢) with ¢ > 0 are called
valid, otherwise they are invalid. The transition relation E between states with guards A and
7 induces an unlabelled transition relation between configurations: for any two configurations
(v,¢) and (v', '), there is a transition (v,c) — (v, ') if and only if there is an edge e € F
with A(e) = op(a) for some a, start(e) = v, end(e) = v/, and weight(e) = ¢/ — c¢. We will
sometimes write (v,c) — (v',¢) for such a transition. The transition is valid if ¢,¢’ > 0
and ¢ ¢ 7(v), and also ¢ = a if op = eq. Otherwise it is invalid.

A computation 7 is a (finite or infinite) sequence of transitions:

™ = (7)1,01) — (7)2,02) — (7)3,03) —_—

We write || for the length of m. If (vy,¢1) — (v2,¢2) —25 -+ =5 (v, ¢,) is a finite
computation, we will also write it as (v1, ¢1) Dy (Un, n), where v = ejeq - - - e,_1, or simply
(v1,¢1) —* (Vn,cn). A computation 7 is wvalid if all transitions in the sequence are valid,
otherwise it is invalid. If 7 is invalid, an obstruction is a configuration (v;,¢;) such that
(vi, ;) — (Vit1,Ciy1) is an invalid transition, or, if 7 is of finite length n — 1, i = n and
c; < 0.

Given a path v and a counter value ¢ € Z, the path computation ~(c) is the (finite)
computation starting at (start(y), ¢) and following the sequence of transitions that correspond
to the edges in 7.

A one-counter automaton with parameterised tests is a tuple (V, E, X, \,7), where V| E
and A are defined as before, X is a set of nonnegative integer variables, Op = {add(a) : a €
Z} U{eq(a),eq(z) :a € N,z € X}, and 7 : V — 2N9X. Note that 7(v) is still required to be
finite for each v € V.

For a given 1-CA C = (V, E, A\, 7), an initial configuration (v, ¢) and a target configuration

(v',), the reachability problem asks if there is a valid computation from (v,¢) to (v,).

When C has sets Fi,...,F, C V of final states and an initial configuration (v,c¢), the
generalised repeated reachability problem asks if there is a valid infinite computation from
(v, ¢) which visits at least one state in each F; infinitely often.

For a 1-CA C = (V, E, X, \, 7) with parameterised tests with given initial configuration
(v, ¢) and target configuration (v’,c’), the reachability problem asks if there exist values for

29:3

CONCUR 2016

29:4

Model Checking Flat Freeze LTL on One-Counter Automata

the parameters such that there is a computation from (v,c) to (v/,¢’). Similarly, in the
case where C has sets F,..., F, CV of final states and an initial configuration (v, ¢), the
generalised repeated reachability problem asks if there exist values for the parameters such
that substituting these values satisfies the generalised repeated reachability condition above.

2.2 Model Checking Freeze LTL on One-Counter Automata

Freeze LTL [5] is an extension of Linear Temporal Logic that can be used to specify properties
of data words. Freeze LTL is one of a variety of formalisms that arise by augmenting a
temporal or modal logic with variable binding. Given a finite alphabet 3 and set of registers
R, the formulas of Freeze LTL are given by the following grammar

o = a | T | 2@ | oVe | Xe | pUe | |,

where a € ¥ and r € R. We write LTL* for the set of formulas of Freeze LTL. A sentence is
a formula in which each occurrence of a subformula 1, is in the scope of an operator |, (for
the same register r).

In general, formulas of LTL' are interpreted over data words. In this paper we are
interested in a particular kind of data word, namely those arising from valid computations of
1-CA, and we directly define the semantics of LTLY over such computations (assuming that
the alphabet ¥ is the set of control locations of the 1-CA). In this context |, can be seen as
a binding construct that stores in register r the counter value at the current position in a
computation, while T, tests whether the counter value at the current position is equal to the
content of register . Formally, define a register valuation to be a partial function f: R — N
and consider a valid infinite computation

m = (v1,¢1) — (ve,c9) — (v3,¢3) —> -+ -

of a 1-CA C. We define a satisfaction relation ,% Fy ¢ specifying when an LTL' formula %)
is satisfied at position 4 in 7 under valuation f:

(o8

ef

miFfa &= vi=a
miEr Ty &L ci = f(r)
mikrXe &L mitilkse
T4 Fr o1 U g &L m,J Fy o for some j >4 and 7w,k Fy @ forall i <k < j
miEr Ly el Ty 0 F flrses] ©

where f[r — c| is the function that maps r to ¢ and is otherwise equal to f. We have omitted
the clauses for the Boolean connectives.

