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Abstract
We address the problem of verifying safety properties of concurrent programs running over the
TSO memory model. Known decision procedures for this model are based on complex encodings
of store buffers as lossy channels. These procedures assume that the number of processes is fixed.
However, it is important in general to prove correctness of a system/algorithm in a parametric
way with an arbitrarily large number of processes. In this paper, we introduce an alternative (yet
equivalent) semantics to the classical one for the TSO model that is more amenable for efficient
algorithmic verification and for extension to parametric verification. For that, we adopt a dual
view where load buffers are used instead of store buffers. The flow of information is now from the
memory to load buffers. We show that this new semantics allows (1) to simplify drastically the
safety analysis under TSO, (2) to obtain a spectacular gain in efficiency and scalability compared
to existing procedures, and (3) to extend easily the decision procedure to the parametric case,
which allows to obtain a new decidability result, and more importantly, a verification algorithm
that is more general and more efficient in practice than the one for bounded instances.
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1 Introduction

Most modern processor architectures execute instructions in an out-of-order manner to gain
efficiency. In the context of sequential programming, this out-of-order execution is transparent
to the programmer since one can still work under the Sequential Consistency (SC) model [24].
However, this is not true when we consider concurrent processes that share the memory. In
fact, it turns out that concurrent algorithms such as mutual exclusion and producer-consumer
protocols may not behave correctly any more. Therefore, program verification is a relevant
(and difficult) task in order to prove correctness under the new semantics. The inadequacy
of the interleaving semantics has led to the invention of new program semantics, so called
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5:2 The Benefits of Duality in Verifying Concurrent Programs under TSO

Weak (or relaxed) Memory Models (WMM), by allowing permutations between certain types
of memory operations [7, 20, 8]. Total Store Ordering (TSO) is one of the the most common
models, and it corresponds to the relaxation adopted by Sun’s SPARC multiprocessors [28]
and formalizations of the x86-tso memory model [26, 27]. These models put an unbounded
perfect (non-lossy) store buffer between each process and the main memory where a store
buffer carries the pending store operations of the process. When a process performs a store
operation, it appends it to the end of its buffer. These operations are propagated to the
shared memory non-deterministically in a FIFO manner. When a process reads a variable, it
searches its buffer for a pending store operation on that variable. If no such a store operation
exists, it fetches the value of the variable from the main memory. Verifying programs
running on the TSO memory model poses a difficult challenge since the unboundedness of the
buffers implies that the state space of the system is infinite even in the case where the input
program is finite-state. Decidability of safety properties has been obtained by constructing
equivalent models that replace the perfect store buffer by lossy channels [11, 12, 2]. However,
these constructions are complicated and involve several ingredients that lead to inefficient
verification procedures. For instance, they require each message inside a lossy channel to
carry (instead of a single store operation) a full snapshot of the memory representing a
local view of the memory contents by the process. Furthermore, the reductions involve
non-deterministic guessing the lossy channel contents. The guessing is then resolved either
by consistency checking [11] or by using explicit pointer variables (each corresponding to one
process) inside the buffers [2], causing a serious state space explosion problem.

In this paper, we introduce a novel semantics which we call the dual TSO semantics.
Our aim is to provide an alternative (and equivalent) semantics that is more amenable for
efficient algorithmic verification. The main idea is to have load buffers that contain pending
load operations (more precisely, values that will potentially be taken by forthcoming load
operations) rather than store buffers (that contain store operations). The flow of information
will now be in the reverse direction, i.e., store operations are performed by the processes
atomically on the main memory, while values of variables are propagated non-deterministically
from the memory to the load buffers of the processes. When a process performs a load
operation it can fetch the value of the variable from the head of its load buffer. We show that
the dual semantics is equivalent to the original one in the sense that any given set of processes
will reach the same set of local states under both semantics. The dual semantics allows us to
understand the TSO model in a totally different way compared to the classical semantics.
Furthermore, the dual semantics offers several important advantages from the point of view
of formal reasoning and program verification. First, the dual semantics allows transforming
the load buffers to lossy channels without adding the costly overhead that was necessary
in the case of store buffers. This means that we can apply the theory of well-structured
systems [6, 5, 21] in a straightforward manner leading to a much simpler proof of decidability
of safety properties. Second, the absence of extra overhead means that we obtain more
efficient algorithms and better scalability (as shown by our experimental results). Finally, the
dual semantics allows extending the framework to perform parameterized verification which
is an important paradigm in concurrent program verification. Here, we consider systems,
e.g., mutual exclusion protocols, that consist of an arbitrary number of processes. The
aim of parameterized verification is to prove correctness of the system regardless of the
number of processes. It is not obvious how to perform parameterized verification under
the classical semantics. For instance, extending the framework of [2], would involve an
unbounded number of pointer variables, thus leading to channel systems with unbounded
message alphabets. In contrast, as we show in this paper, the simple nature of the dual
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semantics allows a straightforward extension of our verification algorithm to the case of
parameterized verification. This is the first time a decidability result is established for the
parametrized verification of programs running over WMM. Notice that this result is taking
into account two sources of infinity: the number of processes, and the size of the buffers.

Based on our framework, we have implemented a tool and applied it to a large set of
benchmarks. The experiments demonstrate the efficiency of the dual semantics compared to
the classical one (by two order of magnitude in average), and the feasibility of parametrized
verification in the former case. In fact, besides its theoretical generality, parametrized
verification is practically crucial in this setting: as our experiments show, it is much more
efficient than verification of bounded-size instances (starting from a number of components
of 3 or 4), especially concerning memory consumption (which is the critical resource).

