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Abstract
Controller synthesis is the automatic construction a correct system from its specification. This
often requires assumptions about the behaviour of the environment. It is difficult for the designer
to identify the assumptions that ensures the existence of a correct controller, and doing so manu-
ally can lead to assumptions that are stronger than necessary. As a consequence the generated
controllers are suboptimal in terms of robustness. In this work, given a specification, we identify
the weakest assumptions that ensure the existence of a controller. We also consider two important
classes of assumptions: the ones that can be ensured by the environment and assumptions that
restricts only inputs of the systems. We show that optimal assumptions correspond to strongly
winning strategies, admissible strategies and remorse-free strategies depending on the classes.
Using these correspondences, we then propose an algorithm for computing optimal assumptions
that can be ensured by the environment.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Controller synthesis, Parity games, Admissible strategies

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.8

1 Introduction

The goal of synthesis is the implementation of a correct reactive system from its specifica-
tions. A specification is given by a ω-regular language over input and output signals of the
desired system. It is realisable if we can guarantee that the sequence of inputs and outputs
belong to the language. For regular languages this can be done using finite memory and
thus implemented using Moore machines. Several tools have been developed to solve this
problem (see for example: [3, 14]).

In general, the realisation of a specification requires some assumptions about the envir-
onment. In this work, we look for the weakest assumption that makes it realisable. For us,
an assumption is weaker if it allows more behaviours. We therefore use language inclusion
to compare assumptions, which means there may be incomparable and there is not a unique
weakest in general. Apart from looking for just an assumption, we also consider two im-
portant classes of assumptions: ensurable and input assumptions. Ensurable assumptions
can be ensured by the environment; in other term they cannot be falsified by a strategy of
the controller. These assumptions are natural to consider when faced with a reactive envir-
onment. On the other hand, input assumptions are independent of the sequence of output
that is produced. They are better suited to ensurable assumptions when the behaviour of
the environment does not depend on the outputs of our system.

Synthesis is in general achieved by the computation of winning strategies in a game. For
instance, if the specification is given by a parity automaton, we can see it has a game where
the controller chooses output symbols and the adversary controls input symbols. Winning
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Figure 1 A Büchi automaton for the specification ΣI · (send0 · (¬ack0 · send0)∗ · ack0 · send1 ·
(¬ack1 · send1)∗ · ack1)ω. Accepting states (with colour 0) are double lined. Square states mean
that the next signal is an input, while circles mean it will be an output.

strategies in this game correspond to correct implementation of the system, and their ex-
istence implies realisability. When winning strategies do not exist, different classes have
been introduced to characterise strategies that make their best effort to win. In particu-
lar, strongly winning strategy [10] play a winning strategy as soon as the current history
(sequence of signals seen so far) makes it possible. Admissible strategies [1] are not dom-
inated by other ones, in the sense that no strategy performs better than them against all
adversary strategies. Remorse-free strategies [8] are such that no other strategy performs
better than them against all words played by the adversary. We draw a link between classes
of assumptions and these classes of strategies.

Example. As an example, assume we want to design a sender on a network where pack-
ets can be lost or corrupted, and our goal is to obtain a protocol similar to the classical
alternating bit protocol. The outputs of the sender are actions send0 and send1, and the
environment controls ack0, ack1 corresponding to acknowledgement of good reception of the
packet. The specification is given by the ω-regular expression: ΣI · (send0 · (¬ack0 · send0)∗ ·
ack0 · send1 · (¬ack1 · send1)∗ · ack1)ω. Intuitively, we have to send message with bit control
0 until receiving the corresponding acknowledgement, then do the same thing with the next
message with bit control 1 and repeat this forever.

Although the implementation of the protocol seems straightforward, classical realisability
fails here since if all packets are lost after some point the specification will not be satisfied,
hence there is no winning strategy. To ensure realisability we have to make the assumption
that a packet that is repeatedly sent will eventually be acknowledged. An admissible strategy
for this specification can be implemented by a Moore machine which has the same structure
as the automaton in Figure 1 with output function G such that G(s2) = G(s4) = send0
and G(s5) = G(s7) = send1. This implementation is natural for the given specification and
corresponds indeed to the alternating bit protocol. The assumption corresponding to this
strategy is the language recognised by the same automaton where we add ⊥-states to the
set of accepting states. As we will see in Theorem 23, it is an optimal ensurable assumption
for the specification.
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Table 1 Link between classes of assumptions and strategies.

Class of assumption: Optimal achieved by:
General (A) Strongly winning strategies Theorem 12
Ensurable (E) Admissible strategies Theorem 23
Input (I) Remorsefree strategies Theorem 38

Scenarios. Specifications disallow behaviours that are not desirable. Dually, we may want
to specify execution scenarios that should be possible in the synthesised system. We ask
then for a system whose outcomes are all within the specifications and contains all the given
scenarios. Scenarios are also a means for the user to provide feedback when the assumptions
and strategies suggested by our algorithm are not the expected ones.

Generalisation. Sometimes, we already know a sufficient assumption but we want to syn-
thesise a system which is as robust as possible by generalising this assumption. For instance,
for the alternating bit protocol we could suggest as an initial assumption that two successive
packets cannot be lost. With this assumption, we would offer no guarantee when than more
two packets in a row are lost. By generalising the assumption, we ensure that the strategy
synthesised works well under the assumption and for as many input sequences as possible.
For instance, the alternating bit protocol works if an infinite number of packets are not lost.

Contribution. In this article we establish correspondences between class of assumptions
and classical classes of strategies, which are summarised in Table 1.

