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Abstract
In the Asymmetric Traveling Salesperson Problem (ATSP) the goal is to find a closed walk of
minimum cost in a directed graph visiting every vertex. We consider the approximability of
ATSP on topologically restricted graphs. It has been shown by Oveis Gharan and Saberi [13]
that there exists polynomial-time constant-factor approximations on planar graphs and more
generally graphs of constant orientable genus. This result was extended to non-orientable genus
by Erickson and Sidiropoulos [8].

We show that for any class of nearly-embeddable graphs, ATSP admits a polynomial-time
constant-factor approximation. More precisely, we show that for any fixed k ≥ 0, there exist
α, β > 0, such that ATSP on n-vertex k-nearly-embeddable graphs admits an α-approximation
in time O(nβ). The class of k-nearly-embeddable graphs contains graphs with at most k apices, k
vortices of width at most k, and an underlying surface of either orientable or non-orientable genus
at most k. Prior to our work, even the case of graphs with a single apex was open. Our algorithm
combines tools from rounding the Held-Karp LP via thin trees with dynamic programming.

We complement our upper bounds by showing that solving ATSP exactly on graphs of
pathwidth k (and hence on k-nearly embeddable graphs) requires time nΩ(k), assuming the
Exponential-Time Hypothesis (ETH). This is surprising in light of the fact that both TSP on
undirected graphs and Minimum Cost Hamiltonian Cycle on directed graphs are FPT paramet-
erized by treewidth.
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1 Introduction

An instance of the Asymmetric Traveling Salesman Problem (ATSP) consists of a directed
graph ~G and a (not necessarily symmetric) cost function c : E(~G)→ R+. The goal is to find
a spanning closed walk of ~G with minimum total cost. This is one of the most well-studied
NP-hard problems.

Asadpour et al. [2] obtained a polynomial-time O(logn/ log logn)-approximation al-
gorithm for ATSP, which was the first asymptotic improvement in almost 30 years [12, 3, 9, 18].
Building on their techniques, Oveis Gharan and Saberi [13] described a polynomial-time
O(√g log g)-approximation algorithm when the input includes an embedding of the input
graph into an orientable surface of genus g. Erickson and Sidiropoulos [8] improved the
dependence on the genus by obtaining a O(log g/ log log g)-approximation.

Anari and Oveis Gharan [1] have recently shown that the integrality gap of the natural
linear programming relaxation of ATSP proposed by Held and Karp [16] is log logO(1) n.
This implies a polynomial-time log logO(1) n-approximation algorithm for the value of ATSP.
We remark that the best known lower bound on the integrality gap of the Held-Karp LP is 2
[4]. Obtaining a polynomial-time constant-factor approximation algorithm for ATSP is a
central open problem in optimization.

1.1 Our contribution

We study the approximability of ATSP on topologically restricted graphs. Prior to our
work, a constant-factor approximation algorithm was known only for graphs of bounded
genus. We significantly extend this result by showing that there exists a polynomial-time
constant-factor approximation algorithm for ATSP on nearly embeddable graphs. These
graphs include graphs with bounded genus, with a bounded number of apices and a bounded
number of vortices of bounded pathwidth. We remark that prior to our work, even the case
of planar graphs with a single apex was open1. For any a, g, k, p ≥ 0, we say that a graph
is (a, g, k, p)-nearly embeddable if it is obtained from a graph of Euler genus g by adding
a apices and k vortices of pathwidth p (see [20, 19, 7] for more precise definitions). The
following summarizes our result.

I Theorem 1. Let a, g, k ≥ 0, p ≥ 1. There is a O(a(g+k+1)+p2)-approximation algorithm
for ATSP on (a, g, k, p)-nearly embeddable digraphs, with running time nO((a+p)(g+k+1)4).

The above algorithm is obtained via a new technique that combines the Held-Karp LP
with a dynamic program that solves the problem on vortices. We remark that it is not known
whether the integrality gap of the LP is constant for graphs of constant pathwidth.

