
A Competitive Flow Time Algorithm for
Heterogeneous Clusters Under Polytope
Constraints

Sungjin Im∗1, Janardhan Kulkarni2, Benjamin Moseley†3, and
Kamesh Munagala‡4

1 EECS, University of California at Merced, Merced, CA, USA
sim3@ucmerced.edu

2 Microsoft Research, Redmond, WA, USA
jakul@microsoft.com

3 Department of Computer Science and Engineering, Washington University,
St. Louis, MO, USA
bmoseley@wustl.edu

4 Department of Computer Science, Duke University, Durham, NC, USA
kamesh@cs.duke.edu

Abstract
Modern data centers consist of a large number of heterogeneous resources such as CPU, memory,
network bandwidth, etc. The resources are pooled into clusters for various reasons such as
scalability, resource consolidation, and privacy. Clusters are often heterogeneous so that they
can better serve jobs with different characteristics submitted from clients. Each job benefits
differently depending on how much resource is allocated to the job, which in turn translates to
how quickly the job gets completed.

In this paper, we formulate this setting, which we term Multi-Cluster Polytope Schedul-
ing (MCPS). In MCPS, a set of n jobs arrive over time to be executed on m clusters. Each
cluster i is associated with a polytope Pi, which constrains how fast one can process jobs as-
signed to the cluster. For MCPS, we seek to optimize the popular objective of minimizing
average weighted flow time of jobs in the online setting. We give a constant competitive al-
gorithm with small constant resource augmentation for a large class of polytopes, which capture
many interesting problems that arise in practice. Further, our algorithm is non-clairvoyant. Our
algorithm and analysis combine and generalize techniques developed in the recent results for the
classical unrelated machines scheduling and the polytope scheduling problem [10, 12, 11].

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problem]: Sequencing
and scheduling

Keywords and phrases Polytope constraints, average flow time, multi-clusters, online scheduling,
and competitive analysis.

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.10

∗ S. Im was supported in part by NSF grants CCF-1409130 and CCF-1617653.
† B. Moseley was supported in part by NSF grant CCF-1617724, a Yahoo faculty award and a Google

faculty award.
‡ K. Munagala was supported by NSF grants CCF-1408784, IIS- 1447554, and CCF-1348696.

© Sungjin Im, Janardhan Kulkarni, Benjamin Moseley, and Kamesh Munagala;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 10; pp. 10:1–10:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 Multi-Cluster Polytope Scheduling

1 Introduction

Modern data centers consist of a large number of machines, each with its own resources
such as CPU, memory, network etc, that are organized into hundreds of clusters. Typically,
jobs are data intensive and require a lot of resources for running. Examples of such jobs
can be found in MapReduce systems. At such large scales, the resources are assumed to be
continuously divisible, thus can be compactly represented as a vector consisting of CPU,
memory, network bandwidth, etc. Efficiently partitioning these resources among jobs is a
major challenge in system design. Complicating the scheduling decisions further is the fact
that jobs have different characteristics, and may get different benefits/utilities even when
assigned the same resources – some jobs are CPU intensive while others require more memory.
In fact, this multi-dimensional nature is a key factor that differentiates data center scheduling
from other well-studied scheduling settings. Due to the explosive growth of data centers and
the associated operating costs, the multi-dimensional scheduling problems have gained a lot of
attention in the systems literature recently; see [8] and follow-up work [4, 18, 9, 1, 2, 17, 15].

Various scheduling problems in the presence of multiple resources can be modeled by a
polytope which constrains the rate at which jobs can be processed. This abstraction of the
data center scheduling problems was introduced under the name Polytope Scheduling
Problem (PSP) in a recent work by Im et al. [10, 11].

Unfortunately, despite its generality, PSP model fails to accurately capture the system
architectures where machines are grouped into clusters. By grouping machines into clusters,
the system can restrict the set of jobs that share a given cluster. Moreover, clusters in data
centers are often heterogeneous in that some clusters are more suitable for certain types of
jobs than others. For example, jobs may get processed more effectively on some clusters
due to their proximity to data. Further, the location of data can also change the resource
requirements of jobs – if a job is assigned to the cluster on which its data is located then it
does not need access to the network when executing. Data centers also have special purpose
hardware (such as FPGA/GPUs) for faster execution of certain jobs. Thus, the processing
times of jobs can also depend on the clusters that they are assigned to.

In this paper, we introduce a more realistic scheduling setting where each cluster is
associated with a distinct polytope that determines the rates at which jobs get processed.
At a high level, this not only captures the multi-dimensional nature found in PSP, but also
captures the unrelated aspect reminiscent of the classical scheduling literature [3]. In the
classical unrelated machines model, each job can get processed at a completely different
rate depending on its machine assignment. Thus, our model lifts the unrelated nature from
machines to clusters while staying faithful to the multi-dimensional aspect of data center
scheduling problems.

We focus on minimizing the average (weighted) flow time of jobs. A job’s flow time
measures how long the job waits from its arrival until its completion, thus the average (or
equivalently total) flow time measures the average delay experienced by clients. For this
popular objective, competitive algorithms are known for some special cases of PSP and also
for the unrelated machines setting. However, their analyses use two very different methods –
dual fitting for the unrelated machines setting [12], and potential function argument for PSP
[11]. In this paper, we combine the two different algorithms used in [12, 11] and develop a
new potential function analysis that unifies the two disparate analyses from the previous
works.