Related Work. There have been a lot of works related to the analysis of programs running
under WMM (e.g., [25, 22, 23, 17, 2, 15, 16, 13, 14, 29]). Some of these works propose precise
analysis techniques for checking safety properties or stability of finite-state programs under
WMM (e.g., [2, 13, 19, 4]). Others propose stateless model-checking techniques for programs
under TSO and PSO (e.g., [1, 30, 18]). Different other techniques based on monitoring and
testing have also been developed during these last years (e.g., [15, 16, 25]). There are also a
number of efforts to design bounded model checking techniques for programs under WMM
(e.g., [9, 29, 14]) which encode the verification problem in SAT/SMT.

The closest works to ours are those presented in [2, 11, 3, 12] which provide precise and
sound techniques for checking safety properties for finite-state programs running under TSO.
However, as stated in the introduction, these techniques are complicated and can not be
extended, in a straightforward manner, to the verification of parameterized systems (as it is
the case of the developed techniques for the dual TSO semantics).

In Section 7, we experimentally compare our techniques with Memorax [2, 3] which is the
only precise and sound tool for checking safety properties for programs under TSO.

2 Preliminaries

Let Σ be a finite alphabet. We use Σ∗ (resp. Σ+) to denote the set of all words (resp.
non-empty words) over Σ. Let ε be the empty word. The length of a word w ∈ Σ∗ is denoted
by |w| (and in particular |ε| = 0). For every i : 1 ≤ i ≤ |w|, let w(i) be the symbol at position
i in w. For a ∈ Σ, we write a ∈ w if a appears in w, i.e., a = w(i) for some i : 1 ≤ i ≤ |w|.

Given two words u and v over Σ, we use u � v to denote that u is a (not necessarily
contiguous) subword of v (i.e., if there is an injection h : {1, . . . , |u|} 7→ {1, . . . , |v|} such that:
(1) h(i) < h(j) for all i < j, and (2) for every i ∈ {1, . . . , |u|}, we have u(i) = v(h(i))).

Given a subset Σ′ ⊆ Σ and a word w ∈ Σ∗, we use w|Σ′ to denote the projection of w
over Σ′, i.e., the word obtained from w by erasing all the symbols that are not in Σ′.

Let A and B be two sets and let f : A 7→ B be a total function from A to B. We use
f [a←↩ b] to denote the function f ′ such that f ′(a) = b and f ′(a′) = f(a′) for all a′ 6= a.

A transition system T is a tuple
(
C, Init, Act,∪a∈Act

a−→
)
where C is a (potentially infinite)

set of configurations, Init ⊆ C is a set of initial configurations, Act is a set of actions, and for
every a ∈ Act, a−→ ⊆ C×C is a transition relation. We use c a−→ c′ to denote that (c, c′) ∈ a−→.
Let −→ = ∪a∈Act

a−→. A run π of T is of the form c0
a1−−→ c1

a2−−→· · · an−−→ cn, where ci
ai+1−−−→ ci+1

for all i : 0 ≤ i < n. Then, we write c0 π−→ cn. We use target (π) to denote the configuration cn.
The run π is said to be a computation if c0 ∈ Init. Two runs π1 = c0

a1−−→ c1
a2−−→· · · am−−→ cm

and π2 = cm+1
am+2−−−−→ cm+2

am+3−−−−→· · · an−−→ cn are compatible if cm = cm+1. Then, we write
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π1 • π2 to denote the run π = c0
a1−−→ c1

a2−−→· · · am−−→ cm
am+2−−−−→ cm+2

am+3−−−−→· · · an−−→ cn. For
two configurations c and c′, we use c ∗−→ c′ to denote that c π−→ c′ for some run π. A
configuration c is said to be reachable in T if c0 ∗−→ c for some c0 ∈ Init, and a set C of
configurations is said to be reachable in T if some c ∈ C is reachable in T .

3 Concurrent Systems

In this section, we define the syntax we use for concurrent programs, a model for representing
communicating concurrent processes. Communication between processes is performed through
a shared memory that consists of a finite number of shared variables (over finite domains) to
which all processes can read and write. Then we recall the classical TSO semantics including
the transition system it induces and its reachability problem. Next, we introduce the Dual
TSO semantics and its induced transition system. Finally, we state the equivalence between
the two semantics (for a given concurrent program, we can reduce its reachability problem
under the classical TSO to its reachability problem under Dual TSO and vice-versa).

3.1 Syntax
Let V be a finite data domain and X be a finite set of variables. We assume w.l.o.g. that V
contains the value 0. Let Ω(X,V ) be the smallest set of memory operations that contains (1)
“no operation” nop, (2) read operation r(x, v), (3) write operation w(x, v), (4) fence operation
fence, and (5) atomic read-write operation arw(x, v, v′), where x ∈ X, and v, v′ ∈ V .

A concurrent system is a tuple P = (A1, A2, . . . , An) where for every p : 1 ≤ p ≤ n, Ap
is a finite-state automaton describing the behavior of the process p. The automaton Ap is
defined as a triple

(
Qp, q

init
p ,∆p

)
where Qp is a finite set of local states, qinit

p ∈ Qp is the
initial local state, and ∆p ⊆ Qp × Ω(X,V ) × Qp is a finite set of transitions. We define
P = {1, . . . , n} to be the set of process IDs, Q := ∪p∈PQp to be the set of all local states
and ∆ := ∪p∈P∆p to be the set of all transitions.