We complement this result by showing that solving ATSP exactly on graphs of pathwidth
p (and hence on p-nearly embeddable graphs) requires time nΩ(p), assuming the Exponential-
Time Hypothesis (ETH). This is surprising in light of the fact that both TSP on undirected
graphs and Minimum Cost Hamiltonian Cycle on directed graphs are FPT parameterized by
treewidth. The following summarizes our lower bound.

1 Previous algorithms for constructing thin trees [13] and forests [8] on surface-embedded graphs depend
critically on the relation between cuts and cycles in the dual graph, and thus are not directly applicable
to the case of graphs even with a single apex. We also remark that the optimal walk might traverse
the apex arbitrarily many times; thus, any approach that attempts to first solve the problem on the
subgraph obtained by removing the apex, cannot yield a constant-factor approximation.
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I Theorem 2. Assuming ETH, there is no f(p)no(p) time algorithm for ATSP on graphs of
pathwidth at most p for any computable function f .

1.2 Overview of the algorithm

We now give a high level overview of the main steps of the algorithm and highlight some of
the main challenges.

Step 1: Reducing the number of vortices. We first reduce the problem to the case of nearly
embeddable graphs with a single vortex. This is done by iteratively merging pairs of
vortices. We can merge two vortices by adding a new handle on the underlying surface-
embedded graph. For the remainder we will focus on the case of graphs with a single
vortex.

Step 2: Traversing a vortex. We obtain an exact polynomial-time algorithm for computing
a closed walk that visits all the vertices in the vortex. We remark that this subsumes as
a special case the problem of visiting all the vertices in a single face of a planar graph,
which was open prior to our work.
Let us first consider the case of a vortex in a planar graph. Let ~W be an optimal walk
that visits all the vertices in the vortex. Let F be the face on which the vortex is attached.
We give a dynamic program that maintains a set of partial solutions for each subpath
of F . We prove correctness of the algorithm by establishing structural properties of ~W .
The main technical difficulty is that ~W might be self-crossing. We first decompose ~W

into a collection W of non-crossing walks. We form a conflict graph I of W and consider
a spanning forest F of I. This allows us to prove correctness via induction on the trees
of F .
The above algorithm can be extended to graphs of bounded genus. The main difference
is that the dynamic program now computes a set of partial solutions for each bounded
collection of subpaths of F .
Finally, the algorithm is extended to the case of nearly-embeddable graphs by adding the
apices to the vortex without changing the cost of the optimum walk.

Step 3: Finding a thin forest in the absence of vortices. The constant-factor approxima-
tion for graphs of bounded genus was obtained by constructing thin forests with a bounded
number of components in these graphs [13, 8]. We extend this result by constructing thin
forests with a bounded number of components in graphs of bounded genus and with a
bounded number of additional apices. Prior to our work even the case of planar graphs
with a single apex was open; in fact, no constant-factor approximation algorithm was
known for these graphs.

Step 4: Combining the Held-Karp LP with the dynamic program. We next combine the
dynamic program with the thin forest construction. We first compute an optimal walk
~W visiting all the vertices in the vortex, and we contract the vortex into a single
vertex. A natural approach would be to compute a thin forest in the contracted graph.
Unfortunately this fails because such a forest might not be thin in the original graph.
In order to overcome this obstacle we change the feasible solution of the Held-Karp LP
by taking into account ~W , and we modify the forest construction so that it outputs a
subgraph that is thin with respect to this new feasible solution.

Step 5: Rounding the forest into a walk. Once we have a thin spanning subgraph of G we
can compute a solution to ATSP via circulations, as in previous work.

APPROX/RANDOM’16
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1.3 Organization
The rest of the paper is organized as follows. Section 2 introduces some basic notation.
Section 3 defines the Held-Karp LP for ATSP. Section 4 presents the main algorithm, using
the dynamic program and the thin forest construction as a black box. Section 5 presents
the technique for combining the dynamic program with the Held-Karp LP. Section 6 gives
the algorithm for computing a thin tree in a 1-apex graph. This algorithm is generalized to
graphs with a bounded number of apices in Section 7, and to graphs of bounded genus and
with a bounded number of apices in Section 8. In Section 9 we show how to modify the thin
forest construction so that we can compute a spanning thin subgraph in a nearly-embeddable
graph, using the solution of the dynamic program.