S. Im, J. Kulkarni, B. Moseley, and K. Munagala 10:3

1.1 Problem Definition
The Multi-Cluster Polytope Scheduling (MCPS), which is a generalization of the
Polytope Scheduling Problem (PSP) [10], is defined as follows. A set of n jobs arrive
over time. Each job j has a weight wj , size (or processing length) pj , and arrival time rj , and
needs to be processed using a set of m clusters. Each cluster i is associated with a convex
polytope Pi that constrains the feasible space of rates of jobs assigned to the cluster. Each
polytope Pi is defined over the entire set of jobs and is assumed to be downward-closed,
meaning that if ~y ∈ Pi and ~z ≤ ~y, then any ~z ∈ Pi. The scheduler has to assign rates to
jobs, {yj}j , subject to the polytope constraints and a natural requirement that a job can be
scheduled only on a single cluster at any given instant of time. Applications of MCPS will
be discussed in Section 1.2.

Note that we allow a job to be processed on more than one cluster over the course of its
execution. However, at any given time a job can be processed on only one cluster. This is
exactly the PSP problem [10] when there is only one cluster.

In this paper we seek to design online scheduling algorithms for MCPS, which have to
make scheduling decisions only based on the jobs that have arrived. In other words, the
online scheduler learns about a job j along with its properties when it arrives. Our goal is to
minimize the total weighted flow time of jobs in the setting of MCPS. Let yAjt denote the
rate at which job j is processed at time t by a scheduler A. Then, job j’s completion time
CAj under the schedule of A is defined to be the first time t′ such that

∫ t′
t=rj

yAjtdt ≥ pj . Job
j’s flow time is the length of time job j waits to be completed since its arrival and is defined
as FAj = CAj − rj . Similarly, job j’s weighted flow time is defined as wjFAj factoring in the
job’s weight. When the algorithm A and time t are clear from the context, we may drop
them from the notation. The goal is to minimize

∑
j wjF

A
j .

We will use the standard notion of competitive ratio for analyzing our algorithms. An
online algorithm is α-competitive if for every finite input instance, the cost incurred by
the algorithm is at most α times the cost of some optimal offline solution to the instance.
Unfortunately, the standard competitive analysis turns out to be too pessimistic in analyzing
flow time related objectives: there are no online algorithms with bounded competitive ratios
even in much simpler single dimensional settings [7]. We therefore appeal to the standard
speed augmentation analysis [14], where we assume the online algorithm can perform c > 1
allocations per time step, while OPT is restricted to allocate at the rate of 1. Our goal is to
design algorithms that achieve constant competitive ratios on the total flow time objective
using the smallest possible extra speed c.

1.2 Our Results
Our main result is a non-trivial generalization of the result shown for ‘monotone’ PSP in
[11] to the multi-cluster setting.

Proportional Fairness and Monotone Polytope.

The proportional fairness (PF) algorithm, at each instant of time t, assigns rates {yjt}j to
jobs by solving the following convex program over the polytope P.

max
∑
j

wj log yjt s.t. ~yt ∈ P (1)

Note that P is in the definition of PSP. The PF algorithm generalizes the weighted round
robin (WRR) algorithm to the multidimensional case. The study of PF even dates back to

APPROX/RANDOM’16

10:4 Multi-Cluster Polytope Scheduling

Nash’s seminal work [16]. The algorithm PF has a very nice market clearing interpretation –
It finds prices for resources so that every resource (with a positive price) is completely sold
out when each player (job) j with money wj buys resources to maximize its utility under the
prices. Further, the algorithm PF is known to have many desirable fairness properties such
as sharing incentiveness, and envy-freeness [8].

I Definition 1 ([11]). For a subset of jobs S, let yj(S) denote the rate allocated by PF to
job j ∈ S, as given by the equation (1). The PF allocation is said to be monotone if for any
S and j′ /∈ S, we have the following condition: For all j ∈ S, yj(S) ≥ yj(S ∪ {j′}). The class
Monotone PSP is the sub-class of PSP for which the PF algorithm leads to monotone
allocation.

We call MCPS as Monotone-MCPS when the PF algorithm is monotone for every
polytope Pi. When there is only one cluster, Im et al. [11] showed that the PF algorithm is
(e+ ε)-speed O(1/ε2)-competitive for the Monotone PSP case. Our first main result is a
generalization of this result to the case with an arbitrary number of clusters.

I Theorem 2. For Monotone-MCPS, there is a (e+ε)-speed, O
(
1/ε2

)
-competitive algorithm

for minimizing the total weighted flow-time of jobs. Further, our algorithm is non-clairvoyant
as it does not make use of the processing lengths of jobs.

Monotone-PSP captures many important problems such as flow routing to a single sink,
routing multicast trees (video-on-demand) etc. We refer the readers to [11] for more details
on applications of Monotone-PSP. For completeness, here we give one important class of
problems captured by Monotone-PSP that is very relevant to data center scheduling.

Resource Allocation with Substitutes [11]. Consider the multi-dimensional resource alloc-
ation problem that arises in scheduling jobs within a cluster. Formally, there are D divisible
resources (or dimensions), numbered 1, 2, . . . , D. By scaling we can assume w.l.o.g. that each
resource is available in a unit supply. If job j is assigned a non-negative vector of resources
~x = {x1, x2, . . . , xD}, then the rate at which the job executes is determined by yj = uj(~x),
where uj is a concave utility function that is known to the scheduler. The constraints P
simply capture that each resource can be allocated to unit amount, i.e.

∑
j xjd ≤ 1 for all

d ∈ {1, 2, . . . , D}. A well-studied special class of utilities in the resource allocation literature
are the Constant Elasticity of Scale (CES) utilities, given by:

uj(~xj) =
(

D∑
d=1

cjdx
ρj

jd

)1/ρj

.