An occurrence of a subformula in a LTLY formula is positive if it lies within the scope of
an even number of negations, otherwise it is negative. The flat fragment of LTLY is the set of
LTL' formulas such that in every positive occurrence of a subformula ¢ U ¢, the binding
operator |, does not appear in (1, and in every negative occurrence of such a subformula,
the binding operator does not appear in .

The negation of many natural LTLY specifications yield flat formulas. For example,
consider the response property G(J.- (req — F(serve A 1,.))), expressing that every request
is followed by a serve with the same associated ticket. Here F and G are the “future” and
“globally” modalities, which can be expressed in terms of U in a standard way. The negation
of this formula is equivalent to F({, (req A G(—serve V —1,))). The latter is easily seen to be
flat after rewriting to the core LTL* language with only the U temporal operator.

A. Lechner, R. Mayr, J. Ouaknine, A. Pouly, and J. Worrell

The main subject of this paper is the decidability of the following model checking problem:
given a 1-CA C, a valid configuration (v, ¢) of C, and a flat sentence ¢ € LTL*, does there
exist a valid infinite computation 7 of C, starting at (v, c¢), such that m, 1 Fy ¢? Note that,
following [6], we have given an existential formulation of the model checking problem. The
problem above is equivalent to asking whether —¢ holds along all infinite computations
starting at (v, c).

The model checking problem for flat LTLY on 1-CA was reduced to the generalised
repeated reachability problem for 1-CA with parameterised tests in [6, Theorem 15]. The
idea of the reduction is, given a 1-CA C and a flat LTLY sentence ¢, to construct a 1-CA
with parameterised tests which is the product of C and ¢. This product automaton includes
a parameter x, for each register r that is mentioned in a subformula of ¢ of type |, ¢'.
This is where the restriction to the flat fragment of LTL" is crucial, since it allows us to
assume, without loss of generality, that the value stored in a register is never overwritten
along any computation of C, so that it can be represented by precisely one parameter. An
occurrence of the binding operator |, in ¢ is represented in the product automaton by an
equality test eq(z,). A positive occurrence of a formula of the type 71, is likewise represented
by an equality test eq(z,), while a negative occurrence of such a subformula is represented
by a disequality test 7(v,.) = {z,}.

Note that the definition of 1-CA with parameterised tests in [6] includes parameterised
equality and disequality tests (as in the present paper) together with parameterised inequality
tests, i.e., testing whether the counter value is less than or greater than the value of a
parameter. However, it is clear from the details of the reduction that only equality and
disequality tests are needed, and thus we do not consider inequality tests in this paper.
Note also that in the previous section we defined 1-CA to have equality tests on edges and
disequality tests on states. On the other hand, the 1-CA considered in [6] have both kinds of
tests on edges and allow multiple edges between the same pair of states. It is easy to see that
both models are equivalent with respect to reachability, i.e., there are reductions in both
directions between reachability problems in the two models.

2.3 Presburger Arithmetic

Presburger arithmetic is the first-order logic over (Z,+, <, 0, 1), where + and < are the stand-
ard addition and ordering of integers. Presburger arithmetic is known to be decidable [12].
Using shorthand notation, we can assume that the atomic formulas of Presburger arithmetic
are equalities or inequalities between linear polynomials with integer coefficients.

3 Normal Form for Paths

In this section, we show that any valid finite computation of a 1-CA can be rewritten to a
normal form whose shape only depends on the automaton. Informally, any such computation
can be described as a sequence of “take this edge” and “take this cycle k times”. We show that
the maximum length of a description of this kind is independent of the original computation.

First we show that without loss of generality, any computation can be broken down into
a small number of segments that do not contain any transitions with equality tests. The
idea is that any segment between two identical equality tests can be omitted.

» Lemma 1 (Equality test isolation). Let 7 be a wvalid finite computation from (v,c) to (v',c).
Then there exists a path v such that v(c¢) is a valid computation from (v,c) to (v',¢") and ~

29:5

CONCUR 2016

29:6

Model Checking Flat Freeze LTL on One-Counter Automata

1s of the form v = ype1y1€2 - - - €xVn, where e; is an edge with an equality test, v; is a path
without equality tests and n < |E|.

We give a proof of Lemma 1 in the full version of this paper.

We need to introduce some terminology to formalise our notion of normal form. Given a
state v, SC(v) (resp. SCT (v), SC™ (v)) denotes the set of equality-free simple (vesp. positive
simple, negative simple) cycles starting at v. The set of all equality-free simple (resp. positive
simple, negative simple) cycles from all vertices is SC (resp. SCT, SC™). Note that each
equality-free simple cycle is counted several times in SC: once for each state in the cycle.