The dynamic program is given in Sections 10, 11, 12, 13, and 14. More precisely, Section 10
introduces a certain preprocessing step. Section 11 establishes a structural property of the
optimal solution. Section 12 presents the dynamic program for a vortex in a planar graph.
Sections 13 and 14 generalize this dynamic program to graphs of bounded genus and with a
bounded number of apices respectively.

Finally, Section 15 presents the lower bound.

2 Notation

In this section we introduce some basic notation that will be used throughout the paper.

Graphs. Unless otherwise specified, we will assume that for every pair of vertices in a graph
there exists a unique shortest path; this property can always be achieved by breaking ties
between different shortest paths in a consistent manner (e.g. lexicographically). Moreover for
every edge of a graph (either directed or undirected) we will assume that its length is equal
to the shortest path distance between its endpoints. Let ~G be some digraph. Let G be the
undirected graph obtained from ~G by ignoring the directions of the edges, that is V (G) = V (~G)
and E(G) = {{u, v} : (u, v) ∈ E(~G) or (v, u) ∈ E(~G)}. We say that G is the symmetrization
of ~G. For some x : E(~G) → R we define cost~G(x) =

∑
(u,v)∈E(~G) x((u, v)) · d~G(u, v). For a

subgraph S ⊆ G we define costG(S) =
∑
e∈E(S) c(e). Let z be a weight function on the edges

of G. For any A,B ⊆ V (G) we define z(A,B) =
∑
a∈A,b∈B z({a, b}).

Asymmetric TSP. Let ~G be a directed graph with non-negative arc costs. For each
arc (u, v) ∈ E(~G) we denote the cost of (u, v) by c(u, v). A tour in ~G is a closed walk
in ~G. The cost of a tour τ = v1, v2, . . . , vk, v1 is defined to be cost~G(τ) = d~G(vk, v1) +∑k−1
i=1 d~G(vi, vi+1). Similarly the cost of an open walk W = v1, . . . , vk is defined to be

cost~G(W ) =
∑k−1
i=1 d~G(vi, vi+1). The cost of a collection W of walks is defined to be

cost~G(W) =
∑
W∈W cost~G(W ). We denote by OPT~G the minimum cost of a tour traversing

all vertices in ~G. For some U ⊆ V (~G) we denote by OPT~G(U) the minimum cost of a tour
in ~G that visits all vertices in U .

3 The Held-Karp LP

We recall the Held-Karp LP for ATSP [15]. Fix a directed graph ~G and a cost function c :
E(~G)→ R+. For any subset U ⊆ V , we define δ+

~G
(U) := {(u, v) ∈ E(~G) : u ∈ U and v /∈ U}

and δ−~G(U) := δ+
~G

(V \ U). We omit the subscript ~G when the underlying graph is clear from
context. We also write δ+(v) = δ+({v}) and δ−(v) = δ−({v}) for any single vertex v.
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Let G be the symmetrization of ~G. For any U ⊆ V (G), we define δG(U) := {{u, v} ∈
E(G) : u ∈ U and v /∈ U}. Again, we omit the subscript G when the underlying graph
is clear from context. We also extend the cost function c to undirected edges by defining
c({u, v}) := min{c((u, v)), c((v, u))}. For any function x : E(~G) → R and any subset W ⊆
E(~G), we write x(W ) =

∑
a∈W x(a). With this notation, the Held-Karp LP relaxation is

defined as follows.

minimize
∑
a∈E(~G) c(a) · x(a)

subject to x(δ+(U)) ≥ 1 for all nonempty U ( V (~G)
x(δ+(v)) = x(δ−(v)) for all v ∈ V (~G)

x(a) ≥ 0 for all a ∈ E(~G)

We define the symmetrization of x as the function z : E(G)→ R where z({u, v}) := x((u, v))+
x((v, u)) for every edge {u, v} ∈ E(G). For any subset W ⊆ E(G) of edges, we write
z(W ) :=