When ρ ∈ (0, 1] the utility function captures resources that are imperfect substitutes of each
other, and the parameter ρ captures the extent of substitutability. A special case as ρ→ 0
is termed Cobb-Douglas utilities: uj(~xj) =

∏D
d=1 x

αjd

jd , where
∑
d αjd ≤ 1 and αjd ≥ 0 for

all j, d. These utilities can be used to model task rates in heterogeneous microprocessor
architectures [19]; further, these are widely studied in economics. When ρ = 1, CES utilities
reduce to linear utilities.

It was shown that prove that CES is a special case of Monotone PSP in [11]. Thus, our
result immediately gives a competitive algorithm for these problems in the multiple cluster
setting.

S. Im, J. Kulkarni, B. Moseley, and K. Munagala 10:5

1.3 High-level Description of the Algorithm
Our algorithm for the Monotone-MCPS consists of two parts: Within a cluster, jobs are
assigned rates using the PF algorithm. To decide the assignment of jobs to clusters, we use
the Selfish Migrate framework introduced in [12]. In the Selfish Migrate framework, at every
time instant, a job behaves like a selfish agent and moves to the cluster that maximizes its
own virtual utility function. More precisely, a virtual ordering is maintained among jobs
assigned to each cluster i, and a job j’s virtual utility is calculated as the speed the job
would get on the cluster i under the PF algorithm as if other jobs behind in the ordering
were not present. If the job moves to another cluster i′, it is placed the last in the virtual
ordering of cluster i′. These selfish moves lead to a Nash equilibrium where each job has the
best virtual utility on the cluster it is currently assigned to. The monotonicity property of
polytopes is crucially used in establishing the existence of such an equilibrium. Thus our
algorithm is a mixture of two interesting equilibria – a Nash equilibrium across machines
under virtual utilities and a market clearing equilibrium on each individual cluster under the
algorithm PF. Note that our algorithm does not use job sizes in scheduling decisions, thus is
non-clairvoyant.

1.4 Justification for not Encapsulating Clusters into One Polytope
We take a sidestep to clarify some questions that may arise from our definitions of PSP
and MCPS. It is fair to ask why one needs to define MCPS when PSP is general enough
to model the multiple cluster setting. More precisely, one can define a giant polytope P
that is the union of all polytope constraints Pi, with an extra constraint that at any give
time no job can be processed on more than one cluster. Indeed, such a formulation captures
MCPS. However, this way of looking at the problem leads to a major technical difficulty:
The giant polytope P may not inherit the properties satisfied by the individual polytopes Pi.
In particular, the new polytope may not be monotone even if all individual polytopes Pi
are monotone, meaning that we no longer have nice properties that lead to constant-speed
constant competitiveness of the PF algorithm. To see this, consider the classical unrelated
machines setting. Although it is a special case of PSP, thus our problem, it is not clear if it
is a special case of Monotone-PSP. No known techniques can be directly applicable to prove
unrelated machines fall into a category of Monotone-PSP. In fact, we conjecture that it is
not.

1.5 Our Techniques
Our problem MCPS extends the unrelated machines scheduling and multidimensional
scheduling in a natural way. Expectedly, our algorithm for the problem uses a combination of
the algorithms developed for the unrelated machines scheduling and the PSP setting. More
precisely, within a cluster, our algorithm allocates rates using the Proportional Fairness
algorithm similar to the Monotone-PSP case [11] while assigning jobs to clusters using the
Selfish Migrate framework as done in the unrelated machine setting [12]. The main technical
contribution of this paper lies in unifying the two different analyses of these algorithms – the
former uses a potential function argument and the latter a dual-fitting argument.

To unify the two different analyses, one could attempt to use potential function or dual
fitting. If one wants to try a dual fitting argument for our problem, the first thing to do would
be proving competitiveness of the Monotone-PSP using dual fitting. There are two math
programmings involved here: the convex programming (CP) we solve at any instantaneous
moment to implement the algorithm PF, and the linear programming (LP) we use to establish

APPROX/RANDOM’16

10:6 Multi-Cluster Polytope Scheduling

the competitiveness of PF for the total weighted flow time objective. One could try to use the
values of CP dual variables derived from the KKT conditions of the CP to set the LP dual
variables. However, as discussed in [11], the CP dual variables can have highly unstructured
values even for monotone-PSP, and this is why [11] used only a CP optimality condition
repeatedly, without looking at the dual.

Hence we use a different route by giving an alternative potential function based analysis
of the Selfish Migration rule for unrelated machines, and generalizing it to our problem,
Monotone-MCPS. Surprisingly, we use an unexpectedly simple potential function, which is
just the sum of potential functions for each cluster. The potential for each cluster is defined
over the sets of jobs assigned to the cluster by our algorithm and the optimal solution, and
there are no terms in the potential connecting different clusters. This is surprising since it
has been believed that more sophisticated potential functions should be needed to factor in
the changes of the projected objective based on the current assignment of jobs that occur
when jobs migrate across different machines.

The reader familiar with potential functions may wonder how we can bound the change
of the potential since the jobs the optimal solution assigns to each machine can be vastly
different from those our algorithm does. Hence, the credits we get from our algorithm’s
processing might be completely offset by the debits due to the optimal processing. This is
where we use the Selfish Migration rule crucially. At high level, using the fact that each job
currently resides on the best machine maximizing its virtual utility, we can safely assume
that jobs are assigned following the optimal scheduler since it only gives less credits, which
effectively reduces the analysis to each individual machine. However, the extension of this
analysis from unrelated machines to Monotone-PSP has another issue. In this thought
process of pretending that jobs are assigned to clusters following the optimal solution, we face
the challenge of measuring how fast jobs get processed within a cluster under the PF where
some of them come from our algorithm’s assignment and the other from the optimal solution.
We bound such rates using the polytope monotonicity (Proposition 3) and a CP optimality
condition (Proposition 4). See Section 2.2 for formal statement of the two properties and
how they are used in our analysis.