The cycle alphabet, denoted C, consists of symbols of the form w* where w € SC and
k € N. Note that this alphabet is infinite. Also note that w” is a single symbol, underlined
to indicate the difference from the cycle w”, which consists of |w|k symbols from E. For
convenience, w is a shorthand for w'. We naturally define the start and end of symbol w* by
the start of w: start(w’) = end(w*) = start(w).

A folded path x is a word on the alphabet EUC: x = s1---s, such that end(s;) =
start(s;11) for every i < n. We also define the natural unfolding of a folded path as a
monoid homomorphism unfold : (E U C)* — E* such that unfold(e) = e for e € E and
unfold(w*) = w* for w* € C. The weight of a folded path is the weight of its unfolding.

From now on, until Theorem 8 at the end of this section, we fix an initial counter value
¢ € N and we only consider computations starting at ¢ which do not include equality tests.
We refer to a folded path x as being valid if unfold(x)(c) is a valid computation.

Define the following nondeterministic rewriting system on folded paths. Each rule of the
system has a name, a pattern to match against, a condition which must be satisfied for the
rule to apply and the result of the rule. We denote by x ~ x’ the fact that x rewrites to x’.

Rule Pattern Result Condition
fold Ywao Ywo w is a simple cycle of nonzero weight.
simplify Ypd) Nonempty p, weight(unfold(p)) = 0 and

end(¢) = start(¢).
gather” Y puw’ e wwkﬂpwhlqﬁ Result is valid, w is a positive simple cycle and ¢ > 0.
gather” PP pwte Y lowTle Result is valid, w is a negative simple cycle and k > 0.

» Lemma 2 (Soundness). If x is valid and rewrites to x' then X' is valid. Furthermore, x
and X' start and end at the same state and weight(unfold(x)) = weight(unfold(x’)).

The proof of Lemma 2 is included in the full version of this paper.
» Lemma 3 (Termination). There are no infinite chains of rewriting.

A proof of Lemma 3 can be found in the full version. Here we give an informal explanation.
The first thing to notice is that the length of a folded path (over alphabet E U C') never
increases after a rewriting operation. The second thing is that the length of a folded path
over E (i.e., ignoring symbols from C) never increases either. Since rule simplify decreases
the length, it can only be applied finitely many times. Similarly, rule fold decreases the
length over E because it replaces a symbol from E by one from C. Rules gather® are more
difficult to analyse because they only reorder the path by replacing symbols from C. But as
it can be seen, a symbol w, where w is a positive cycle, can only move left, and similarly a
negative cycle can only move right. Intuitively, this process must be finite because once a
positive (negative) cycle reaches the leftmost (rightmost) position, it cannot move anymore.

» Lemma 4 (Size of cycle-free subpaths). If 1p¢ is such that p € E* and no rule applies,
then |p| < |V].

A. Lechner, R. Mayr, J. Ouaknine, A. Pouly, and J. Worrell

Proof. Assume the contrary: if p only consists of edges and has length > |V, then some
state is repeated in the state sequence of p. Thus p contains a cycle and thus a simple cycle.
So rule fold applies if the cycle has nonzero weight, or rule simplify applies if it has weight
Zero. <

For S CZ and x € Z, we use S — x to denote {y —x | y € S}. The idea of the next lemma
is to show that given a state v, some counter values prevent reordering of cycles within the
folded path. These counter values act as a “barrier” for the gather rules and increase the
size of the normal form. We call these values critical for positive (resp. negative) cycles and
denote them by BT (v) (resp. B~ (v)). Formally, B¥(v) contains:

7(v) — weight(w), for every positive (resp. negative) simple cycle w,
7(end(v)) — weight(y) for every prefix! v of every positive (resp. negative) simple cycle w
starting at v.

» Lemma 5 (Obstructions in irreducible paths with cycles). Let w be a positive cycle and
assume that rule gather® (resp. gather™) does not apply on Yw”pw’e (which we assume is
valid and k, ¢ > 0) for this particular pattern. Then there exists a (potentially empty) prefix
w of p such that unfold(yw®u)(c) has the form (v,c) —* (v',c') where ¢ is critical for v'
for positive (resp. negative) cycles, i.e. ¢ € BT (v") (resp. ¢ € B~ (v')). Furthermore B¥(v')
and B~ (v") only depends on the automaton and

BT <ISCH[Y Ir()| and B~ <[SCT[Y] Ir(v)].

veV veV

Proof. We first show the result for positive cycles. Let 7 = unfold(vw*pw’s)(c) and
7/ = unfold (vw* ! pw’~1¢)(c). To make things slightly easier to understand, note that:

7 = [unfold(¢)w® unfold(p)ww® ! unfold(¢)](c)
7' = [unfold(¢))w"w unfold(p)w’ ! unfold(¢)](c).