∑
e∈W z(e). Let ~W ⊆ ~G. Let α, s > 0. We say that ~W is α-thin (w.r.t. z) if for all

U ⊆ V we have |E( ~W ) ∩ δ(U)| ≤ α · z(δ(U)). We also say that ~W is (α, s)-thin (w.r.t. x)
if ~W is α-thin (w.r.t. z) and c(E( ~W )) ≤ s ·

∑
e∈E(~G) c(e) · x(e). We say that z is ~W -dense

if for all (u, v) ∈ E( ~W ) we have z({u, v}) ≥ 1. We say that z is ε-thick if for all U ( V (G)
with U 6= ∅ we have z(δ(U)) ≥ ε.

4 An approximation algorithm for nearly-embeddable graphs

The following Lemma is implicit in the work of Erickson and Sidiropoulos [8] (see also [2]).

I Lemma 3. Let ~G be a digraph and let x be a feasible solution for the Held-Karp LP for
~G. Let α, s > 0, and let S be a (α, s)-thin spanning subgraph of G (w.r.t. x), with at most
k connected components. Then, there exists a polynomial-time algorithm which computes a
collection of closed walks C1, . . . , Ck′ , for some k′ ≤ k, such that their union visits all the
vertices in V (~G), and such that

∑k
i=1 cost~G(Ci) ≤ (2α+ s)

∑
e∈E(~G) c(e) · x(e).

The following is the main technical Lemma that combines a solution to the Held-Karp
LP with a walk traversing the vortex that is computed via the dynamic program. The proof
of Lemma 4 is deferred to Section 5. A similar result, for the case of graphs of orientable
genus, was first obtained in [13].

I Lemma 4. Let a, g, p > 0, let ~G be a (a, g, 1, p)-nearly embeddable graph, and let G be its
symmetrization. There exists an algorithm with running time nO((a+p)g4) which computes a
feasible solution x for the Held-Karp LP for ~G with cost O(OPT~G) and a spanning subgraph
S of G with at most O(a+ g) connected components, such that S is (O(a · g+ p2), O(1))-thin
w.r.t. x.

Using Lemma 4 we are now ready to obtain an approximation algorithm for nearly-
embeddable graphs with a single vortex.

I Theorem 5. Let a, g ≥ 0, p ≥ 1. There exists a O(a · g + p2)-approximation algorithm for
ATSP on (a, g, 1, p)-nearly embeddable digraphs, with running time nO((a+p)(g+1)4).

Proof. We follow a similar approach to [8]. The only difference is that in [8] the algorithm
uses an optimal solution to the Held-Karp LP. In contrast, here we use a feasible solution
that is obtained by Lemma 4, together with an appropriate thin subgraph.

APPROX/RANDOM’16
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Let ~G be (a, g, 1, p)-nearly embeddable digraph. By using Lemma 4, we find in time
nO((a+p)g4) a feasible solution x for the Held-Karp LP for ~G with cost O(OPT~G) and a
spanning subgraph S of G with at most O(a + g) connected components, such that S is
(O(a · g + p2), O(1))-thin w.r.t. x. Now we compute in polynomial time a collection of closed
walks C1, . . . , Ck′ , for some k′ ∈ O(a+ g), that visit all the vertices in V (~G), and such that
the total cost of all walks is at most O((a · g + p2) · OPT~G), using Lemma 3. For every
i ∈ {1, . . . , k′}, let vi ∈ V (~G) be an arbitrary vertex visited by Ci. We construct a new
instance (~G′, c′) of ATSP as follows. Let V (~G′) = {v1, . . . , vk′}. For any u, v ∈ V (~G′), we
have an edge (u, v) in E(~G′), with c′(u, v) being the shortest-path distance between u and
v in G with edge weights given by c. By construction we have OPT~G′ ≤ OPT~G. We find a
closed tour C in ~G′ with cost~G′(C) = OPT~G′ in time 2O(|V (~G′)|) · nO(1) = 2O(a+g) · nO(1). By
composing C with the k′ closed walks C1, . . . , Ck′ , and shortcutting as in [11], we obtain a
solution for the original instance, of total cost O(a · g + p2) · OPT~G. J

We are now ready to prove the main algorithmic result of this paper.