We also show existence of optimal assumptions in most cases and give algorithms to
compute optimal assumptions. In particular, we show the following properties. The exist-
ence of sufficient input assumptions compatible with a scenario is always true (Theorem 6).
It is also true for safety assumptions if the scenario is itself a safety language (Theorem 7).
There may exist an infinite number of optimal and ensurable-optimal assumptions (The-
orem 14) and of input-optimal assumptions (Theorem 34). We can compute an optimal
ensurable assumption in exponential time for parity specification and in polynomial time if
we have an oracle to solve parity games (Theorem 27 and Theorem 30). There is an expo-
nential algorithm that given a sufficient assumption, generalises it to an ensurable-optimal
assumption (Theorem 33).

Comparison on previous works on assumptions for synthesis. In [7], the study is focused
on safety conditions defined by forbidding edges of the automaton defining specification L.
This approach depends on the choice of the automaton representing L, while ours does not.
In the setting of [7], comparison between assumptions is based on the number of edges, while
we compare them based on language inclusion which we find more relevant. Consider the
example of Figure 2 taken from [7]. There is no winning strategy from s1. According to [7],
there are 2 minimal sufficient assumptions which are to remove either (s3, s6) or (s5, s7).
However if we remove the edge from s3 to s6, state s5 is no longer reachable which means that
the first assumption is in fact stronger than the second one from the point of view of language
inclusion. Moreover, we show that even for this restricted class of safety assumption, the
claim that there is a unique non-restrictive optimal assumption [7, Theorem 5] does not
hold for our notion of ensurable assumption. Consider the example of Figure 3: removing
(s3, s6) or (s4, s6) is sufficient for L = ΣI · (o1 · i1 + o2 · i2) ·ΣO · (ΣI ·ΣO)ω, and both these
assumptions are ensurable-optimal.

CONCUR 2016
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Figure 2 A game from [7].
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Figure 3 Automaton for specification ΣI · (o1 · i1 + o2 · i2) · ΣO · (ΣI · ΣO)ω.

Other related works. Our goal is close to the work on assume-guarantee synthesis [6].
However assume-guarantee synthesis relies on equilibria concepts inspired by Nash equilibria.
As such they assume rationality of the environment of the system and that its objective is
known. By contrast, here we do not assume a rational environment and we look for the
minimal assumptions about it. Closer to our work is [8] which relies on a notion of dominant
strategy to obtain the weakest input assumption for which a component of the system can be
implemented. A problem with this approach is that dominant strategies do not always exist.
Here we characterise all minimal assumptions, and we look both at input assumptions and
ensurable assumptions, which are more relevant in the context of a reactive environment.

2 Preliminaries

Given a finite alphabet Σ and an infinite word w ∈ Σω, we use wi to denote the i-th symbol
of w, and w≤i = w1 · · ·wi the finite prefix of w of length i. We write |w≤i| = i its length. A
reactive system reads input signals in a finite alphabet ΣI and produces output signals in a
finite alphabet ΣO. We fix these alphabets for the remainder of this paper. A specification
of a reactive system is an ω-language L ⊆ (ΣI · ΣO)ω. A program or strategy is a mapping
σ∃ : (ΣI · ΣO)∗ · ΣI → ΣO. An outcome of such a strategy σ∃ is a word w such that for all
i ∈ N, w2·i+2 = σ∃(w≤2·i+1). We write Out(σ∃) for the set of outcomes of σ∃.

Given a specification L, the realizability problem [15] asks whether there exists a strategy
σ∃ such that Out(σ∃) ⊆ L. Such a strategy is said winning for L. The process of constructing
such a strategy is called synthesis.

Parity automata. We assume that specifications are given by deterministic parity auto-
mata, which can recognise any ω-regular languages [13]. A parity automaton is given by
〈S, s0,∆, χ〉, where S is a finite set of states, s0 ∈ S is the initial state, ∆ ∈ S×(ΣI∪ΣO)×S
is the transition relation, and χ : S → N is a colouring function. A path ρ ∈ Sω is accepting
if the smallest colour seen infinitely often is even (i.e. if min{c | ∀i ∈ N. ∃j ≥ i. χ(wj) =
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Figure 4 A Büchi automaton corresponding to specification (i1 · o2 + i2 · o1)ω.

c} ∈ 2 · N). A word w is accepted if there is an accepting path whose labelling is w. A
Büchi automaton is a parity automaton for which χ(S) ⊆ {0, 1}. A safety automaton is a
Büchi automaton where states of colour 1 are absorbing. The language recognised by an
automaton is the set of words it accepts. Specification can also be given in temporal logics
such as LTL before being translated to an automaton representation. In some examples, we
will use LTL formulas with the syntax Xφ meaning φ holds in the next state, φ1Uφ2 meaning
φ1 holds until φ2 holds (and φ2 must hold at some point), Fφ := true U φ and Gφ := ¬F(¬φ).

Strategies. The realizability problem is best seen as a game between two players [12]. The
environment chooses the input signals and the controller the output signals. We therefore
also define the concept of environment-strategy which is a mapping σ∀ : (ΣI · ΣO)∗ → ΣI .
Given an environment-strategy σ∀, we write Out(σ∀) the set of words w such that for all
i ∈ N, w2·i+1 = σ∀(w≤2·i). Given an input word u ∈ ΣI

ω, we write Out(σ∃, u) the unique
outcome such that for all i ∈ N, w2·i+1 = ui+1 and w2·i+2 = σ∃(w≤2·i+1). We also write
Out(σ∃, σ∀) = Out(σ∃)∩Out(σ∀), note that it contains only one outcome. A finite prefix of an
outcome is called a history. Given a history h, we write Outh(σ∃) a word w such that for all
i ≤ |h|, wi = hi and for all i such that 2 · i+ 2 > |h|, w2·i+2 = σ∃(w≤2·i+1). We write πI and
πO the samplings over input and output signals respectively, that is πI : (ΣI · ΣO)ω → ΣI

ω

is such that πI(w)i = w2·i−1 and πO : (ΣI · ΣO)ω → ΣO
ω is such that πO(w)i = w2·i.