3.2 Classical TSO semantics
In the following, we recall the semantics of concurrent systems under the classical TSO model
as formalized in [26, 27]. To do that, we define the set of configurations and the induced
transition relation. Let P= (A1, A2, . . . , An) be a concurrent system.

Configurations. A TSO-configuration c is a triple (q,b,mem) where (1) q : P 7→ Q is the
global state of P mapping each process p ∈ P to a local state in Qp (i.e., q(p) ∈ Qp), (2)
b : P 7→ (X × V )∗ gives the content of the store buffer of each process, and (3) mem : X 7→ V

defines the value of each shared variable. Observe that the store buffer of each process
contains a sequence of write operations, where each write operation is defined by a pair,
namely a variable x and a value v that is assigned to x. The initial TSO-configuration cinit
is defined by the tuple (qinit ,binit ,meminit) where, for all p ∈ P and x ∈ X, we have that
qinit(p) = qinit

p , binit(p) = ε and meminit(x) = 0. In other words, each process is in its
initial local state, all the buffers are empty, and all the variables in the shared memory are
initialized to 0. We use CTSO to denote the set of TSO-configurations.

Transition Relation. The transition relation −→TSO between TSO-configurations is given
by a set of rules, described in Figure 1. Here we informally explain these rules. A nop
transition (q, nop, q′) ∈ ∆p changes only the local state of the process p from q to q′. A
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t = (q, nop, q′) q(p) = q

(q,b,mem) t−→TSO (q [p←↩ q′] ,b,mem)
Nop

t = (q,w(x, v), q′) q(p) = q

(q,b,mem) t−→TSO (q [p←↩ q′] ,b [p←↩ (x, v) · b(p)] ,mem)
Write

t = updatep

(q,b [p←↩ b(p) · (x, v)] ,mem) t−→TSO (q,b,mem [x←↩ v])
Update

t = (q, r(x, v), q′) q(p) = q b(p)|{x}×V = (x, v) · w
(q,b,mem) t−→TSO (q [p←↩ q′] ,b,mem)

Read-Own-Write

t = (q, r(x, v), q′) q(p) = q b(p)|{x}×V = ε mem(x) = v

(q,b,mem) t−→TSO (q [p←↩ q′] ,b,mem)
Read Memory

t = (q, arw(x, v, v′), q′) q(p) = q b(p) = ε mem(x) = v

(q,b,mem) t−→TSO (q [p←↩ q′] ,b,mem [x←↩ v′])
ARW

t = (q, fence, q′) q(p) = q b(p) = ε

(q,b,mem) t−→TSO (q [p←↩ q′] ,b,mem)
Fence

Figure 1 The transition relation −→TSO under TSO. Here p ∈ P and t ∈ ∆p ∪
{

updatep

}
where

updatep is an operation that updates the memory using the oldest message in the buffer of process p.

write transition (q,w(x, v), q′) ∈ ∆p adds the message (x, v) to the tail of the store buffer
of the process p. A memory update transition updatep can be performed at any time by
removing the oldest message in the store buffer of the process p and updating the memory
accordingly. For a read transition (q, r(x, v), q′) ∈ ∆p, if the store buffer of the process p
contains some write operations to x, then the read value v must correspond to the value
of the most recent such a write operation. Otherwise the value v of x is fetched from the
memory. A fence transition may be performed by a process p only if its store buffer is empty.
Finally, an atomic read-write transition (q, arw(x, v, v′), q′) ∈ ∆p can be performed by the
process p only if its store buffer is empty. This operation checks then whether the value of x
is v and changes it to v′.

We use c−→TSO c
′ to denote that c t−→TSO c

′ for some t ∈ ∆ ∪ ∆′ where
∆′ :=

{
updatep| p ∈ P

}
. The transition system induced by P under the classical TSO

semantics is then given by TTSO = (CTSO, {cinit}, ∆ ∪ ∆′,−→TSO).

The TSO Reachability Problem. A global state qtarget is said to be reachable in TTSO
iff there is a TSO-configuration c of the form (qtarget,b,mem), with b(p) = ε for all p ∈ P ,
such that c is reachable in TTSO. The reachability problem for the concurrent system P under
TSO asks, for a given global state qtarget, whether qtarget is reachable in TTSO. Observe that,
in the definition of the reachability problem, we require that the buffers of the configuration
c must be empty instead of being arbitrary. This is only for sake of simplicity and does not
constitute a restriction. Indeed, we can easily show that the “arbitrary buffer” reachability
problem is reducible to the “empty buffer” reachability problem.
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5:6 The Benefits of Duality in Verifying Concurrent Programs under TSO