To summarize, our algorithm, which is a mixture of two equilibria from the Proportional
Fairness algorithm and the Selfish Migration rule, is analyzed delicately using the two
respective monotonicity properties resulting from the two algorithms: (i) jobs get lower
processing rates within a cluster when competing with more jobs; and (ii) each job’s migration
only increases its virtual utility without hurting other jobs.

Finally, as a byproduct we obtain an alternate analysis of the unrelated machine scheduling
to minimize the weighted flow-time in the non-clairvoyant setting. As mentioned before, the
classical unrelated machine setting is a special case of the Monotone-MCPS, where machines
correspond to clusters, and the polytope constraints simply enforce that only one unit of
CPU is allocated at any given time instant. In this single dimensional setting, PF is same as
Weighted Round Robin. Using these facts, we obtain the alternate analysis as a corollary of
Theorem 2. The sketch of this analysis can be found in Section 3. The original analysis in
[12] relied on a dual-fitting argument.

2 Monotone Multi-cluster Polytope Scheduling

In this section we prove Theorem 2. First, we set up some notation. Recall that at every
time instant, each alive job is assigned to exactly one cluster. Let Ait denote the set of alive
jobs at time t that are assigned to cluster i in our algorithm’s schedule. We often drop the

S. Im, J. Kulkarni, B. Moseley, and K. Munagala 10:7

subscripts t or i when it is clear from the context. Similarly, define At to be the set of all
jobs alive at time t; that is, At :=

⋃
iAit = {j | t ∈ [rj , Cj]}. Let ~yt denote the vector of

processing rates of jobs. We use yjt to denote the processing rate job j gets at time t. For
any subset of jobs S, define ~yt(S) as the projection of ~y into S; so, yjt(S) = yjt if j ∈ S, and
0 otherwise.

2.1 Algorithm
Our algorithm for Monotone-MCPS consists of two components: Rate allocation using
Proportional Fairness (PF) and job assignment using Selfish Migrate [12]
1. Proportional Fairness (PF): Each cluster i assigns rates to the set of jobs assigned to

i that are alive at time t using the Proportional Fairness (PF) algorithm. The PF
allocation can be obtained by solving the following convex program.

Maximize
∑
j∈Ait

wj log yjt s.t. ~yt(Ait) ∈ Pi .

The rates assigned to jobs remain unchanged unless a new job arrives to the cluster or a
job departs.

2. Selfish Job Migration: This rule is applied only when a job completes or arrives – at
other times, no job changes its assignment. Selfish Migrate algorithm is best viewed as a
game where each job tries to maximize its own utility (defined later). A key property of
our assignment policy is that at each time instant, a job is assigned to the cluster that
maximizes its utility. In other words, jobs are in Nash equilibrium with respect to their
utility functions.
To define the utility of a job, we need the notion of virtual queues. Each cluster has a
complete virtual ordering of jobs assigned to the cluster, and the utility of a job depends
on its position in this virtual ordering. We emphasize that this ordering is used only for
the job assignment, and the PF algorithm itself is oblivious to this ordering. If job j is
ahead of j′ on cluster i, we denote it as j ≤i j′. For a subset of jobs S and a job j ∈ S,
let y∗ij(S) denote the rate PF assigns to job j if the set of jobs assigned to cluster i is S.
Suppose a job j is on cluster i at time t. Then its utility on i is defined as y∗ij(A

≤j
it). The

job’s utility on any other cluster i′ is defined as y∗i′j(Ai′t ∪ j). Now we describe how the
virtual ordering of jobs are built on each cluster.

When a job j arrives at time t, it is assigned to the cluster i for which y∗ij(Ait ∪ {j})
is maximized. Further, the newly arrived job goes to the tail of the virtual ordering.
When a job completes, it simply disappears without affecting the relative ordering
of the other jobs. However, this may start a chain of jobs migrations, as jobs may
increase their utilities by switching to the cluster from which the job departed. Fix a
job j. If job j is currently residing on cluster i, its utility is y∗ij(A

≤j
it). Here, A≤jit refers

to all the jobs in Ait ahead of j in the virtual ordering including j itself. If job j moves
to another cluster i′ 6= i, the job is placed behind all jobs in Ai′t in the virtual ordering
on i′. Hence, its utility will be y∗i′j(Ai′t ∪ j). A job j is free to move to any cluster i′ as
long as it’s utility improves. If two jobs try to move simultaneously, then we break ties
arbitrarily. This process is repeated until no jobs can improve their utilities. A priori,
it is not clear if this process will terminate. For now we assume that it terminates,
and in Section 2.4 we show that each jobs migrates at most O(nε logn) times in total.

This completes the description of our algorithm.

APPROX/RANDOM’16

10:8 Multi-Cluster Polytope Scheduling

2.2 Key Properties Used in the Analysis
In this section, we summarize two key properties we will crucially use in our analysis. Recall
that we assume in our problem Monotone-MCPS that all polytopes Pi are monotone. The
following proposition is a restatement of Definition 1.

I Proposition 3 (Polytope Monotonicity [11]). Let y∗j (S) denote job j’s processing rate under
the PF algorithm for an arbitrary fixed monotone polytope P. Then, for all j ∈ S and j′ /∈ S,
we have y∗j (S) ≥ y∗j (S ∪ {j′}).

The next proposition, which we call the optimality condition, immediately follows from
the convexity of the polytope and the PF algorithm’s objective. We include the proof for
completeness.

I Proposition 4 (Optimality Condition [11]). Let ~y ∈ P denote any feasible rate vector for
the jobs in S. If the space of feasible rates P is convex, then∑

j∈S
wj

yj
y∗j (S) ≤

∑
j∈S

wj .