Moore machine. Finite memory strategies are implemented as Moore machines. Note that
the machines as we will define them read both inputs and outputs. In many application,
reading outputs is unnecessary since the strategy can be left undefined on incompatible
histories. However the definition we provide is coherent with our definition of strategies and
makes it easier to combine strategies which may not be compatible with the same histories. A
Moore machine is given by 〈SI , SO, s0, δ, G〉 where S = SI∪SO is a finite set of states, SI is a
set of input states and SO of output states, s0 ∈ SI is the initial state, δ : S×(ΣI ∪ΣO)→ S

is the transition function, and G : SO → ΣO is an output function. A Moore machine
implements a strategy σ∃ where for all history h ∈ (ΣI · ΣO)∗ · ΣI , σ∃(h) = G(s|h|) where
for all 0 ≤ i < |h|, si+1 = δ(si, hi+1).

2.1 Assumptions

An assumption A ⊆ (ΣI · ΣO)ω is sufficient for specification L if there is a strategy σ∃ of
the controller such that any outcome either satisfies L or is not in A, i.e. Out(σ∃) ∩A ⊆ L.
In this case we also say that A is sufficient for σ∃. We look for assumptions that are the
least restrictive. We say that assumption A is less restrictive than B if B ⊆ A. We say it is
strictly less restrictive if B ⊂ A (i.e. B ⊆ A and A 6= B). We consider the following classes:

An assumption is an ω-regular language A ⊆ (ΣI · ΣO)ω. We write the class of all
assumptions A.

CONCUR 2016
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An input-assumption is an assumption which concerns only inputs and does not restrict
outputs. We write this class I = {A ∈ A | ∀w,w′ ∈ (ΣI · ΣO)ω. πI(w) = πI(w′) ∧ w ∈
A⇒ w′ ∈ A}.
An ensurable assumption is an assumption for which the environment has a winning
strategy, i.e. for each w ∈ (ΣI · ΣO)∗, if w · (ΣI · ΣO)ω ∩ A 6= ∅ then there exists an
environment strategy σ∀ such that w · (ΣI · ΣO)ω ∩ Out(σ∀) 6= ∅ and Out(σ∀) ⊆ A. We
write this class E . The fact that the environment can ensure the assumption is often a
requirement in synthesis (see for instance [2]).
An output-restrictive assumption A is an assumption which it restricts the strategies of
the controller, that is there is w ∈ (ΣI ·ΣO)∗ and σ∃ a strategy, such that: A ∩w · (ΣI ·
ΣO)ω 6= ∅ and Out(σ∃) ∩ w · (ΣI · ΣO)ω 6= ∅ and A ∩ Out(σ∃) ∩ w · (ΣI · ΣO)ω = ∅.
Intuitively an output-restrictive assumption A forbids strategy σ∃, so playing σ∃ would
be a trivial way to satisfy A ⇒ L. From the point of view of synthesis it is better to
avoid such assumptions. We write this class R.
A safety assumption is an assumption A for which every word not in A has a bad
prefix [11], i.e. A = (ΣI · ΣO)ω \ {w | ∃k. w≤2·k ∈ Bad(A)}, where Bad(A) = {h ∈
(ΣI ·ΣO)∗ | h · (ΣI ·ΣO)ω ∩A = ∅} is the set of bad prefixes of A. We write this class S.

For a class C of assumptions, we say that assumption A is C-optimal for L if A belongs
to C, is sufficient for L and there is no assumption B ∈ C that is strictly less restrictive than
A and sufficient for L.
I Remark. Note that L is always a sufficient assumption, however it is too strong and will
never be interesting for synthesis: if we assume that our specification always hold then any
strategy would do. That is why we ask for assumptions that are as weak as possible.

We first note the following relationships between the classes of assumptions.

I Lemma 1. Non-empty input assumptions are ensurable, i.e. (I \ {∅}) ⊂ E

I Lemma 2. Ensurable assumptions are the non-output-restrictive ones: E = A \R.

I Example 3. In all the examples of this article we will assume that the set of input signals
is ΣI = {i1, i2} and the set output of output signals is ΣO = {o1, o2}. The automaton for
specification L given by formula o1Ui1 is represented in Figure 5. This specification is not
realisable, however several assumptions can be sufficient for it. Consider for instance the
assumption A given by the LTL formula Fo1. It is sufficient for L and is in fact sufficient for
any specification since a strategy σ∃ which never plays o1 has no outcome in A. To avoid
this degenerate assumptions we focus on non-restrictive assumptions: Fo1 is indeed output
restrictive. On the other hand F(o1)⇔ F(i1) is ensurable because the environment can react
to make the assumption hold, no matter the strategy σ∃ we chose. We can also check that
it is sufficient for L: the strategy that always play o1 is winning.

This assumption is fine in the context of a reactive environment, but if the environment
behaves independently of the output of the system, o1 should not appear in the assumption.
Imagine the inputs are read from a file, then the environment cannot react to our outputs
since the input word is already present on disk before we started producing outputs. Thus
there is no way the assumption F(o1)⇔ F(i1) can be satisfied for all possible programs. In
that case, the input-assumption Fi1 which is independent from outputs is better suited.