3.3 Dual TSO semantics

In this section, we define the Dual TSO semantics. The model has a perfect FIFO load
buffer between the main memory and each process. The load buffer is used to store potential
read operations that will be performed by the process. Each message in the load buffer of a
process p is either a pair of the form (x, v) or a triple of the form (x, v, own) where x ∈ X
and v ∈ V . A message of the form (x, v) corresponds to the fact that x had the value v in
the shared memory. While a message (x, v, own) corresponds to the fact that the process p
has written the value v to x. A write operation w(x, v) of the process p immediately updates
the shared memory and a message of the form (x, v, own) is then appended to the tail of the
load buffer of p. Read propagation is then performed by non-deterministically choosing a
variable (let’s say x and its value is v in the shared memory) and appending the message
(x, v) to the tail of the load buffer of p. This propagation operation speculates on a read
operation of p on x that will be performed later on. Moreover, any message at the head of
the load buffer can be removed at any time. A read operation r(x, v) of the process p can be
executed if the message at the head of the load buffer (i.e., the oldest one) of p is of the form
(x, v) and there is no pending message of the form (x, v′, own). In the case that the load
buffer contains a message belonging to p (i.e., of the form (x, v′, own)), the read value must
correspond to the value of the most recent message belonging to p (implicitly, this allows to
simulate the Read-Own-Write transitions). A fence means that the load buffer of p must be
empty before p can continue. Let P= (A1, A2, . . . , An) be a concurrent system.

Configurations. A DTSO-configuration c is a triple (q,b,mem) where q : P 7→ Q is the
global state of P, b : P 7→ ((X × V ) ∪ (X × V × {own}))∗ is the content of the load buffer,
and mem : X 7→ V gives the value of each variable. The initial DTSO-configuration cDinit is
defined by (qinit ,binit ,meminit) where, for all p ∈ P and x ∈ X, we have that qinit(p) = qinit

p ,
binit(p) = ε and meminit(x) = 0. We use CDTSO to denote the set of DTSO-configurations.

Transition Relation. The transition relation −→DTSO induced by the Dual TSO semantics is
given in Figure 2. This relation is induced by members of ∆ and
∆aux :=

{
propagatexp , deletep| p ∈ P, x ∈ X

}
. propagatexp is an operation that speculates

on a read operation of p over x that will be executed later. This is done by appending the
message (x, v) to the tail of the load buffer of p where v is the current value of x in the shared
memory. The operation deletep removes the oldest message in the load buffer of process p. A
write operation w(x, v) updates the memory and appends the message (x, v, own) to the tail
of the load buffer. A read operation r(x, v) checks first if the load buffer contains a message
of the form (x, v′, own), and in that case the read value v should correspond to the value of
the most recent message of that form. If there is no message on the variable x belonging to
p in its load buffer then the value v of x is fetched from the message at the head of its load
buffer.

We use c−→DTSO c
′ to denote that c t−→DTSO c

′ for some t ∈ ∆ ∪ ∆aux. The trans-
ition system induced by P under the Dual TSO semantics is then given by TDTSO =
(CDTSO, {cD

init}, ∆ ∪ ∆aux,−→DTSO).

The Dual TSO Reachability Problem. The reachability problem for P under the Dual TSO
semantics is defined in a similar manner to the case of TSO. A global state qtarget is said to
be reachable in TDTSO iff there is a DTSO-configuration c of the form (qtarget,b,mem), with
b(p) = ε for all p ∈ P , such that c is reachable in TDTSO. Then, the reachability problem
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t = (q, nop, q′) q(p) = q

(q,b,mem) t−→DTSO (q [p←↩ q′] ,b,mem)
Nop

t = (q,w(x, v), q′) q(p) = q

(q,b,mem) t−→DTSO (q [p←↩ q′] ,b [p←↩ (x, v, own) · b(p)] ,mem [x←↩ v])
Write

t = propagatex
p mem(x) = v

(q,b,mem) t−→DTSO (q,b [p←↩ (x, v) · b(p)] ,mem)
Propagate

t = deletep |m| = 1
(q,b [p←↩ b(p) ·m] ,mem) t−→DTSO (q,b,mem)

Delete

t = (q, r(x, v), q′) q(p) = q b(p)|{x}×V×{own} = (x, v, own) · w
(q,b,mem) t−→DTSO (q [p←↩ q′] ,b,mem)

Read-Own-Write

t = (q, r(x, v), q′) q(p) = q b(p)|{x}×V×{own} = ε b(p) = (x, v) · w
(q,b,mem) t−→DTSO (q [p←↩ q′] ,b,mem)

Read from buffer

t = (q, arw(x, v, v′), q′) q(p) = q b(p) = ε mem(x) = v

(q,b,mem) t−→DTSO (q [p←↩ q′] ,b,mem [x←↩ v′])
ARW

t = (q, fence, q′) q(p) = q b(p) = ε

(q,b,mem) t−→DTSO (q [p←↩ q′] ,b,mem)
Fence

Figure 2 The induced transition relation −→DTSO under the Dual TSO semantics. Here p ∈ P
and t ∈ ∆p ∪∆′p where ∆′p :=

{
propagatex

p , deletep| x ∈ X
}
.

consists in checking whether qtarget is reachable in TDTSO. The following theorem states
equivalence of the reachability problems under the TSO and Dual TSO semantics.

I Theorem 1. A global state qtarget is reachable in TTSO iff qtarget is reachable in TDTSO.

4 The Dual TSO Reachability Problem

In this section, we show the decidability of the Dual TSO reachability problem by making
use of the framework of Well-Structured Transition Systems (Wsts) [5, 21]. First, we briefly
recall the framework of Wsts and then we instantiate it to show the decidability of the Dual
TSO reachability problem.