Proof. For notational simplicity, let y∗j := y∗j (S). Let f(~y) =
∑
j∈S wj log yj . We have

∂f(~y∗)
∂yj

= wj

y∗
j
. The optimality of ~y∗ implies ∇f(~y∗) · (~y − ~y∗) ≤ 0 for all ~y ∈ P. The

proposition now follows by elementary algebra. J

These two conditions will be repeatedly used in our analysis. As mentioned earlier, our
analysis is based on a potential function which depends on jobs arrival, and processing of
our algorithm and the optimal scheduler. The potential changes will be categorized into two:
discontinuous changes and continuous changes. As we will discuss soon in detail, discontinuous
changes occur when jobs arrive or complete, and all other changes are continuous. Our
analysis differs from the previous work in bounding discontinuous changes, and continuous
changes due to the optimal scheduler’s processing. In particular, the latter, which is formalized
in Lemma 6, is the most interesting part in our analysis.

Before we move to the detailed analysis, we discuss at high level how we bound the
continuous changes of the potential, particularly Lemma 6. As mentioned, the potential
adds up the potential defined over each cluster, which only depends on the jobs assigned
to the cluster by the algorithm and the optimal scheduler, which we denote Ai and Oi,
respectively. If Ai = Oi for all i, then the analysis is essentially equivalent to that of the
single cluster case, which was done in [11]. Otherwise, using the greedy nature of the Selfish
Migration rule and the Polytope monotonicity, we can w.l.o.g. proceed assuming that all
jobs in Oi are also added to Ai for each cluster i. As a result, we are left with the task of
upper bounding

∑
j∈Oi

wj ·
yO

j

y∗
j

(Ai∪Oi) ; see Eqn. (4). At first sight, it is not clear how to
bound this. The numerators are the processing rates of jobs in Oi due to the adversary, and
the denominators are those under PF with extra jobs Ai added. This is where we apply
the optimality condition, Proposition 4 assuming that PF is run on the jobs Ai ∪ Oi and
setting yj following the adversary for jobs j ∈ Oi; yj = 0 for other jobs. Thus, the polytope
monotonicity and the optimality condition are nicely combined to prove the key lemma.

2.3 Competitive Analysis: Proof of Theorem 2
We use amortized local competitiveness to prove the theorem. Our potential function Φ(t) is
inspired by [6, 11]. The potential function adds up potential functions defined for individual

S. Im, J. Kulkarni, B. Moseley, and K. Munagala 10:9

clusters that are essentially identical to the potential in [11]. Define Ot and Oit for the
optimal scheduler analogously as we did for At and Ait for our algorithm. For a set of jobs
S, let W (S) denote the total weight of jobs in the set. Assuming that our algorithm is given
(e+ ε)-speed, we show that the following conditions are satisfied that will imply Theorem 2.
These are standard conditions which are verified for most potential functions. See [13] for a
tutorial on the framework.
1. (Boundary condition) Φ(0) = Φ(∞) = 0;
2. (Discontinuous changes) Φ can only decrease when a job arrives into or departs from the

system; and
3. (Continuous changes) At the other times t, W (At) + d

dtΦ(t) ≤ 3
ε2W (Ot).

It is an easy exercise to verify that conditions are sufficient to establish our algorithm’s
competitiveness by integrating the last inequality [13]. We give a brief explanation. Suppose
all jobs are completed by our algorithm and OPT by time T . The first two conditions imply
that

∫ T
t=0

d
dtΦ(t)dt ≥ 0. Then integrating the above inequality over time, we have:∫ T

t=0
W (At)dt+

∫ T

t=0

d

dt
Φ(t)dt ≤ 3

ε2

∫ T

t=0
W (Ot)dt .

This implies Theorem 2 since the first term above is the weighted flow time of our algorithm,
and the RHS is that of OPT.

To define the potential function formally, we need to set up more notation. Fix a time
instant t. For job j, let pjt denote the remaining size of the job in the PF’s schedule, and
let pOjt denote the remaining size of the job in OPT’s schedule. Define a job j’s lag as
p̃jt = max(0, pjt − pOjt). The quantity p̃jt indicates how much our algorithm is behind the
optimal schedule in terms of job j’s processing. Let Lt = {j ∈ At | p̃jt > 0}. Note that
At \ Lt ⊆ Ot. Recall that y∗j (S) denote the optimal rate the PF algorithm allocates to job
j ∈ S when working on the set S. We define the following potential function:

Φ(t) :=
∑
i

Φi(t) (2)

where Φi(t) := 1
ε

∑
j∈Ait

wj
p̃jt

y∗ij(A
≤j
it)

(3)

It now remains to verify all the above conditions(1-3) are satisfied. The boundary
condition trivially holds since at times t = 0 and t =∞, the algorithm has no alive jobs. In
the following sections, we show the last two conditions hold true.

2.3.1 Discontinuous Changes
First we show that Φ(t) can only decrease when a job arrives or completes in our algorithm’s
schedule.

I Lemma 5. The discontinuous changes in the potential function (2) due to a job arrival or
departure is at most zero.

Proof. Suppose a job j arrives at time t; for notational convenience, we assume that j /∈ At.
For the job j, p̃jt = 0. Suppose j is assigned to cluster i. Since job j is behind any other
jobs on the cluster in the virtual ordering of jobs, no existing terms in Φi change. A new
term,

(
wj · p̃jt

y∗
j

(Ait∪{j})

)
is added for the job j, and the value of this term is 0 since p̃jt = 0.

Therefore, the lemma is true for job arrivals.