2.2 Refinement using scenarios
As we will see in the next sections, in general there are an infinite number of incomparable
optimal assumptions. This raises the problem of choosing one among all the possibilities.
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Figure 5 Büchi automaton recognising the language corresponding to LTL formula o1Ui1.
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Figure 6 Büchi automaton for specification (¬o2)U(o2 ∧ Xi2).

A solution is to get some feedback from the user in the form of scenarios. A scenario is a
behaviour that the strategy we produce should allow.

Scenario. Formally a scenario is given by a language S ⊆ (ΣI · ΣO)ω. A strategy σ∃ is
compatible with the set of scenarios S when S ⊆ Out(σ∃). Similarly S is compatible with
specification L if S ⊆ L. Assumption A is sufficient for L and S, if there exists σ∃ such
that S ⊆ A ∩ Out(σ∃) ⊆ L. We say that an assumption A is C-optimal for L and S if it is
sufficient for L and S and there is no A′ ∈ C strictly less restrictive than A and sufficient for
L and S. A scenario S is coherent if there is no words w,w′ ∈ S such that w≤2·i+1 = w′≤2·i+1
and w2·i+2 6= w′2·i+2 for some i ∈ N. If S is not coherent, then as no strategy can play both
w≤2·i+2 and w′≤2·i+2, no strategy can be compatible with S. Coherence is in fact a necessary
and sufficient condition for the existence of a compatible strategy.

I Lemma 4. Scenario S is coherent if, and only if, there exists a strategy compatible with S.
In particular, given a coherent scenario S and a strategy σ∃, the strategy [S → σ∃] is compat-

ible with S, where: [S → σ∃](h) =
{
wh+1 if there is w ∈ S such that h is a prefix of w
σ∃(h) otherwise .

I Example 5. Consider the example in Figure 6. There are many different possible assump-
tions we could chose from. However if we give the scenario ΣI · o2 · i2 ·ΣO · (ΣI ·ΣO)ω then
the only ensurable-optimal assumption is (ΣI · o2 · i2 + ΣI · o1 · ΣI) · ΣO · (ΣI · ΣO)ω. The
corresponding winning strategy consists in playing o2 for the first output.

2.3 Existence of a sufficient assumption with scenario
We show that given a scenario, there exists an input assumption which is sufficient and
compatible with it. A safety assumption also exists if the scenario is itself a safety language.

I Theorem 6. Let L be a specification and S a scenario. If S is compatible with L, then
there exists an input assumption which is sufficient for L and compatible with S.

Proof. Assume S is compatible with L and let A = {w ∈ (ΣI · ΣO)ω | ∃w′ ∈ S. πI(w) =
πI(w′)}. A is clearly an input assumption. We prove that for any strategy σ∃, A is sufficient
for [S → σ∃]. Let w ∈ A ∩ Out([S → σ∃]). Since w ∈ A, there is w′ ∈ S such that
πI(w′) = πI(w). Since [S → σ∃] is compatible with S (Lemma 4), it is compatible with w′,
and therefore w′ = Out(σ∃, πI(w)) = w. This proves w ∈ S, and thus A sufficient for L. J

CONCUR 2016
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I Theorem 7. Let L be a specification and S a scenario compatible with L. If S is a safety
language, then there exists a safety assumption sufficient for L and compatible with S.

I Remark. There are examples of scenarios which are not safety languages for which there is
no sufficient safety assumption. Consider L and S both given by Fi1. A safety assumption
A compatible with S has to contain Fi1. Assume towards a contradiction that there is
w 6∈ A. Since A is a safety assumption, w has a bad prefix, that is there is i such that
w≤2·i · (ΣI ·ΣO)ω ∩A = ∅. As w≤2·i · (i1 · o1)ω ∈ S, this is contradiction with the fact that
A is compatible with S. Therefore A = (ΣI · ΣO)ω and this is not sufficient for L.

3 General assumptions

In this section we study general assumptions, without concern for whether there are ensur-
able or not. Properties established here will be useful when studying ensurable assumptions.

Necessary and sufficient assumptions. Given a specification L and a strategy σ∃, we say
that an assumption A is necessary for σ∃ if B sufficient for σ∃ implies B ⊆ A.

I Lemma 8. Given a strategy σ∃, the assumption GA(σ∃) = L ∪ ((ΣI · ΣO)ω \ Out(σ∃)) is
sufficient and necessary for σ∃.

I Corollary 9. If A is optimal, then there exists σ∃ such that A = GA(σ∃).

Link with strongly winning strategies. Our goal is to establish a link with the notion of
strongly winning strategy. Intuitively this corresponds to the strategies that play a winning
strategy whenever it is possible from the current history.

I Definition 10 ([10, 4]). Strategy σ∃ is strongly winning when for any history h, if there
exists σ′∃ such that ∅ 6= (Out(σ′∃) ∩ h · (ΣI · ΣO)ω) ⊆ L, then (Out(σ∃) ∩ h · (ΣI · ΣO)ω) ⊆
L. A subgame winning strategy (called subgame perfect in [10]), is such that for any history
h, if there exists σ′∃ such that Outh(σ′∃) ⊆ L then Outh(σ∃) ⊆ L.

I Lemma 11 ([10, Lemma 1]). For every specification, there exists strongly winning and
subgame winning strategies.

I Theorem 12. Let GA(σ∃) = L ∪ ((ΣI · ΣO)ω \ Out(σ∃)). If strategy σ∃ is strongly win-
ning for L, then GA(σ∃) is an optimal assumption for L. Reciprocally, if A is an optimal
assumption for L, then there is a strongly winning strategy σ∃ such that A = GA(σ∃).