4.1 Well-Structured Transition Systems
Let T =

(
C, Init, Act,∪a∈Act

a−→
)
be a transition system. Let v be a well-quasi ordering on

C. Recall that a well-quasi ordering on C is a binary relation over C that is reflexive and
transitive and for every infinite sequence (ci)i≥0 of elements in C there exist i, j ∈ N such
that i < j and ci v cj . A set U ⊆ C is called upward closed if for every c ∈ U and c′ ∈ C with
c v c′, we have c′ ∈ U. It is known that every upward closed set U can be characterised by
a finite minor set M ⊆ U such that: (i) for every c ∈ U there is c′ ∈ M such that c′ v c, and
(ii) if c, c′ ∈ M and c v c′ then c = c′. We use min to denote the function which for a given
upward closed set U returns its minor set.
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5:8 The Benefits of Duality in Verifying Concurrent Programs under TSO

Let D ⊆ C. The upward closure of D is defined as D ↑:= {c′ ∈ C| ∃c ∈ D with c v c′}. We
also define the set of predecessors of D as PreT (D) := {c| ∃c1 ∈ D, c−→ c1}. For a finite set of
configurations M ⊆ C, we use minpre (M) to denote min (PreT (M ↑) ∪ M ↑).

The transition relation −→ is said to be monotonic wrt. v if, given c1, c2, c3 ∈ C s.t.
c1−→ c2 and c1 v c3, we can compute a configuration c4 ∈ C and a run π s.t. c3 π−→ c4 and
c2 v c4. The pair (T ,v) is called monotonic transition system if −→ is monotonic wrt. v.

Given a finite set of configurations M ⊆ C, the coverability problem of M in the monotonic
transition system (T ,v) asks whether the set M ↑ is reachable in T . For the decidability of
this problem the following three conditions are sufficient: (i) For every two configurations
c1 and c2, it is decidable whether c1 v c2, (ii) for every c ∈ C, we can check whether
{c} ↑ ∩Init 6= ∅, and (iii) for every c ∈ C, the set minpre (c) is finite and computable.

The solution for the coverability problem as suggested in [5, 21] is based on a backward
analysis approach. It is shown that starting from a finite set M0 ⊆ C, the sequence (Mi)i≥0
with Mi+1 := minpre (Mi), for i ≥ 0 reaches a fixpoint and is computable.

4.2 Dual TSO Transition System is a Wsts

In this section, we instantiate the framework of Wsts to show the following result:

I Theorem 2. The Dual TSO reachability problem is decidable.

The rest of this section is devoted to the proof of the above theorem. Let P =
(A1, A2, . . . , An) be a concurrent system (as defined in Section 3). Let
TDTSO = (CDTSO, {cD

init}, ∆ ∪ ∆aux,−→DTSO) be the transition system induced by P under
the Dual TSO semantics (as defined in Section 3.3). In the following, we will first define a
well-quasi ordering v on the set of DTSO-configurations (Lemma 4) such that for every two
configurations c1 and c2, it is decidable whether c1 v c2. Then we show that the transition
system induced under the Dual TSO semantics is monotonic wrt. to v (Lemma 5). We will
show also that the Dual TSO reachability problem for P can be reduced to the coverability
problem in the monotonic transition system (TDTSO,v) (Lemma 6). (Observe that this
reduction is needed since we require that the load buffers are empty when defining the Dual
TSO reachability problem.) The second sufficient condition (i.e., checking whether the upward
closed set {c} ↑, with c is a DTSO-configuration, contains an initial configuration) for the
decidability of the coverability problem is trivial. This check boils down to verifying whether
c is an initial configuration. Finally, the computability of the set of minimal configurations
for the set of predecessors of any upward closed set is stated by the following lemma:

I Lemma 3. For any configuration c, we can compute minpre({c}).

Well-quasi Ordering. In the following, we define a well-quasi ordering v on CDTSO. Let us
first introduce some notations and definitions. Consider a word
w ∈ ((X × V ) ∪ (X × V × {own}))∗ representing the content of a load buffer. We define
an operation that divides w into a number of fragments according to the most-recent own-
messages concerning each variable. We define
[w]own := (w1, (x1, v1, own), w2, . . . , wm, (xm, vm, own), wm+1), where the following con-
ditions are satisfied: (1) xi 6= xj if i 6= j, (2) if (x, v, own) ∈ wi then x = xj for
some j < i (i.e., the most recent own-message on xj occurs at position j), and (3)
w = w1 · (x1, v1, own) · w2 · · ·wm · (xm, vm, own) · wm+1 (i.e., the fragments correspond
to the given word w).
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Let w,w′ ∈ ((X × V ) ∪ (X × V × {own}))∗ be two words. Let us assume that
[w]own = (w1, (x1, v1, own), w2, . . . , wr, (xr, vr, own), wr+1), and
[w′]own = (w′1, (x′1, v′1, own), w′2, . . . , w′m, (x′m, v′m, own), w′m+1). We write w v w′ to denote
that the following conditions are satisfied: (i) r = m, (ii) x′i = xi and v′i = vi for all
i : 1 ≤ i ≤ m, and (iii) wi � w′i for all i : 1 ≤ i ≤ m+ 1.

Consider two DTSO-configurations c = (q,b,mem) and c′ = (q′,b′,mem′), we extend
the ordering v to configurations as follows: c v c′ iff the following conditions are satisfied:
(i) q = q′, (ii) b(p) v b′(p) for all process p ∈ P , and (iii) mem′ = mem. The following
lemma shows that v is indeed a well-quasi ordering.