APPROX/RANDOM’16

10:10 Multi-Cluster Polytope Scheduling

We now focus on job completions. It is easy to see that the optimal scheduler completing
a job does not lead to any discontinuous changes in the potential function. Hence, we only
consider changes in the potential due to our algorithm completing a job. Suppose a job j
completes. If j was on cluster i just before it completed, the term (wj · p̃jt

y∗
j

(A≤j
it

)
) drops from

Φi(t) as p̃jt becomes zero.
Due to this the value of other terms for jobs k such that j ≤i k (that is, jobs that were

behind the job j in the virtual order) may change from (wk · p̃kt

y∗
j

(A≤k
it

)
) to (wk · p̃kt

y∗
j

(A≤k
it
\{j})

).
Such changes are non-positive due to the monotonicity of Pi.

But completion of a job may result in a sequence of jobs migrations as other jobs may get
a higher utility on the cluster that a job departed from. We show that the potential can only
decrease when jobs migrate. Say a job j migrates from cluster i to cluster i′. Note that the
term (wj · p̃jt

y∗
j

(A≤j
it

)
) drops from Φi(t), and a new term (wj · p̃jt

y∗
j

(Ai′t∪{j})
) is added to Φi′(t).

When a job migrates from cluster i to i′, the value of other terms for jobs k such that
j ≤i k change from (wk · p̃kt

y∗
j

(A≤k
it

)
) to (wk · p̃kt

y∗
j

(A≤k
it
\{j})

). This change in the value is non-positive
due to the monotonicity of Pi. Therefore, we have

∆Φi(t) ≤ −
1
ε
· wj ·

p̃jt

y∗j (A≤jit)
.

Since j moves to cluster i′, (wj · p̃jt

y∗
j

(Ai′t∪{j})
) is added to Φi′(t). However, no terms in the

summation of Φi′ change since j is placed at the end in the ordering of jobs on i′. Hence we
have

∆Φi′(t) = 1
ε
· wj ·

p̃jt
y∗j (Ai′t ∪ {j})

.

Since Φ(t) does not change on other cluster, we have ∆Φ(t) = ∆Φi(t) + ∆Φi′(t) ≤ 0, as
desired. The inequality follows from the fact that job j having moved to i′ means that
y∗j (A≤jit) ≤ y∗j (Ai′t ∪ {j}). J

2.3.2 Continuous Changes
Fix a time instant t when no jobs arrive or depart. To simplify notation, we omit the subscript
t from rest of the proof. Let Φ′|O and Φ′|A denote the potential changes due to OPT’s
processing and our algorithm’s processing respectively. We note that d

dtΦ(t) = Φ′|A + Φ′|O.

I Lemma 6. Φ′|O ≤ 1
ε (W (A) +W (O)).

Proof. Fix a cluster i and consider each job j ∈ Oi. We consider two cases. Let yOj denote
the rate the optimal scheduler processes job j. Consider the case when j is also assigned to i
by our algorithm at time t; that is, j ∈ Ai. Then, Φ′|O due to job j is

wj ·
yOj

y∗j (A≤ji)
≤ wj ·

yOj
y∗j (Ai ∪Oi)

,

where the inequality follows due to PF being monotone for Pi.
Next, we consider the other case where the algorithm processes job j on a different cluster

i′ from i. The reason the job j decided to stay on cluster i′ instead of moving to cluster i
is because it can’t get a better utility when it is added to the end of the ordering of jobs

S. Im, J. Kulkarni, B. Moseley, and K. Munagala 10:11

on cluster i, i.e. y∗j (A≤ji′) ≥ y∗j (Ai ∪ {j}) ≥ y∗j (Ai ∪ Oi). The last inequality is due to the
monotonicity of Pi and the fact that j ∈ Oi. Hence Φ′|O due to job j is

Φ′|O ≤ wj ·
yOj

y∗j (A≤ji′)
≤ wj ·

yOj
y∗j (Ai ∪Oi)

.

Summing over all jobs Oi on each cluster i, we have

Φ′|O ≤
∑
i

∑
j∈Oi

wj ·
yOj

y∗j (Ai ∪Oi)
. (4)

Finally, we show∑
j∈Oi

wj ·
yOj

y∗j (Ai ∪Oi)
≤W (Ai) +W (Oi). (5)

The above two equations 4 and 5 will yield Φ′|O ≤
∑
iW (Ai) + W (Oi), proving the

lemma.
To show equation (5), we appeal to the optimality condition stated in Proposition 4. Say

we process jobs Ai ∪Oi on cluster i using PF. Then each job j gets processed at a rate of
y∗j (Ai ∪Oi). Then, set yj = yOj for all j ∈ Oi and yj = 0 for all other jobs. Note that this
setting of {yj} is a feasible allocation of rates to jobs Ai ∪Oi. Hence, equation (5) follows
from Proposition 4. J

We now bound Φ’s continuous changes due to our algorithm’s processing. Recall that
L = A \O denote the set of jobs that the optimal scheduler has finished but are alive in PF
schedule. Similarly, let Li = Ai \O.

We consider two cases.

Case 1: W (L) ≤ (1 − ε)W (A). Since A \ L ⊆ O, we have W (O) ≥ εW (A). Since
Φ′|A ≤ 0, we have:

W (A) + Φ′ ≤W (A) + Φ′|O ≤
2
ε

(W (A) +W (O)) ≤ 3
ε2
W (O)

where the second inequality follows from Lemma 6.

Case 2: W (L) ≥ (1 − ε)W (A). This is a more interesting case. If job j is on cluster i ,
then PF processes job j at a rate of y∗j (Ai). For every job j ∈ L, PF decreases p̃jt at the
rate of y∗j (Ai). For all other jobs, PF can only decrease the potential. Hence we have,

Φ′|A ≤ −
1
ε

∑
i

∑
j∈Li

wj
y∗j (Ai)
y∗j (A≤ji)

(6)

To bound this quantity, we use the following inequality which was shown in [11] using
the polytope monotonicity and the optimality condition. For the sake of completeness, we
repeat the proof in [11].