Proof. Assume that σ∃ is strongly winning. First notice that by Lemma 8, GA(σ∃) is
sufficient for σ∃ and thus sufficient for L. Let A be an assumption which is sufficient for L,
we will prove that GA(σ∃) 6⊂ A, which shows that GA(σ∃) is optimal. Let σ′∃ be a strategy
for which A is sufficient. If A \ GA(σ∃) = ∅, then A ⊆ GA(σ∃) which shows the property.
Otherwise there exists w ∈ A \ GA(σ∃). Since w 6∈ GA(σ∃) and L ⊆ GA(σ∃), w 6∈ L, i.e.
w is losing. Since w 6∈ GA(σ∃) and (ΣI · ΣO)ω \ Out(σ∃) ⊆ GA(σ∃), w ∈ Out(σ∃), i.e. it is
an outcome of σ∃. Since A ∩ Out(σ′∃) ⊆ L and w ∈ A \ L, w 6∈ Out(σ′∃), i.e. it is not an
outcome of σ′∃. Let w≤k be the longest prefix of w that is compatible with σ′∃. Since σ∃
is strongly winning and w is an outcome of σ∃ which is losing, for all strategies σ′′∃ , either
w≤k · (ΣI · ΣO)ω ∩ Out(σ′′∃) = ∅ or w≤k · (ΣI · ΣO)ω ∩ Out(σ′′∃) \ L 6= ∅. Since w≤k is
compatible with σ′∃, w≤k · (ΣI · ΣO)ω ∩ Out(σ′∃) 6= ∅, and therefore there is an outcome w′
of σ′∃ which is losing. Since A is sufficient for σ′∃, w′ 6∈ A. Note that w′ is not an outcome
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Figure 7 Büchi automaton for expression (i1 · o1)∗ · i2 · o2 · (ΣI · ΣO)ω.

of σ∃: w′k+1 = σ′∃(w≤k) 6= σ∃(w≤k). Hence, w ∈ (ΣI · ΣO)ω \ Out(σ∃) ⊆ GA(σ∃). Therefore
w′ ∈ GA(σ∃) \A which proves GA(σ∃) 6⊂ A.

Let now A be an optimal assumption for L and σ∃ a strategy for which A is sufficient.
Note that by Corollary 9, A ⊆ GA(σ∃). We show that σ∃ is strongly winning. Let h be a
history such that there is σ′∃ such that ∅ 6= Out(σ′∃) ∩ h · (ΣI · ΣO)ω ⊆ (L). We prove that
Out(σ∃) ∩ h · (ΣI · ΣO)ω ⊆ L which shows the result. If Out(σ∃) ∩ h · (ΣI · ΣO)ω = ∅ the
property holds and otherwise consider the strategy σ∃ [h← σ′∃] that plays according to σ∃
and when h is reached shifts to σ′∃. Formally, given a history h′:

σ∃ [h← σ′∃] =
{
σ′∃(h′) if h is a prefix of h′
σ∃(h′) otherwise

Since h is compatible with σ′∃ and Out(σ′∃) ∩ h · (ΣI ·ΣO)ω ⊆ L, we also have σ∃ [h← σ′∃]∩
h · (ΣI · ΣO)ω ⊆ L. Moreover all outcomes not in h · (ΣI · ΣO)ω are compatible with σ∃.
Hence GA(σ∃)∪ h · (ΣI ·ΣO)ω is sufficient for σ∃ [h← σ′∃]. By the optimality of assumption
GA(σ∃), GA(σ∃) 6⊂ GA(σ∃)∪ h · (ΣI ·ΣO)ω. Hence h · (ΣI ·ΣO)ω ⊆ GA(σ∃). Since GA(σ∃) is
sufficient for σ∃, Out(σ∃) ∩ h · (ΣI · ΣO)ω ⊆ L, which shows the result. J

I Example 13. Consider the specification L given by expression (i1 · o1)∗ · i2 · o2 · (ΣI ·ΣO)ω

and for which a Büchi automaton is given in Figure 7. There is no winning strategy in this
game, since if the input is always i1 there is no way to satisfy the specification. However, if
the current history is of the form (i1 · o1)∗ · i2, then controller has a winning strategy which
consists in replying o2. Strongly winning strategies must therefore present this behaviour
for all (i1 · o1)∗ · i2 that are compatible with it. Consider strategy σ∃ such that if the first
input is i2, then σ∃ plays the winning strategy we described and otherwise always play o2.
This is a strongly winning strategy since for histories beginning with i2 it is winning and
for any other history compatible with σ∃ there is no winning strategy. The assumption
corresponding to this strategy is GA(σ∃) = i2 ·ΣO · (ΣI ·ΣO)ω + i1 · (ΣO ·ΣI)∗ ·o1 · (ΣI ·ΣO)ω.

Infinity of optimal assumptions. As Figure 8 illustrates, there can be an infinite number
of optimal assumptions.

I Theorem 14. There is a specification for which there are an infinite number of optimal
assumptions and an infinite number of optimal ensurable assumptions.