I Lemma 4. The relation v is a well-quasi ordering over CDTSO. Furthermore, for every
two DTSO-configurations c1 and c2, it is decidable whether c1 v c2.

Monotonicity. Given configurations c1 = (q1,b1,mem1) , c2 = (q2,b2,mem2) , c3 =
(q3,b3,mem3) ∈ CDTSO such that c1

t−→DTSO c2 for some transition
t ∈ ∆p ∪

{
propagatexp , deletep| x ∈ X

}
, with p ∈ P , and c1 v c3, we will show that it is

possible to compute a configuration c4 ∈ CDTSO and a run π such that c3 π−→DTSO c4
and c2 v c4. To that aim, we first show that it is possible from c3 to reach a con-
figuration c′3, by performing a certain number of deletep operations, such that the pro-
cess p will have the same last message in its load buffer in the configurations c1 and c′3
while c1 v c′3. Then, from the configuration c′3, the process p can perform the same
transition t as c1 did in order to reach the configuration c4 such that c2 v c4. Let us
assume that [b1(p)]own is of the form 〈w1, (x1, v1, own), w2, . . . , wm, (xm, vm, own), wm+1〉,
and [b3(p)]own is of the form 〈w′1, (x′1, v′1, own), w′2, . . . , w′m, (x′m, v′m, own), w′m+1〉. We define
the word w ∈ ((X × V ) ∪ (X × V × {own}))∗ to be the longest word such that w′m+1 =
w′ · w with wm+1 � w′. Observe that in this case we have either wm+1 = w′ = ε or
w′(|w′|) = wm+1(|wm+1|). Then, after executing a certain number |w| of deletep operations
from the configuration c3, one can obtain a configuration c′3 = (q3,b′3,mem3) such that
b3 = b′3 [p←↩ b′3(p) · w]. As a consequence, we have c1 v c′3. Furthermore, since c1 and c′3
have the same global state, the same memory valuation, the same sequence of most-recent
own messages concerning each variable, and the same last message in the load buffer of p, c′3
can perform the transition t and reaches a configuration c4 such that c2 v c4. The following
lemma shows that (TDTSO,v) is monotonic system.

I Lemma 5. The relation −→DTSO is monotonic wrt. v.

From Reachability to Coverability. Let qtarget be a global state of P and Mtarget be the
set of DTSO-configurations of the form c = (qtarget,b,mem) with b(p) = ε for all p ∈ P .
Next, we show that the reachability problem of qtarget in TDTSO can be reduced to the
coverability problem of Mtarget in (TDTSO,v). Recall that qtarget in TDTSO iff Mtarget is
reachable in TDTSO. Let us assume that Mtarget↑ is reachable in TDTSO. This means that
there is a configuration c ∈ Mtarget↑ which is reachable in TDTSO. Let us assume that c is
of the form (qtarget,b,mem). Then, from the configuration c, it is possible to reach the
configuration c′ = (qtarget,b′,mem), with b′(p) = ε for all p ∈ P , by performing a sequence
of deletep operations to empty the load buffer of each process. It is then easy to see that
c′ ∈ Mtarget and so Mtarget is reachable in TDTSO. The other direction of the following lemma
is trivial since Mtarget ⊆ Mtarget↑.

I Lemma 6. Mtarget↑ is reachable in TDTSO iff Mtarget is reachable in TDTSO.
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5 Parameterized Concurrent Systems

Let V be a finite data domain and X be a finite set of variables ranging over V . A parameter-
ized concurrent system (or simply a parameterized system) consists of an unbounded number
of identical processes running under the Dual TSO semantics. Formally, a parameterized
system S is defined by a finite-state automaton A =

(
Q, qinit ,∆

)
uniformly describing the

behavior of each process. An instance of S is a concurrent system P= (A1, A2, . . . , An), for
some n ∈ N, where for every p : 1 ≤ p ≤ n, we have Ap = A. In other words, it consists of a
finite set of processes each running the same code defined by A. Observe that considering
that all processes run the same code is not a real restriction. In fact, the case where the
processes run (finitely many) different finite-state automata A1, A2, . . . , Am can be easily
encoded in our model by constructing an extended automaton A which represents the union
of these automata A1, A2, . . . , Am. We use Inst(S) to denote all possible instances of S. We
use TP = (CP, InitP, ActP,−→P) to denote the transition system induced by an instance P of
S under the Dual TSO semantics.

A parameterized configuration α is a pair (P, c) where P = {1, . . . , n}, with n ∈ N, is
the set of process IDs and c is a DTSO-configuration of an instance P of S of the form
(A1, A2, . . . , An). The parameterized configuration α = (P, c) is said to be initial if c is an
initial configuration of P (i.e., c ∈ InitP). We use C (resp. Init) to denote the set of all the
parameterized configurations (resp. initial configurations) of S.

Let Act denote the set of actions of all possible instances of S (i.e., Act = ∪P∈Inst(S) ActP).
We define a transition relation −→ on parameterized configurations such that (P, c) t−→ (P ′, c′)
for some action t ∈ Act iff P ′ = P and there is an instance P of S such that t ∈ ActP and
c−→P c′. The transition system induced by S is given by T = (C, Init, Act,−→).