Proof of Theorem 1. We may assume k ≥ 2 since otherwise the assertion follows by The-
orem 5. We may also assume w.l.o.g. that p ≥ 2. Let ~G be a (a, g, k, p)-nearly em-
beddable digraph. It suffices to show that there exists a polynomial time computable
(a, g + k − 1, 1, 2p)-nearly embeddable digraph ~G′ with V (~G′) = V (~G) such that for all
u, v ∈ V (~G) we have d~G(u, v) = d~G′(u, v). We compute ~G′ as follows. Let ~H1, . . . , ~Hk be
the vortices of ~G and let ~F1, . . . , ~Fk be the faces on which they are attached. For each
i ∈ {1, . . . , k} pick distinct ei, fi ∈ E(~Fi), with ei = {wi, w′i}, fi = {zi, z′i}. There exists
a path decomposition Bi,1, . . . , Bi,`i of ~Hi, of width at most 2p, and such that Bi,1 = ei,
and Bi,`i

= fi. For each i ∈ {1, . . . , k − 1}, we add edges (wi+1, zi), (zi, wi+1), (w′i+1, z
′
i),

and (z′i, w′i+1) to ~G′, and we set their length to be equal to the shortest path distance
between their endpoints in ~G. We also add a handle connecting punctures in the disks
bounded by ~Fi and ~Fi+1 respectively, and we route the four new edges along this handle.
Since we add k − 1 handles in total the Euler genus of the underlying surface increases
by at most k − 1. We let ~H be the single vortex in ~G′ with V ( ~H) =

⋃k
i=1 V ( ~Hi) and

E( ~H) =
(⋃k

i=1E( ~Hi)
)
∪
(⋃k−1

i=1 {(wi+1, zi), (zi, wi+1), (w′i+1, z
′
i), (z′i, w′i+1)}

)
. It is immedi-

ate that

B1,1, . . . , B1,`1 , {f1, e2}, B2,1, . . . , B2,`2 , {f2, e3}, . . . , Bk,1, . . . , Bk,`k

is a path decomposition of ~H of width at most 2p. Thus ~G′ is (a, g + k − 1, 1, 2p)-nearly
embeddable, which concludes the proof. J

5 Combining the Held-Karp LP with the dynamic program

In this Section we show how to combine the dynamic program that finds an optimal closed
walk traversing all the vertices in a vortex, with the Held-Karp LP. The following summarizes
our exact algorithm for traversing the vortex in a nearly-embeddable graph. The proof of
Theorem 6 is deferred to Section 14.

I Theorem 6. Let ~G be an n-vertex (a, g, 1, p)-nearly embeddable graph and let ~H be the
single vortex of ~G. Then there exists an algorithm which computes a walk ~W visiting all
vertices in V ( ~H) of total length at most OPT~G(V ( ~H)) in time nO((a+p)g4).
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I Definition 7 ( ~W -augmentation). Let ~G be a directed graph. Let x : E(~G) → R and let
~W ⊆ ~G. We define the ~W -augmentation of x to be the function x′ : E(~G)→ R such that for
all e ∈ E(~G) we have

x′(e) =
{
x(e) + 1 if e ∈ E( ~W )
x(e) otherwise

The following summarizes the main technical result for computing a thin spanning
subgraph in a nearly embeddable graph. The proof of Lemma 8 is deferred to Section 9.

I Lemma 8. Let ~G be a (a, g, 1, p)-nearly embeddable digraph, let ~H be its vortex, and let ~W
be a walk in ~G visiting all vertices in V ( ~H). Let G, H, and W be the symmetrizations of ~G,
~H, and ~W respectively. Let z : E(G)→ R≥0 be α-thick for some α ≥ 2, and ~W -dense. Then
there exists a polynomial time algorithm which given ~G, ~H, A, ~W , z, and an embedding of
~G \ (A∪ ~H) into a surface of genus g, outputs a subgraph S ⊆ G \H, satisfying the following
conditions:
1. W ∪ S is a spanning subgraph of G and has O(a+ g) connected components.
2. W ∪ S is O(a · g + p2)-thin w.r.t. z.