Proof. Consider the game of Figure 8. In this game there are an infinite number of strongly
winning strategies. They must all play o2 in s5 but have the choice of how long to stay
in s2. We write σn

∃ the strategy that plays o1, n times before playing o2 (note that we
could also consider strategies that depend on the choice of input in s1, but this will not
be necessary here). The sufficient hypothesis for σn

∃ is GA(σn
∃ ) = (ΣI · ΣO)ω \ (ΣI · o1)n ·

ΣI · o2 · i1 · ΣO · (ΣI · ΣO)ω. They are incomparable and since σn
∃ are strongly winning

they are all optimal. This shows that there is an infinite number of optimal assumptions.
Note that these assumptions are ensurable, and therefore there also is an infinite number of
ensurable-optimal assumptions. J
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Figure 8 A parity automaton for a specification with an infinity of optimal assumptions.

Scenarios. Strategy [S → σ∃] corresponds to an optimal assumption when σ∃ is winning.

I Lemma 15. If σ∃ is subgame winning strategy for L, then GA([S → σ∃]) is optimal for L
and S.

Generalisation. Assume now we are given a sufficient assumption A and want to generalise
it, that is find A′ optimal and such that A ⊆ A′. We compute σ∃ winning for A ⇒ L (i.e.
such that Out(σ∃)∩A ⊆ L and σ′∃ subgame winning for L. We then define σ′∃[A \W → σ∃]
to be the function that maps h to σ′∃(h) if h is not a prefix of a word w ∈ A or h ∈ W =
{h | Out(σ′∃) ∩ h · (ΣI · ΣO)ω ⊆ L}, and maps h to σ∃(h) otherwise.

I Lemma 16. If Out(σ∃)∩A ⊆ L and σ′∃ is subgame winning for L, then GA(σ′∃[A\W → σ∃])
is an optimal assumption for L and contains A.

4 Ensurable assumptions

Consider again the solution given in Example 13. Assumption i2 · ΣO · (ΣI · ΣO)ω + i1 ·
(ΣO · ΣI)∗ · o1 · (ΣI · ΣO)ω is indeed an optimal, but it may not be what we would expect
because the expression i1 · (ΣO ·ΣI)∗ · o1 is an assumption about the controller rather than
the environment. A controller which falsifies the assumption would then be considered
correct. Instead of this, we would prefer an assumption which only restrict the behaviour
environment. This motivates the search for nonrestrictive assumptions.

4.1 Necessary and sufficient non-restrictive assumptions
In this section, we show properties of assumptions that are not restrictive. As we have seen
in Lemma 2, this coincide with ensurable assumptions for ω-regular objectives.

Given a strategy σ∃, the word w is doomed for σ∃ if there is an index k such that one
outcome of σ∃ has prefix w≤k and all outcome of σ∃ that have prefix w≤k do not satisfy L.
We write Doomed(σ∃) for the set of words that are doomed for σ∃ i.e. Doomed(σ∃) = {w |
∃k ∈ 2 · N. Out(σ∃) ∩ w≤k · (ΣI · ΣO)ω 6= ∅ and Out(σ∃) ∩ w≤k · (ΣI · ΣO)ω ∩ L = ∅}. We
consider the assumption EA(σ∃) = GA(σ∃) \ Doomed(σ∃).

I Lemma 17. Let σ∃ be a strategy, we have the following properties: 1. EA(σ∃) is suffi-
cient for σ∃, and nonrestrictive; 2. for all assumption A sufficient for σ∃ and not output-
restrictive, we have that A ⊆ EA(σ∃).

I Example 18. For the strategy σ∃ we defined in Example 13, the set of doomed histories
is i1 · o2 · (ΣI · ΣO)ω. Then EA(σ∃) is i2 · ΣO · (ΣI · ΣO)ω which is nonrestrictive. This
assumption describes better than GA(σ∃) the assumptions on the environment necessary
to win. However it is not optimal among nonrestrictive assumptions, and we will now
characterise the strategies for which EA(σ∃) is optimal.
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4.2 Link between non-dominated strategies and optimal assumptions
We use the notion of weak dominance classical in game theory. Intuitively a strategy dom-
inates another one if it performs at least as well against any strategy of the environment.

I Definition 19 ([5]). Strategy σ∃ is very weakly dominated from history h by strategy σ′∃
if for all strategy σ∀ of the environment, Outh(σ∃, σ∀) ∈ L⇒ Outh(σ′∃, σ∀) ∈ L. It is weakly
dominated from h by σ′∃ if moreover σ′∃ is not very weakly dominated by σ∃ from h. A
strategy is said non-dominated if no strategy weakly-dominates it from the empty history ε.
A strategy is non-subgame-dominated if there is no strategy that weakly-dominates it from
any history h. A strategy is said dominant if it very weakly dominates all strategies.

We can draw a link between optimal assumptions and non-dominated strategies.

I Lemma 20. If EA(σ∃) ⊆ EA(σ′∃) then σ∃ is very weakly dominated by σ′∃.

I Lemma 21. If σ∃ is very weakly dominated by σ′∃ then EA(σ∃) ⊆ EA(σ′∃).

I Example 22. Consider again Example 13 and a strategy σ′∃ which plays o1 in s1 and o2
in s2. We have that σ′∃ weakly dominates σ∃. The assumption necessary to σ′∃ is GA(σ′∃) =
(i1 · o1)∗ · (i1 · o2 + i2 · ΣO) · (ΣI · ΣO)ω which is incomparable with GA(σ∃): it does not
contain (i1 ·o1)ω for instance. But Doomed(σ′∃) = ∅ while Doomed(σ∃) = i1 ·ΣO · (ΣI ·ΣO)ω

(which rules out (i1 · o1)ω). So we indeed have EA(σ∃) ⊂ EA(σ′∃).

I Theorem 23. Let L be an ω-regular specification. If σ∃ is a non-dominated strategy for L,
then EA(σ∃) is ensurable optimal for L. Reciprocally if A is an ensurable optimal assumption
for L, then there is a non-dominated strategy σ∃ for L such that A = EA(σ∃).