In the following we extend the definition of the Dual TSO reachability problem to the
case of parameterized systems. A global state qtarget : P ′ 7→ Q is said to be reachable in T if
there exists a parameterized configuration α = (P, (q,b,mem)), with b(p) = ε for all p ∈ P ,
such that α is reachable in T and qtarget(1) · · ·qtarget(|P ′|) � q(1) · · ·q(|P |). Then, the
reachability problem consists in checking whether qtarget is reachable in T . In other words,
the Dual TSO reachability problem for parameterized systems asks whether there is an
instance of the parameterized system that reaches a configuration with a number of processes
in certain given local states.

6 Decidability of the Parameterized Verification Problem

We prove hereafter the following fact:

I Theorem 7. The Dual TSO reachability problem for parameterized systems is decidable.

Let S =
(
Q, qinit ,∆

)
be a parameterized system and (C, Init, Act,−→) be its induced

transition system. The proof of Theorem 7 is done by instantiating the framework of Wsts.
Following that framework, we will first define an ordering that we denote by E on the set
of parameterized configurations and show the monotonicity of the the relation −→ wrt. this
ordering (see Lemma 9 and Lemma 10). Then we will show that the Dual TSO reachability
problem for S can be reduced to the coverability problem in the monotonic transition system
(T ,E) (Lemma 11). The second sufficient condition (i.e., checking whether the upward closed
set {α} ↑, with α is a parameterized configuration, contains an initial configuration) for
the decidability of the coverability problem is trivial. This check boils down to whether
the configuration α is initial. Finally, the last sufficient condition (i.e., computing the set
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of minimal configurations for the set of predecessors of any upward closed set) for the
decidability of the coverability problem is stated by the following lemma:

I Lemma 8. For any parameterized configuration α, we can compute minpre({α}).

Well-quasi Ordering. Let α = (P, (q,b,mem)) and α′ = (P ′, (q′,b′,mem′)) be two para-
meterized configurations. We define the ordering E on the set of parameterized configurations
as follows: α E α′ iff the following conditions are satisfied: (1) mem = mem′ and (2) there is
an injection h : {1, . . . , |P |} 7→ {1, . . . , |P ′|} such that (i) p < p′ implies h(p) < h(p′), and
(ii) for every p ∈ {1, . . . , |P |}, q(p) = q′(h(p)) and b(p) v b′(h(p)). The following lemma
states that E is indeed a well-quasi ordering.

I Lemma 9. The relation E is a well-quasi ordering over C. Furthermore, for every two
parameterized configurations α and α′, it is decidable whether α E α′.

Monotonicity. Let α1 = (P, (q1,b1,mem1)), α2 = (P, (q2,b2,mem2)) and
α3 = (P ′, (q3,b3,mem3)) be parameterized configurations. Furthermore, we assume that
α1 E α3 and α1

t−→α2 for some transition t. Since α1 E α3, there is an injection func-
tion h : {1, . . . , |P |} 7→ {1, . . . , |P ′|} such that (i) p < p′ implies h(p) < h(p′), and
(ii) for every p ∈ {1, . . . , |P |}, q1(p) = q3(h(p)) and b1(p) v b3(h(p)). We define the
parameterized configuration α′ from α3 by only keeping the local state and load buf-
fers of processes in h(P ). Formally, α′ = (P, (q′,b′,mem′)) is defined as follows: (i)
mem′ = mem3 and (ii) for every p ∈ {1, . . . , |P |}, q′(p) = q3(h(p)) and b′(p) = b3(h(p)).
(Observe that (q1,b1,mem1) v (q′,b′,mem′)). Since the relation −→DTSO is monotonic
wrt. the ordering v (see Lemma 5), there is a Dual TSO-configuration (q′′,b′′,mem′′) such
that (q′,b′,mem′)−→∗DTSO (q′′,b′′,mem′′) and (q2,b2,mem2) v (q′′,b′′,mem′′). Consider
now the parameterized configuration α4 = (P ′, (q4,b4,mem4)) such that mem′′ = mem4,
(ii) for every p ∈ {1, . . . , |P |}, q′′(p) = q4(h(p)) and b′′(p) = b4(h(p)), and (iii) for
p ∈ ({1, . . . , |P ′|} \ {h(1), . . . , h(|P |)}), we have q4(p) = q3(p) and b4(p) = b3(p). It is easy
then to see that α2 E α4 and α3−→∗ α4. Hence, we obtain the following result:

I Lemma 10. The relation −→ is monotonic wrt. E.

From Reachability to Coverability. Let qtarget : P ′ 7→ Q be a global state. Let Mtarget
be the set of parameterized configurations of the form α = (P ′, (qtarget,b,mem)) with
b(p) = ε for all p ∈ P ′. In the following, we show that Mtarget ↑ is reachable in T iff there is
a parameterized configuration α = (P, (q,b,mem)), with b(p) = ε for all p ∈ P , such that
α is reachable in T and qtarget(1) · · ·qtarget(|P ′|) � q(1) · · ·q(|P |).

Let us assume that there is a parameterized configuration α = (P, (q,b,mem)), with
b(p) = ε for all p ∈ P , such that α is reachable in T and
qtarget(1) · · ·qtarget(|P ′|) � q(1) · · ·q(|P |). It is then easy to show that α ∈ Mtarget ↑.