Since unfold(p)w and w unfold(p) have the same weight, it is clear that the first (unfold(t)w")
and last (w’~!unfold(¢)) parts of the computation are the same in 7 and 7/, i.e., they have
the same counter values. Consequently, if they are valid in 7, the same parts are also valid
in 7’. Since by the hypothesis gather* does not apply, 7’ is invalid. So there must be an
obstruction (u,d) in the middle part (wunfold(p)) of #’. There are two possibilities.

The first case is when the obstruction (u,d) is in the unfold(p) part of ©’. Note that
d = c* + weight(w), where (u, c*) is the corresponding configuration in the unfold(p) part of
7. Since w is a positive cycle, d > ¢* cannot be negative (since (u, ¢*) occurs in 7, which is
valid). Since we assumed that all computations are free of equality tests, the obstruction
must be because of a disequality, i.e., it must be that d = ¢* + weight(w) € 7(u). Thus
c* € 7(u) — weight(w) and ¢* is critical for u. Then there exists a prefix p of p such that
unfold(vYw”p)(c) = (v,¢) —* (u,c*) and this shows the result.

The second case is when (u,d) is in the w part of the middle part (wunfold(p)) of 7'

Again, it is impossible that the counter value d be negative. Indeed, remember that w is a

1 Other than w and the empty prefix. Indeed the empty prefix is impossible because ca ¢ 7(v1) as 7 is
valid. And w correspond to the previous case of the definition.

29:7

CONCUR 2016

29:8

Model Checking Flat Freeze LTL on One-Counter Automata

positive cycle and k > 0, thus

7’ = [unfold(t))w* ! unfold(p)w’ =" unfold(¢)](c)
= [unfold(¢))w* ~!ww unfold(p)w*=* unfold(¢)](c)

= (U,C)

unfold(¢)w® 1 % « unfold(p)w*~! unfold(¢) ,
—_—

*(v1,61) =% (v1,¢2) =% (v1,¢3) (", "
We already argued that (v,c) —* (v1,¢o) is valid, so in particular (vi,c1) —=* (vq,co) is
valid. Note that the obstruction is in the second iteration of w: (v1, c2) Ly (v1,c3). Since
w is a positive cycle, ca > ¢;. Note that initially the cycle w was feasible (with the counter
not going negative) starting with a lower counter value (¢;) so the counter cannot possibly
become negative on the second iteration starting with a higher counter value (cz). Thus,
again, the obstruction happens because of a disequality. That is, we can write w = vy’ such
that:

unfold(t)w” v ~ unfold(p)w’ ™ unfold ()
——" (v1,¢9) /7 (u,d) —" (v1,¢3) *

('UI/, c//)

7' = (v,c)

and the obstruction happens because d € 7(u). Note however that d = co + weight(y) and
thus ¢z € 7(u) — weight(y). In this case, cq is critical for v;. Choose u to be the empty word,
so that unfold(vw®u)(c) = (v,¢) —* (v1,c2) to show the result.

Observe that the definition of critical values only depend on the automaton itself. Fur-
thermore, the size of BT (v) can easily be bounded. Indeed, there are | SC™ | positive simple
cycles, so in the first case of the definition, there are at most | SC™ ||7(v/)| values. In the
second case, since the cycle w is simple, each prefix v of w ends at a different state. Thus
each state is visited at most once, and v is not visited because the prefix is not empty or
equal to w. So the second case includes at most an additional |SCT |3, 2o |T(u)] values.
Finally the total bound is | SCT | Y, oy, [7(v)].

The proof is exactly the same in the negative case except for one detail. This time we
move negative cycles to the right so that the middle part of ' (unfold(p)w) can only get
higher counter values than the middle part of 7 (wunfold(p)), as in the positive case. <

» Lemma 6 (Length of irreducible paths). Let x be a folded path such that no rule applies on
x. Let Y = SC" or Y = SC™. Then for every w € Y, the number of symbols in x of the
form w' (the exponent does not matter) is bounded by

VIVI(1+ Y).

veV

Proof. Without loss of generality, we show the result for X = SC*. First note that if w*
appears in y and no rule applies, then k > 0, otherwise we could apply simplify to remove
w?. We can thus decompose the path as:

X = pow p1w™ b -+ 1wt By,

where k; > 0 and ¢; does not contain any w’ symbol. Since no rule applies, by Lemma 5,
there exist prefixes p1, 2, ..., ftn—1 of ¢1, da, ..., ¢pp—1 respectively, such that for each i:

) GowFlor i _1whip; (

(v, ¢ vi,¢;) where ¢; € BT (v;).