Proof. Let σ∃ be a non-dominated strategy. By Lemma 17, the assumption EA(σ∃) is suffi-
cient for L and not output-restrictive. We now prove it is optimal. Let A be a nonrestrictive
assumption sufficient for L and σ′∃ for which A is sufficient. By Lemma 8, A ⊆ GA(σ′∃).
As σ∃ is not weakly dominated by σ′∃, either: 1. σ∃ is not very weakly dominated by
σ′∃. Then by Lemma 20 EA(σ∃) 6⊆ EA(σ′∃). Or 2. σ∃ very weakly dominates σ′∃ then by
Lemma 21, EA(σ′∃) ⊆ EA(σ∃). Therefore EA(σ∃) 6⊂ EA(σ′∃) and by Lemma 17 A ⊆ EA(σ′∃),
so EA(σ∃) 6⊂ A. This shows that EA(σ∃) is E-optimal for L.

Now let σ∃ be a strategy such that EA(σ∃) is E-optimal, we show that σ∃ is non-
dominated. Let σ′∃ be a strategy which very weakly dominates σ∃, we prove that σ∃
very weakly dominates σ′∃. By Lemma 21, EA(σ∃) ⊆ EA(σ′∃). Since EA(σ∃) is optimal,
EA(σ∃) 6⊂ EA(σ′∃). Therefore EA(σ∃) = EA(σ′∃). By Lemma 20 this implies that σ′∃ is very
weakly dominated by σ∃ and shows that σ∃ is not weakly dominated. J

I Corollary 24. If σ∃ is dominant, then EA(σ∃) is the unique E-optimal assumption.

4.3 Computation of optimal ensurable assumptions
In parity games, deciding the existence of a winning strategy from a particular state is in
the complexity class NP∩ coNP [9]. We will show that if an algorithm for solving parity
games is available, then the other operations to obtain optimal assumptions can be performed
efficiently. We first construct a representation of one arbitrary non-dominated strategy. Our
construction is based on the notion of memoryless strategies: given L as a parity automaton,
a strategy is said memoryless if it only depends on the current state of the automaton, in
other words it can be implemented with a Moore machine with the same structure as the
given automaton.
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I Lemma 25. Given a parity automaton and a memoryless strategy σ∃ which ensures we
are winning from each state in the winning region, we can compute in polynomial time a
Moore machine implementing a memoryless non-dominated strategy σ′∃.

By combining this construction with a parity automaton for L, we can build an auto-
maton for GA(σ′∃) = L ∪ ((ΣI · ΣO)ω \ Out(σ∃)). We can then exclude doomed histories by
removing transitions going to states from which there is no winning path, and obtain an
automaton which recognises EA(σ∃).

I Lemma 26. Given a specification as a parity automaton, and a strategy σ∃ as a Moore
machine, we can compute in polynomial time a parity automaton recognising EA(σ∃).

I Theorem 27. Given a specification as a parity automaton, we can compute in exponential
time a parity automaton of polynomial size recognising an ensurable optimal assumption.
Moreover, if we have access to an oracle for computing memoryless winning strategies in
parity games, our algorithm works in polynomial time.

Proof. We first need to obtain a Moore machine for a memoryless winning strategy σ∃, this
can be done in exponential time or constant time if we have an oracle. Then by Lemma 25,
we can compute a Moore machine implementing a memoryless non-dominated strategy σ′∃.
By Lemma 26, we can construct a parity automaton recognising EA(σ′∃). By Lemma 23, the
language of this automaton is an ensurable optimal assumption. J

4.4 Scenarios
Assume now, we are given a scenario and asked for a correct system compatible with the
scenario. We first characterise optimal ensurable assumptions that are needed for this.

I Theorem 28. Let L be a specification, and S a coherent scenario compatible with L. If
σ∃ is a non-subgame-dominated, then EA([S → σ∃]) is E-optimal for L and S.

I Lemma 29. Given a parity automaton for a coherent scenario S and a strategy σ∃ we
can compute in polynomial time a Moore machine for [S → σ∃].

We can now compute an optimal ensurable assumption compatible with the scenario.

I Theorem 30. Given a specification L and a scenario S as parity automata, we can
compute in exponential time a parity automaton of polynomial size recognising an E-optimal
assumption for L and S.

Proof. We can compute in exponential time a memoryless strategy in parity game and
as seen in Lemma 25, deduce in polynomial time a memoryless non-dominated strategy
σ′∃. From the definition of non-subgame-dominated, this strategy is in fact non-subgame-
dominated. Then by Lemma 29, we can compute a Moore machine for [S → σ∃]. By
Theorem 28, the corresponding assumption EA([S → σ∃]) is ensurable optimal for L and S.
By Lem 26, EA([S → σ∃]) can be computed in polynomial time. J

4.5 Generalisation
We have seen in Lemma 16 that from a winning strategy for A⇒ L and a strongly winning
strategy for L, we could obtain a strategy σ∃ that has both properties. Furthermore, we
can compute σ′∃ that is strongly non-dominated for L and define a strategy that is both
non-dominated for L and winning for A⇒ L. We define σ′∃[A→ σ∃] to be the function that
maps h to σ∃(h) if h · σ∃(h) is a prefix of some w ∈ A and maps h to σ′∃(h) otherwise.
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I Lemma 31. If σ∃ is winning for A ⇒ L and strongly winning for L and σ′∃ is strongly
non-dominated for L, then EA(σ′∃[A→ σ∃]) contains A and is ensurable-optimal for L.