We are now ready to prove the main result of this section.

Proof of Lemma 4. Let ~H be the single vortex of ~G. We compute an optimal solution
y : E(~G) → R for the Held-Karp LP for ~G. We find a tour ~W in ~G visiting all vertices
in V ( ~H), with cost~G( ~W ) = O(OPT~G) using Theorem 6. Let x : E(~G) → R be the ~W -
augmentation of y. Since for all e ∈ E(~G) we have x(e) ≥ y(e), it follows that x is a
feasible solution for the Held-Karp LP. Moreover since cost~G( ~W ) = O(OPT~G), we obtain
that cost~G(x) = cost~G(y) + costG( ~W ) = O(OPT~G). Let z be the symmetrization of x.

Note that z is 2-thick and ~W -dense. Therefore, by Lemma 8 we can find a subgraph
S ⊆ G \H such that T = W ∪ S is a O(a · g + p2)-thin spanning subgraph of G (w.r.t. z),
with at most O(g + a) connected components. Therefore, there exists a constant α such that
for every U ⊆ V (G) we have |T ∩ δ(U)| ≤ α · (a · g+ p2) · z(δ(U)). We can assume that α ≥ 1.
Now we follow a similar approach to [8].

Letm =
⌊
n2/α

⌋
. We define a sequence of functions z0, . . . , zm, and a sequence of spanning

forests T1, . . . , Tm satisfying the following conditions.
1. For any i ∈ {0, . . . ,m}, zi is non-negative, 2-thick and ~W -dense.
2. For any i ∈ {1, . . . ,m}, Ti has at most O(a+ g) connected components.
3. For every U ⊆ V (G) we have |Ti+1 ∩ δ(U)| ≤ α · (a · g + p2) · zi(δ(U)).

We set z0 = 3
⌊
zn2⌋/n2. Now suppose for i ∈ {0, . . . ,m − 1} we have defined zi. We

define zi+1 and Ti+1 as follows. We apply Lemma 8 and we obtain a subgraph Ti+1 of
G with at most O(a + g) connected components such that for every U ⊆ V (G) we have
|Ti+1 ∩ δ(U)| ≤ α · (a · g + p2) · zi(δ(U)). Also, for every e ∈ E(G) we set zi+1(e) = zi(e) if
e 6∈ Ti+1, and zi+1(e) = zi(e) − 1/n2 if e ∈ Ti+1. Now by using the same argument as in
[8], we obtain that zi+1 is non-negative and 2-thick. By the construction, we know that z
is ~W -dense and thus for all (u, v) ∈ ~W we have z0({u, v}) ≥ 3. Note that for all e ∈ E(G)
we have zi+1(e) ≥ zi(e) − 1/n2. Thus for all e ∈ E(G) and for all i ∈ {0, . . . ,m} we have
zi(e) ≥ 2. Therefore for all i ∈ {0, . . . ,m} we have that zi is ~W -dense.

Now, similar to [8] we set the desired S to be the subgraph Ti that minimizes costG(Ti),
which implies that S is a (O(a · g + p2), O(1))-thin spanning subgraph with at most O(a+ g)
connected components. J

APPROX/RANDOM’16
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6 Thin trees in 1-apex graphs

In this section we show how to compute thin trees in 1-apex graphs. The following is implicit
in the work of Oveis Gharan and Saberi [13].

I Theorem 9. If G is a planar graph and z is an α-thick weight function on the edges of G
for some α > 0, then there exists a 10/α-thin spanning tree in G w.r.t. z.

For the remainder of this section, let G be an 1-apex graph with planar part Γ and apex
a. Let z be a 2-thick weight function on the edges of G. We will find a O(1)-thin spanning
tree in G (w.r.t. z). We describe an algorithm for finding such a tree in polynomial time.
The algorithm proceeds in five phases.