A. Lechner, R. Mayr, J. Ouaknine, A. Pouly, and J. Worrell

Assume for a contradiction that there is a repeated configuration among the (v;,¢;). Then
there exists ¢ < j such that v; = v; and ¢; = ¢;. Let ¢; = p;p and ¢; = p;p’, and observe
that:

) bowll gy oy _qwhipng *() P“’kli‘bvﬂ»l”'d)j—lﬂﬁ‘j *(plw 1+1¢j+1“'¢n71wk”¢n *(

v,).

(%C Vi, C4 Vi, G4

Thus the subpath pw®it1¢; ;- gbj,lwikfuj has weight 0 and rule simplify must apply:

k ks k; ko
X ~ powor g w i p' Wt G 1wy

which is a contradiction because we assumed that no rule can apply on x.
Consequently, for any i # j, we have (v;, ¢;) # (v;, ¢;). But remember that ¢; € BT (v;),
thus (v;, ¢;) € A where:

A= |J{v} x BT (v).

veV

This shows that n — 1 < |A|. Indeed, by the pigeonhole principle, some pair (v;, ¢;) would be
repeated if n — 1 > |A|. We can easily bound the size of A using the bound on BT (v) from
Lemma 5:

A < YD IBT@)I < IVIISCT) [r (o).

veV veV

Finally we have

n < VIISCH Y (@) + 1< VIISCH (14 3 Ir(0)])

veV veV

because |V| > 1 and |SC‘L | > 1 unless there are no positive cycles, in which case n =0
anyway. <

» Lemma 7 (Length of equality-free computations). Let 7 be a wvalid finite computation
(without equality tests) from (v,c) to (v',c’). Then there exists a folded path x such that
unfold(x(c)) is a valid computation from (v,c) to (v',c'), the length of unfold(x(c)) at most
that of m and the word length of x is bounded by:

VI+IVRISCR(1+ Y Ir(@)])

veV

Proof. Let xo be the path defined by =: it is a word over alphabet E and is thus a (trivial)
folded path. By definition unfold(xo(c)) = 7 is a valid computation from (v, ¢) to (v',¢") and
the length of unfold(xo(c)) is equal to that of 7. Let x be any rewriting of x¢ such that no
rule applies on x: it exists because there are no infinite rewriting chains by Lemma 3. By
Lemma 2, unfold(x(c)) is still a valid computation from (v, c) to (v',¢’). Let w be a simple
cycle: note that it is either positive or negative, because rule simplify removes zero-weight
cycles. Then by Lemma 6, the number of symbols of the form w' appearing in x is bounded
by?:

viiscl(1+ Y 7)) (2)

veV

2 Since obviously max(|SCT |,|SC™|) < |SC].

29:9

CONCUR 2016

29:10

Model Checking Flat Freeze LTL on One-Counter Automata

and thus the total number of symbols in y of the form w" for any w is bounded by:

VISCP(1+ 3 rw)). (3)
veV
Furthermore, inbetween symbols of the form w’, there can be subpaths consisting of symbols
in E only, so x is of the form

k k
X = Pow; ' Prwy? - -wﬁ"qﬁn

where ¢; € E* and w; € SC for all i. By the reasoning above, n < (3). Furthermore, by
Lemma 4, ¢; < |V| for all i. It follows that the total length of x is bounded by

(n+D)(VI=1) +n < [V]+n|V]
<+ VEISCR(1+ Y 7).

veV
Finally the length of unfold(x(c)) at most that of = because the rewriting system does not
increase the length of the path and the length of unfold(xo(c)) is equal to that of 7. <

The main result of this section shows that any valid computation has an equivalent valid
computation given by a folded path whose length only depends on the automaton.

» Theorem 8 (Length of computations). Let w be a wvalid finite computation from (v,c) to
(v',). Then there exists a folded path x such that x(c) is a valid computation from (v,c) to
(v,), the length of unfold(x(c)) is at most that of ™ and the word length of x is bounded by:

] (1 +VI+VEISCR(1+ Y |T(v)|)) .
veV
Proof. Apply Lemma 1 to isolate the equality tests (at most | E| of them) and apply Lemma 7
to each equality-free subcomputation. We can improve the bound slightly by noticing that
there can only be up to |E| equality-free subcomputations (and not |E| + 1). Indeed, if
there are |F| different equality tests in the path, there are no further edges available for
equality-free computations, and the word length is at most |E|. <

4 Reachability with Parameterised Tests

In this section we will show that both the reachability problem and the generalised repeated
reachability problem for 1-CA with parameterised tests are decidable, via a symbolic encoding
of folded paths, making use of the normal form from the previous section. The result of this
encoding is a formula of Presburger arithmetic.