I Lemma 32. Given strategies σ′∃, σ∃ as Moore machines and assumption A as a parity
automaton, can construct in polynomial time a Moore machine for σ′∃[A→ σ∃].

I Theorem 33. There is an exponential algorithm that given L and A sufficient for L as
parity automata, computes a parity automaton whose language A′ is such that A ⊆ A′ and
A′ ensurable-optimal for L.

Proof. Assume we are given automata AA for A, and AL for L. We construct AA⇒L

recognising L ∪ (ΣI · ΣO)ω \ A, and σ∃ a winning strategy in AA⇒L, then compute in
exponential time a memoryless strategy σ′∃ which is winning in AL from all states from
which there is a winning strategy [13]; it is in fact strongly winning. We can construct a
Moore machine for σ′∃[A → σ∃] (Lemma 32), and also an automaton for EA(σ′∃[A → σ∃])
(Lemma 26). EA(σ′∃[A→ σ∃]) is ensurable optimal for L and contains A (Lemma 31). J

5 Input-assumptions

We now focus on input assumptions. There can be an infinite number of incomparable ones
that are sufficient. This can be seen in the example of Figure 6, where the specification
was (¬o2)U(o2 ∧Xi2). There, we need the assumption to tell us when exactly the first i2 will
occur. This corresponds to assumptions of the form An = (ΣI ·ΣO)ω \ {(ΣI ·ΣO)n · i1 ·ΣO ·
(ΣI · ΣO)ω}. Any such assumption will be sufficient and they are all incomparable.

I Theorem 34. There is a specification L for which there are an infinite number of optimal
input assumptions.

We show a link between input assumptions and a class of strategies called remorsefree.

I Definition 35 (Remorsefree). Given a specification L, a strategy σ∃ is remorsefree if for
all σ′∃ and w ∈ Σω

I , Out(σ′∃, w) |= L implies Out(σ∃, w) |= L. This is the notion used
in [8] for dominance. A strategy σ∃ is remorsefree-admissible if for all σ′∃ either ∀w ∈
Σω

I . Out(σ′∃, w) |= L⇒ Out(σ∃, w) |= L or ∃w ∈ Σω
I . Out(σ∃, w) |= L 6⇒ Out(σ′∃, w) |= L.

I Lemma 36. Given a strategy σ∃, if L 6= ∅ then the input-assumption IA(σ∃) = {w ∈
(ΣI · ΣO)ω | πI(w) 6∈ πI(Out(σ∃) \ L)} is sufficient for σ∃. Moreover if A is an input-
assumption which is sufficient for σ∃ then A ⊆ IA(σ∃).

I Example 37. Consider the game of Figure 9. In this game the only remorsefree strategy is
to output o1 at the first step. The corresponding assumption is A = ΣI ·ΣO ·((i2 + i3) ·ΣO)ω

while the assumption corresponding to the strategy outputting o2 is ΣI ·ΣO ·(i3 ·ΣO)ω which
is more restrictive. The assumption A is indeed the unique optimal input-assumption.

In [8], Damm and Finkbeiner show that there is a remorsefree strategy if, and only if,
there is a unique minimal assumption for L. We generalise this result using the associated
notion of admissibility to characterise the minimal assumptions that are sufficient to win.

I Theorem 38. If σ∃ is a remorsefree admissible strategy for L, then IA(σ∃) is an optimal
input-assumption for L. Reciprocally if A is an optimal input-assumption for L, then there
is a remorsefree admissible strategy σ∃, such that A = IA(σ∃).
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Figure 9 Büchi automaton for which the remorsefree strategy consists in outputting o1.

Proof. Let σ∃ be a remorsefree-admissible strategy and A the corresponding environment
assumption. Let B be such that A ⊂ B. We prove that B is not sufficient for L which
will show that A is optimal. Assume towards a contradiction that B is sufficient for a
strategy σ′∃. Since σ∃ is remorsefree-admissible, one of those two cases occurs: 1. ∀w′ ∈
Σω

I . Out(σ′∃, w′) |= L ⇒ Out(σ∃, w′) |= L. Let w ∈ B \ A. Since A = IA(σ∃), we have
that w ∈ πI(Out(σ∃) \ L). Hence Out(σ∃, w) 6|= L, and we have that Out(σ′∃, w) 6|= L which
shows that B is not sufficient for σ′∃; or 2. ∃w′ ∈ Σω

I . Out(σ∃, w′) |= L ∧ Out(σ′∃, w′) 6|= L.
We have that w′ belongs to A by definition, thus it belongs to B by hypothesis, and since
Out(σ′∃, w′) 6|= L, B is not sufficient for σ′∃.

Let now A be an optimal assumption for L and σ∃ the corresponding strategy. We show
that σ∃ is remorsefree-admissible. Let σ′∃ be another strategy. Since A is optimal, it is not
strictly included in B = IA(σ′∃), so either A = B or A\B 6= ∅. 1. If A = B then we show that
∀w ∈ Σω

I . Out(σ′∃, w) |= L ⇒ Out(σ∃, w) |= L: a. if w ∈ A = IA(σ∃), then Out(σ∃, w) |= L,
and the implication holds. b. if w 6∈ A = B = IA(σ′∃), then Out(σ′∃, w) 6|= L, and the
implication holds. 2. Otherwise A\B 6= ∅ then let w ∈ A\B. Since w ∈ A, Out(σ∃, w) |= L

and since w 6∈ B = IA(σ′∃), Out(σ′∃, w) 6|= L. Hence Out(σ∃, w) |= L 6⇒ Out(σ′∃, w) |= L. J
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