I Lemma 7 ([11]). Let S be an arbitrary ordered set of jobs. Let S≤j denote jobs ahead of
j, including j. For any subset S′ ⊆ S, we have,∑

j∈S′
wj ·

y∗j (S)
y∗j (S≤j) ≥W (S′) · exp

(
−W (S)
W (S′)

)
.

APPROX/RANDOM’16

10:12 Multi-Cluster Polytope Scheduling

Proof. For notational convenience, let |S| = κ, and number the jobs in S in increasing order
of arrival time as 1, 2, . . . , κ. For k > j and k ≤ κ, let αjk = y∗j (S≤k−1)

y∗
j

(S≤k) . By the monotonicity
of PF, we have αjk ≥ 1. Define δjk = αjk − 1. Note that δjk ≥ 0.

We now apply Proposition 4 to the set {1, 2, . . . , k} as follows: For jobs j ∈ {1, 2, . . . , k},
the rate assigned by PF when executed on this set is y∗j (S≤k), and this goes into the
denominator in Proposition 4. We consider y∗j (S≤k−1) for j < k, and y∗k(S≤k−1) = 0 as a
different set of rates that go into the numerator in Proposition 4. This yields:

k−1∑
j=1

wj
y∗j (S≤k−1)
y∗j (S≤k) ≤

k∑
j=1

wj .

Observing that y∗j (S≤k−1)
y∗

j
(S≤k) = 1 + δjk, we obtain

∑k−1
j=1 wjδjk ≤ wk for k = 1, 2, . . . , κ.

Adding these inequalities for k = 1, 2, . . . , κ and changing the order of summations, we
obtain:

κ∑
k=1

k−1∑
j=1

wjδjk =
κ∑
j=1

wj

 κ∑
k=j+1

δjk

 ≤W (S) .

Hence,

∑
j∈S′

wj

 κ∑
k=j+1

δjk

 ≤W (S) .

Let ∆j =
∑κ
k=j+1 δjk, so that the above inequality becomes

∑
j∈S′ wj∆j ≤ W (A). Now

observe that

y∗j (S)
y∗j (S≤j) =

κ∏
k=j+1

1
αjk

=
κ∏

k=j+1

1
1 + δjk

≥ exp

− κ∑
k=j+1

δjk

 = exp(−∆j) .

We used the fact that δjk ≥ 0 for all j, k. Therefore,

∑
j∈S′

wj
y∗j (S)
y∗j (S≤j) ≥

∑
j∈S′

wj exp(−∆j) .

Since
∑
j∈S′ wj∆j ≤W (S), the RHS is maximized when ∆j = W (S)/W (S′). Therefore,

∑
j∈S′

wj
y∗j (S)
y∗j (S≤j) ≥ exp(−W (S)/W (S′))

∑
j∈S′

wj = W (S′) · exp(−W (S)/W (S′)) . J

S. Im, J. Kulkarni, B. Moseley, and K. Munagala 10:13

By applying this lemma with S′ = Li and S = Ai for each machine i, we have,

εΦ′|A ≤ −
∑
i

∑
j∈Li

wj
yj(A)
yj(A≤j)

[Equation 6]

≤ −
∑
i

W (Li) exp
(
−W (Ai)
W (Li)

)
[Lemma 7]

= −W (L)
∑
i

W (Li)
W (L) exp

(
−W (Ai)
W (Li)

)

≤ −W (L) exp
(
−
∑
i

W (Li)
W (L) ·

W (Ai)
W (Li)

)
[Due to convexity of exp(−x)]

= −W (L) exp
(
−W (A)
W (L)

)
≤ −(1− ε)W (A) · exp(−1/(1− ε)) [Since W (L) ≥ (1− ε)W (A)]

≤ −1− 2ε
e
·W (A)

for (0 ≤ ε < 1/2). Thus, when PF is given (e+ 3ε) speed , we have Φ′|A ≤ −(1 + 1/ε)W (A).
This together with Lemma 6 gives,

W (A) + Φ′|A + Φ′|O ≤ 1/ε ·W (O) .

Thus we conclude that in both cases W (A) + Φ′ ≤ 3/ε2W (O), completing the proof of
Theorem 2.

2.4 Bounding the Number of Migrations
First, observe that jobs can’t migrate forever. This is because the total utility of jobs strictly
increases when a job migrates and there are only a finite number of configurations regarding
where each job can be residing. To ensure the migration process ends in polynomial time,
we allow each job moves to another cluster only when its utility increases by a factor of
at least (1 + ε). Also we force job j to move to the cluster where its utility is maximized.
For any polytope Pi, it is well-known that a job gets a rate at least 1/n times the rate it
would get when it is the only job on cluster i in the PF allocation. Let sj be the maximum
processing rate when j is the only job in the system. Then, it is easy to see that job j’s
processing rate/utility is at least sj/n and at most sj . Therefore, each job can migrate at
most O(log1+ε n) times. Hence the total number of jobs migrations is at most O(nε logn).

3 Non-Clairvoyant Scheduling On Unrelated Machines

As already mentioned, the unrelated machines model is a special case of Monotone-MCPS,
where each machine corresponds to a cluster i. Recall that in the unrelated machine setting,
if a job is assigned to machine i it takes pj/sij time to complete. The term 0 ≤ sij ≤ 1 is the
machine dependent slow-down factor of job j. It is easy to verify that this can be captured
using polytope constraints of the form

∑
j xjt ≤ 1 and yjt ≤ sij · xjt. Therefore, Theorem 2

gives an (e+ ε)-speed O
(
1/ε2

)
-competitive algorithm for minimizing the weighted flow-time

in the non-clairvoyant setting. However, PF algorithm is the same as Weighted Round Robin
(WRR) in the unrelated machine setting, hence by a more careful analysis of Lemma 7 we can
reduce the speed augmentation to 2 + ε. The entire analysis of Theorem 2 also goes through

APPROX/RANDOM’16

10:14 Multi-Cluster Polytope Scheduling

if we replace WRR by the Latest Arrival Processor Sharing algorithm (LAPS) [5], and we
obtain (1 + ε)-speed O

(
1/ε2

)
-competitive algorithm, matching the best known result [12].