Phase 1. We say that a cut U is tiny (w.r.t. z) if z(δ(U)) < 0.1. We start with Γ and
we proceed to partition it via tiny cuts. Each time we find a tiny cut U , we partition the
remaining graph by deleting all edges crossing U . This process will stop in at most n steps.
Let Γ′ be the resulting subgraph of Γ where V (Γ′) = V (Γ) and E(Γ′) ⊂ E(Γ).

Phase 2. By the construction, we know that there is no tiny cuts in each connected
component of Γ′. Therefore, following [13], in each connected component C of Γ′, we can find
a O(1)-thin spanning tree TC (w.r.t. z). More specifically, we will find a 100-thin spanning
tree in each of them.

Phase 3. We define a graph F with V (F ) being the set of connected components of Γ′ and
{C,C ′} ∈ E(F ) iff there exists an edge between some vertex in C and some vertex in C ′ in
Γ. We set the weight of {C,C ′} to be z(C,C ′). We call F the graph of components.

We define a graph G′ obtained from G by contracting every connected component of Γ′ into
a single vertex. We remark that we may get parallel edges in G′.

Phase 4. In this phase, we construct a tree T ′ in G′. We say that a vertex in F is originally
heavy, if it has degree of at most 15 in F . Since F is planar, the minimum degree of F is at
most 5. We contract all vertices in V (G′) \ {a} into the apex sequentially. In each step, we
find a vertex in F with degree at most 5, we contract it to the apex in G′, and we delete it
from F . Since the remaining graph F is always planar, there is always a vertex of degree
at most 5 in it, and thus we can continue this process until all vertices of V (G′) \ {a} are
contracted into the apex.

Initially we consider all vertices of F having no parent. In each step when we contract a
vertex C with degree at most 5 in F to the apex in G′, for each neighbor C ′ of C in F , we
make C the parent of C ′ if C ′ does not have any parents so far. Note that each vertex in F
can be the parent of at most 5 other vertices, and can have at most one parent.
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Every time we contract a vertex C to the apex, we add an edge e to T ′. If C is originally
heavy, we add an arbitrary edge e from C to the apex; we will show in Lemma 11 that
z(C, {a}) ≥ 0.5, which implies that such an edge always exists in G. Otherwise, we add an
arbitrary edge from C to its parent (which is a neighbor vertex, therefore such an edge exists
in G). We will show in the next section that each vertex in F is originally heavy or it has a
parent (or both). Therefore, T ′ is a tree on G′.

Phase 5. In this last phase we compute a tree T in G. We set E(T ) = E(T ′) ∪⋃
C∈V (F )E(TC). We prove in the next subsection that T is a O(1)-thin spanning tree

in G.

6.1 Analysis
We next show that T is a O(1)-thin spanning tree in G.

I Lemma 10. The weight of every edge in F is less than 0.1.

Proof. Let {C,C ′} ∈ E(F ). By construction, each component of Γ′ is formed by finding a
tiny cut in some other component. Suppose C was formed either simultaneously with C ′ or
later than C ′ by finding a tiny cut in some C ′′. If C ′ ⊆ C ′′ then z(C,C ′) < z(δ(C)) < 0.1.
Otherwise, the total weight of edges from C to C ′ is a part of a tiny cut which means that
z(C,C ′) < 0.1. J

I Lemma 11. Let C be an originally heavy vertex in F . Then z(C, {a}) ≥ 0.5.

Proof. For every neighbor C ′ of C in F , by Lemma 10 we have that the weight of {C,C ′} is
less than 0.1. By the assumption on z, we have that z(δ(C)) ≥ 2. Now since C has degree of
at most 15, we have that z(C, {a}) ≥ 0.5, as desired. J

I Lemma 12. Each vertex C ∈ V (F ) is originally heavy or it has a parent (both cases might
happen for some vertices).

Proof. Let C ∈ V (F ). If it is originally heavy, we are done. Otherwise, it has degree of at
least 15. We know that all vertices in F are going to be contracted to a at some point, and
we only contract vertices with degree at most 5 in each iteration. This means that at least
10 other neighbors of C were contracted to the apex before we decided to contract C to the
apex. Therefore one of them is the parent of C. J

I Lemma 13. T is a spanning tree in G.