Now let us assume that there is α′ = (P ′′, (q′,b′,mem′)) ∈ Mtarget↑ which is reachable in T .
From the configuration α′, it is possible to reach the configuration α′′ = (P ′′, (q′,b′′,mem′)),
with b′′(p) = ε for all p ∈ P ′′, by performing a sequence of deletep operations to empty
the load buffer of each process. Since α′ ∈ Mtarget ↑, we have qtarget(1) · · ·qtarget(|P ′|) �
q′(1) · · ·q′(|P ′′|). Hence, α′′ is a witness of the state reachability problem.

I Lemma 11. qtarget is reachable in T iff Mtarget↑ is reachable in T .
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Table 1 Comparison between Dual-TSO and Memorax: The columns #P, #T and #C give
the number of processes, the running time in seconds and the number of generated configurations,
respectively. If a tool runs out of time, we put TO in the #T column and • in the #C column.

Program #P Dual-TSO Memorax
#T #C #T #C

SB 5 0.3 10641 559.7 10515914
LB 3 0.0 2048 71.4 1499475
WRC 4 0.0 1507 63.3 1398393
ISA2 3 0.0 509 21.1 226519
RWC 5 0.1 4277 61.5 1196988
W+RWC 4 0.0 1713 83.6 1389009
IRIW 4 0.0 520 34.4 358057
Nbw_w_wr 2 0.0 222 10.7 200844
Sense_rev_bar 2 0.1 1704 0.8 20577
Dekker 2 0.1 5053 1.1 19788
Dekker_simple 2 0.0 98 0.0 595
Peterson 2 0.1 5442 5.2 90301
Peterson_loop 2 0.2 7632 5.6 100082
Szymanski 2 0.6 29018 1.0 26003
MP 4 0.0 883 TO •
Ticket_spin_lock 3 0.9 18963 TO •
Bakery 2 2.6 82050 TO •
Dijkstra 2 0.2 8324 TO •
Lamport_fast 3 17.7 292543 TO •
Burns 4 124.3 2762578 TO •

7 Experimental Results

We have implemented our techniques described in Section 4 and Section 6 in an open-source
tool called Dual-TSO1. The tool checks the state reachability problems for (parameterized)
concurrent systems under the Dual TSO semantics. We compare our tool with Memorax [2,
3] which is the only precise and sound tool for deciding the state reachability problem
of concurrent systems under TSO. Observe that Memorax cannot handle parameterized
verification. All experiments are performed on an Intel x86-32 Core2 2.4 Ghz machine and
4GB of RAM.

In the following, we present two sets of results. The first set concerns the comparison of
Dual-TSO with Memorax (see Table 1). The second set shows the benefit of the parameterized
verification compared to the use of the state reachability when increasing the number of
processes (see Figure 3 and Table 2). Our examples are from [2, 10, 13, 4, 25]. In all
experiments, we set up the time out to 600 seconds.

Table 1 presents a comparison between Dual-TSO and Memorax on a representative sample
of 20 benchmarks. In all these examples, Dual-TSO and Memorax return the same result
for the state reachability problem (except 6 examples where Memorax runs out of time). In
the examples where the two tools return, Dual-TSO out-performs Memorax and generates
fewer configurations (and so uses less memory). Indeed, Dual-TSO is 600 times faster than

1 https://www.it.uu.se/katalog/tuang296/dual-tso
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Table 2 Parameterized verification with Dual-TSO.

Program Dual-TSO
#T #C

SB 0.0 147
LB 0.6 1028
MP 0.0 149
WRC 0.8 618
ISA2 4.3 1539
RWC 0.2 293
W+RWC 1.5 828
IRIW 4.6 648
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Figure 3 Running time of Memorax and Dual-TSO by increasing number of processes. The x axis
is number of processes, the y axis is running time in seconds.

Memorax and generates 277 times fewer configurations on average.
The second set compares the scalability of Memorax and Dual-TSO while increasing the

number of processes. The results are given in Fig. 3. We observe that Dual-TSO scales
better than Memorax in all these examples. In fact, Memorax can only handle the examples
with at most 5 processes. Table 2 presents the running time and the number of generated
configurations when checking the state reachability problem for the parameterized version of
these examples. We observe that the verification of these parameterized systems is much
more efficient than verification of bounded-size instances (starting from a number of processes
of 3 or 4), especially concerning memory consumption (which is given in terms of number of
generated configurations). The reason behind is that the size of the generated minor sets
in the analysis of a parameterized system is usually smaller than the size of the generated
configurations during the analysis of an instance of the system with a large number of
processes.

8 Conclusion

In this paper, we have presented an alternative (yet equivalent) semantics to the classical
one for the TSO model. This new semantics allows us to understand the TSO model in
a totally different way compared to the classical semantics. Furthermore, the proposed
semantics offers several important advantages from the point of view of formal reasoning
and program verification. First, the dual semantics allows transforming the load buffers to
lossy channels without adding the costly overhead that was necessary in the case of store
buffers. This means that we can apply the theory of well-structured systems [6, 5, 21] in a
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straightforward manner leading to a much simpler proof of decidability of safety properties.
Second, the absence of extra overhead means that we obtain more efficient algorithms
and better scalability (as shown by our experimental results). Finally, the dual semantics
allows extending the framework to perform parameterized verification which is an important
paradigm in concurrent program verification.

In the future, we plan to apply our techniques to more memory models and to combine
with predicate abstraction for handling programs with unbounded data domain.
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