This also gives the first analysis of LAPS for unrelated machine scheduling. The omitted
details are simple, and we defer the complete proof to the full version of the paper.

References
1 Faraz Ahmad, Srimat T. Chakradhar, Anand Raghunathan, and T. N. Vijaykumar. Tarazu:

optimizing mapreduce on heterogeneous clusters. In ASPLOS, pages 61–74. ACM, 2012.
doi:10.1145/2150976.2150984.

2 Amazon EC2-Spot-Instances. URL: http://aws.amazon.com/ec2/spot-instances/.
3 Jivitej S. Chadha, Naveen Garg, Amit Kumar, and V. N. Muralidhara. A competitive al-

gorithm for minimizing weighted flow time on unrelated machines with speed augmentation.
In STOC, pages 679–684, 2009.

4 R. Cole, V. Gkatzelis, and G. Goel. Mechanism design for fair division: allocating divisible
items without payments. In ACM EC, pages 251–268, 2013.

5 Jeff Edmonds and Kirk Pruhs. Scalably scheduling processes with arbitrary speedup curves.
In ACM-SIAM Symposium on Discrete Algorithms, pages 685–692, 2009.

6 Kyle Fox, Sungjin Im, and Benjamin Moseley. Energy efficient scheduling of parallelizable
jobs. In SODA, pages 948–957, 2013.

7 N. Garg and A. Kumar. Better algorithms for minimizing average flow-time on related
machines. In ICALP (1), 2006.

8 A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, I. Stoica, and S. Shenker. Dominant
resource fairness: Fair allocation of multiple resource types. In NSDI, 2011.

9 Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and Aditya
Akella. Multi-resource packing for cluster schedulers. In ACM SIGCOMM 2014 Conference,
SIGCOMM’14, Chicago, IL, USA, August 17-22, 2014, pages 455–466, 2014. doi:10.1145/
2619239.2626334.

10 Sungjin Im, Janardhan Kulkarni, and Kamesh Munagala. Competitive algorithms from
competitive equilibria: Non-clairvoyant scheduling under polyhedral constraints. In STOC,
2014.

11 Sungjin Im, Janardhan Kulkarni, and Kamesh Munagala. Competitive flow time algorithms
for polyhedral scheduling. In IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 506–524, 2015. doi:
10.1109/FOCS.2015.38.

12 Sungjin Im, Janardhan Kulkarni, Kamesh Munagala, and Kirk Pruhs. Selfishmigrate: A
scalable algorithm for non-clairvoyantly scheduling heterogeneous processors. In 55th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA,
USA, October 18-21, 2014, pages 531–540, 2014. doi:10.1109/FOCS.2014.63.

13 Sungjin Im, Benjamin Moseley, and Kirk Pruhs. A tutorial on amortized local competit-
iveness in online scheduling. SIGACT News, 42(2):83–97, 2011. doi:10.1145/1998037.
1998058.

14 Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. JACM,
47(4):617–643, 2000.

15 Gunho Lee, Byung-Gon Chun, and Randy H Katz. Heterogeneity-aware resource allocation
and scheduling in the cloud. In Proceedings of the 3rd USENIX Workshop on Hot Topics
in Cloud Computing, HotCloud, volume 11, 2011.

16 J. Nash. The bargaining problem. Econometrica, 18(2):155–162, 1950.
17 Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krishnamurthy, Sylvia Rat-

nasamy, and Ion Stoica. Faircloud: sharing the network in cloud computing. In ACM
SIGCOMM, pages 187–198, 2012.

http://dx.doi.org/10.1145/2150976.2150984
http://aws.amazon.com/ec2/spot-instances/
http://dx.doi.org/10.1145/2619239.2626334
http://dx.doi.org/10.1145/2619239.2626334
http://dx.doi.org/10.1109/FOCS.2015.38
http://dx.doi.org/10.1109/FOCS.2015.38
http://dx.doi.org/10.1109/FOCS.2014.63
http://dx.doi.org/10.1145/1998037.1998058
http://dx.doi.org/10.1145/1998037.1998058

S. Im, J. Kulkarni, B. Moseley, and K. Munagala 10:15

18 Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion Stoica. Im-
proving mapreduce performance in heterogeneous environments. In OSDI, pages 29–42,
Berkeley, CA, USA, 2008. USENIX Association. URL: http://dl.acm.org/citation.
cfm?id=1855741.1855744.

19 S. M. Zahedi and B. C. Lee. REF: resource elasticity fairness with sharing incentives for
multiprocessors. In ASPLOS, pages 145–160, 2014.

APPROX/RANDOM’16

http://dl.acm.org/citation.cfm?id=1855741.1855744
http://dl.acm.org/citation.cfm?id=1855741.1855744

	Introduction
	Problem Definition
	Our Results
	High-level Description of the Algorithm
	Justification for not Encapsulating Clusters into One Polytope
	Our Techniques

	Monotone Multi-cluster Polytope Scheduling
	Algorithm
	Key Properties Used in the Analysis
	Competitive Analysis: Proof of Theorem 2
	Discontinuous Changes
	Continuous Changes

	Bounding the Number of Migrations

	Non-Clairvoyant Scheduling On Unrelated Machines