Recall that C' = {w* : w € SC,k € N}. Let C' = {w’ : w € SC}. We define a path shape
to be a word over the alphabet EUC": £ =t;...t, such that end(t;) = start(¢;41), where
start(w') = end(w’) = start(w). Given a path shape & = yowiv1 ... w, ¥, With v; € E*, we
write £(k1,...,k,) for the folded path 'yowflvl ...wkn~, . The advantage of working with
path shapes rather than folded paths is that the former are words over a finite alphabet.

» Lemma 9 (Encoding computations). Given a 1-CA C = (V, E, X, \, T) with parameterised
tests and configurations (v,c) and (v',c'), and given a path shape & = tity...t, € (EU
C")*, there exists a Presburger arithmetic formula gp&%ﬁ’c)’(”"c')(k,m), with free variables x
corresponding to the parameters X and k corresponding to exponents to be substituted in &,

which evaluates to true if and only if unfold(£(k))(c) is a valid computation from (v,c) to
(W', d).

A. Lechner, R. Mayr, J. Ouaknine, A. Pouly, and J. Worrell

Proof. Assume first that £ does not include any equality tests. We define a formula
cpga)h d.noe q(k, x,y) which, given an equality-free symbol t € EUC” and an integer y, evaluates
to true if and only if unfold(¢(k))(y) is a valid computation. There are two cases:

t € E. Then wiglzd noeg(T>Y) =y = 0 Ay + weight(t) > 0 Ay ¢ T(start(t)).

tel e, tk) = wf’“ for some simple cycle w = ejes...e, and k € k. Then

i—1
gaf)a)“d moeq(Ks T, y) =VE (0 <K < k) = /\ y + k' weight(w +Zwelght ej) = 0N
i=1 Jj=1
i—1
y + k' weight(w) + Zwelght ej) & T(start(e;)) | Ay + kweight(w) > 0.
Jj=1

Note that for each edge e € F, weight(e) is a constant, given by the automaton, and
weight(w) is a shorthand for Zle weight(e;), which is also a constant. So the only type
of multiplication in the formula is by a constant. A formula of the form a ¢ 7(u) is a
shorthand for /\beT(u) a # b, which is clearly a Presburger arithmetic formula. Since C has
parameterised tests, in general some of these disequalities include variables from x. We can
now define a formula with the required property in the case where £ does not include any
equality tests:

<p£§,)m(;’ﬁoe; (k,) </\ end(t;) = start(t Z+1)> Astart(t;) = v Aend(t,) = v'A
i—1
Z weight (¢; (k) —CcA /\ ‘Pmlzd nocq (ks T, C+ Zweight(tj(k))),
— j=1

where we use the shorthand weight(s) for s € EUC": if s € E then weight(s) is a constant
as above, and if s € C' then it is of the form w* and weight(s) =k, . weight(e). Again,
the only multiplications are by constants, so the resulting formula is a formula of Presburger
arithmetic.

Finally, in the case where £ includes equality tests, we split unfold(§) at the ¢; which are

equality tests, and construct a formula @comp noeq @s above for each equality-free part of &.

@éi)m(;j (Ve)(k: x) is the conjunction of these formulas. <

» Remark 10 (Removing the universal quantification). For simplicity, we have used a universal

quantifier in @182“ dinoe q(kz, x,y) to express that k iterations of a cycle yield a valid computation.

In fact it is possible to rewrite ¢§}tglid77loeq(k,w,y) as a purely existential formula, with a
polynomial blowup. Let w = e ---e; be a cycle and suppose we want to check that w”(y)
is a valid computation. Let u = start(e;) be a state on the cycle. First we need to express
that the counter value at u is never negative along w¥(y). Since the counter value at u is
monotone during the k iterations of the cycle (it increases if w is positive and decreases if w
is negative), we only need check that it is nonnegative at the first and last iteration:

i—1 i—1
Y+ Z weight(e;) > 0 Ay + (k — 1) weight(w) + Z weight(e;) > 0.
Jj=1 j=1

Next, for each b € 7(u), we need to check that the cycle avoids b in u. Without loss
of generality, assume that w is positive. Then the counter value at u increases after each
iteration. We can now perform a case analysis on the three ways to satisfy a disequality test
during the k iterations of w:

29:11

CONCUR 2016

20:12 Model Checking Flat Freeze LTL on One-Counter Automata

The value at the first iteration is already bigger than b:

i—1
y+ Z weight(e;) > b.
=1
The value at the last iteration is less than b:

i—1
y+ (k — 1) weight(w) + Zwelght (ej) < b.

j=1

There is an iteration k', with 0 < ¥’ < k — 1, at which the counter value is less than b,
but where at the next iteration k&’ 4+ 1 the counter value is bigger than b:

i—1
' (0K K <k—1)Ay+ K weight(w +Zwe1ght e;) <b
Jj=1
i—1
Ay + (K + 1) weight(w +Zwe1ght ej) > b.
j=1

Finally, we can use a conjunction over all vertices in w to get a formula which is equivalent

to gpf}?lidmoeq (k,x,y) but has no universal quantifiers.

» Lemma 11 (Encoding reachability). Let C = (V, E, X, A, 7) be a 1-CA with parameterised

tests, and let (v,c) and (V',c') be given configurations of C. Then there exists a Presburger
(v,e),(v',c")

arithmetic formula @,

(x) which evaluates to true if and only if there is a valid
(v,0),(v",¢")

computation from (v,c) to (v',c) in C, as well as a formula Preach,

only if there is such a computation of length at least 1.

which is true if and

Proof. Note that the bounds on the length of computations in 1-CA from the previous
section do not depend on the values occurring in equality or disequality tests. That is, if
there is a valid computation (v,c) ——* (v/,¢') for any given values of the parameters, then

there is a folded path x of word length at most p(C) such that (v, c) nfeld((©)), «
valid computation, where p is the polynomial function given in Theorem 8. Equivalently,
there is a path shape £ of word length at most p(C) and there exist values k such that
(U,C) unfold(&(k)(c))

Since path shapes are words over a finite alphabet, we can express this property as a

(v',c) is a

* (v, ') is a valid computation.

finite disjunction

@£Z;C)hv c) _Hki \/ 5) v (’) (v', C)(k w)
1€1<p(C)

For ¢reach, , we simply change the disjunction to be over all £ such that 1 < [{| < p(C). <«

» Lemma 12 (Encoding repeated reachability). Let C = (V,E, X, \,7) be a 1-CA with
parameterised tests, let F' C V be a set of final states, and let (v, ¢) be the initial configuration
of C. Then there exists a Presburger arithmetic formula <p£ep)Tgc)h(m) which evaluates to true

if and only if there is a valid infinite computation m which starts in (v, c) and visits at least
one state in F infinitely often.

A. Lechner, R. Mayr, J. Ouaknine, A. Pouly, and J. Worrell

Proof. Suppose there is an infinite computation which starts in (v, ¢) and visits a state u € F
infinitely often. Equivalently, there is a counter value d € N such that (v,¢) —* (u,d) is
a valid (finite) computation, and there is a cycle w with start(w) = u such that w*(d) is a
valid computation for all £ € N. There are two possible cases:
weight(w) = 0, so w¥(d) is valid for all k if and only if w(d) is valid.
weight(w) > 0, so it might be possible to start from (u,d) and follow the edges of w
a finite number of times before an obstruction occurs. However, if w can be taken an
arbitrary number of times, then the counter value will tend towards infinity, so we are
free to choose w to be an equality-free simple cycle, and d to be high enough to guarantee
that if w can be taken once without obstructions, it can be taken infinitely many times.
The resulting formula is then

gp(vvc)7(F) (33) Eﬂd \/ (p(v7c)’(u7d)($) A (@(u’d)’(u’d)(:l:)\/

rep-reach reach reach
ueF

(d>M@)A3d \/ el (1, 2)))
wesct

where M (x) = max (U, 7(v)) — > {weight(e) : e € E,weight(e) < 0}. The sum over
negative edge weights ensures that the counter always stays above max ({J,¢y 7(v)) along
the computation w(d), since each edge is taken at most once in w. Since w is a positive cycle,
this implies that the counter always stays above all bad values along w(d") for each k € N,
S0 1o obstructions can occur. <

» Theorem 13 (Decidability of reachability problems). Both the reachability problem and the
generalised repeated reachability problem are decidable for 1-CA with parameterised tests.

Proof. Given a 1-CA C = (V, E, X, \,7) with parameterised tests and configurations (v, c)
and (v', '), to check if there exist values for the parameters X such that there is a valid com-
putation from (v, ¢) to (v/,¢’), we use Lemma 11 to construct the formula 3z cpfnzzfg;l(v,’c,)(a:).

To solve the generalised repeated reachability problem for a 1-CA C = (V, E, X, \, 7) with
sets of final states Fi,..., F,, C V and initial configuration (v, ¢), note that this problem can
easily be reduced to the simpler case where n = 1, using a translation similar to the standard

translation from generalised Biichi automata to Biichi automata. In the case where n =1,
(v,¢),(F1) (z). <

we can use Lemma 12 to construct the formula 3 ¢, coen

» Corollary 14 (Decidability of model checking flat Freeze LTL). The existential model checking
problem for flat Freeze LTL on 1-CA is decidable.

5 Conclusion

The main result of this paper is that the model checking problem for the flat fragment
of Freeze LTL on one-counter automata is decidable. We have concentrated on showing
decidability rather than achieving optimal complexity. For example, we have reduced the
model checking problem to the decision problem for the class of sentences of Presburger
arithmetic with quantifier prefix 3*V*. We explained in Remark 10 that in fact the reduction
can be refined to yield a (polynomially larger) purely existential sentence.

Another important determinant of the complexity of our procedure is the dependence
of the symbolic encoding of computations (via path shapes) in Section 4 on the number of

29:13

CONCUR 2016

290:14

Model Checking Flat Freeze LTL on One-Counter Automata

simple cycles in the underlying control graph of the one-counter automaton. The number of
such cycles may be exponential in the number of vertices. It remains to be seen whether it is
possible to give a more compact symbolic representation, e.g., in terms of the Parikh image
of paths. As it stands, our procedure works as follows. From the flat LTL* formula, we build
a 1-CA with parameterised tests (of exponential size). We then guess the normal form of the
path shapes (of exponential size in the size the automaton). We finally check the resulting
existential Presburger formula. Since the Presburger formula has size double exponential in
the size of the original LTLY formula, we get a naive upper bound of 2NEXPTIME for our
algorithm. Improving this bound is a subject of ongoing work.

Another interesting complexity question concerns configuration reachability in one-counter
automata with non-parameterised equality and disequality tests. For automata with only
equality tests and with counter updates in binary, reachability is known to be NP-complete [9].
If inequality tests are allowed then reachability is PSPACE-complete [7]. Now automata with
equality and disequality tests are intermediate in expressiveness between these two models
and the complexity of reachability in this case is open as far as we know.

—— References

1 P. Bouyer, N. Markey, J. Ouaknine, and J. Worrell. On expressiveness and complexity in
real-time model checking. In Proceedings of ICALP, volume 5126 of LNCS, pages 124-135.
Springer, 2008.

2 H. Comon and V. Cortier. Flatness is not a weakness. In Proceedings of CSL, volume 1862
of LNCS. Springer, 2000.

3 S.Demri and R. Lazi¢. LTL with the freeze quantifier and register automata. In Proceedings
of LICS, pages 17-26. IEEE Computer Society, 2006.

4 S. Demri, R. Lazi¢, and D. Nowak. On the freeze quantifier in constraint LTL: decidability
and complexity. In Proceedings of TIME, pages 113121, 2005.

5 S. Demri, R. Lazi¢, and A. Sangnier. Model checking freeze LTL over one-counter automata.
In Proceedings of FOSSACS, volume 4962 of LNCS, pages 490-504, 2008.

6 S.Demriand A. Sangnier. When model-checking freeze LTL over counter machines becomes
decidable. In Proceedings of FOSSACS, volume 6014 of LNCS, pages 176-190, 2010.

7 John Fearnley and Marcin Jurdzinski. Reachability in two-clock timed automata is
PSPACE-complete. Inf. Comput., 243:26-36, 2015.

8 T. French. Quantified propositional temporal logic with repeating states. In Proceedings
of TIME-ICTL, pages 155-165. IEEE Computer Society, 2003.

9 (. Haase, S. Kreutzer, J. Ouaknine, and J. Worrell. Reachability in succinct and parametric
one-counter automata. In Proceedings of CONCUR, volume 5710 of LNCS, pages 369-383.
Springer, 2009.

10 O. H. Ibarra, T. Jiang, N. Tran, and H. Wang. New decidability results concerning two-
way counter machines and applications. In Proceedings of ICALP, volume 700 of LNCS.
Springer, 1993.

11 A. Lisitsa and I. Potapov. Temporal logic with predicate lambda-abstraction. In Proceedings
of TIME, pages 147-155. IEEE Computer Society, 2005.

12 M. Presburger. Uber die Vollstéindigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt. In Comptes Rendus du
I congrés de Mathématiciens des Pays Slaves. Warsaw, pages 92-101, 1929.

	Introduction
	Preliminaries
	One-Counter Automata with Equality and Disequality Tests
	Model Checking Freeze LTL on One-Counter Automata
	Presburger Arithmetic

	Normal Form for Paths
	Reachability with Parameterised Tests
	Conclusion