Proof. Suppose G has n vertices and F has m vertices. After the second phase of our
algorithm, we obtain a spanning forest on Γ with m components and n−m− 1 edges. Each
time we contract a vertex of F to the apex, we add a single edge to T . Therefore, T has
n− 1 edges. It is now sufficient to show that T is connected.

We will show that for every vertex u in Γ, there is path between u and a in T . Let u be
a vertex of Γ. Suppose u is in some component Cu which is a vertex of F . If Cu is originally
heavy, then there is an edge e in T between a vertex v ∈ Cu and the apex. Since we have a
spanning tree in Cu, there is a path between u and v in T . Therefore, there is path between
u and the apex a in T .

Otherwise, Cu must have some parent Cu1 and there is an edge between these two
components. Therefore, there is a path between u and each vertex of these two components.
Now, the same argument applies for Cu1 . Either it is originally heavy or it has a parent Cu2 .

APPROX/RANDOM’16



16:10 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

If it is originally heavy, we are done. Otherwise, we use the same argument for Cu2 . Note
that by construction and the definition of a parent, we do not reach the same component in
this sequence. Therefore, at some point, we reach a component Cuk

which is originally heavy
and we are done. J

Now we are ready to show that T is a O(1)-thin tree in G (w.r.t. z). We have to show
that there exists some constant α such that for every cut U , |E(T ) ∩ δ(U)| ≤ α · z(δ(U)).
Let U be a cut in G. We can assume w.l.o.g. that a /∈ U , since otherwise we can consider
the cut V (G) \ U . We partition E(T ) ∩ δ(U) into three subsets:
1. T1 = {{a, v} ∈ E(T ) ∩ δ(U) : v ∈ V (Γ)}.
2. T2 = {{u, v} ∈ E(T ) ∩ δ(U) : u and v are in the same component of Γ′}.
3. T3 = {{u, v} ∈ E(T ) ∩ δ(U) : u and v are in different components of Γ′}.

I Lemma 14. There exists some constant α1 such that |T1| ≤ α1 · z(δ(U)).

Proof. Let e = {a, v} ∈ T1 where v ∈ V (Γ). Let Cv ∈ V (F ) such that v ∈ Cv. By the
construction of T , Cv is originally heavy. If Cv ⊆ U , we can charge e to z(Cv, {a}), which
we know is at least 0.5. Otherwise suppose Cv is not a subset of U . By the assumption we
have a /∈ U and thus v ∈ U which implies that U ∩ Cv 6= ∅. By the construction, we know
that there is no tiny cuts in Cv. Therefore, z(δ(U) ∩E(G[Cv])) ≥ 0.1. Thus we can charge e
to the total weight of the edges in δ(U) ∩E(G[Cv]). Note that for each Cv ∈ V (F ), there is
at most one edge in T1 between a and Cv. Therefore we have that |T1| ≤ 10 · z(δ(U)). J

I Lemma 15. There exists some constant α2 such that |T2| ≤ α2 · z(δ(U)).

Proof. We have

|T2| =

∣∣∣∣∣∣
⋃

C∈V (F )

(E(C) ∩ T2)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃

C∈V (F )

(E(C) ∩ E(T ) ∩ δ(U))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
⋃

C∈V (F )

(E(TC) ∩ δ(U))

∣∣∣∣∣∣ ≤
∑

C∈V (F )

100 · z(δ(U) ∩ E(C)) ≤ 100 · z(δ(U)),

concluding the proof. J

I Lemma 16. There exists some constant α3 such that |T3| ≤ α3 · z(δ(U)).

Proof. We partition T3 into three subsets:
1. T31 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F ) s.t. u ∈ Cu, v ∈ Cv, U ∩ Cv 6= ∅}.
2. T32 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F ) s.t. u ∈ Cu, v ∈ Cv, U ∩ Cu 6= ∅}.
3. T33 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F ) s.t. u ∈ Cu, v ∈ Cv, U ∩ Cv = ∅, Cu ⊆

U}.

First for each e = {u, v} ∈ T31 where v ∈ Cv for some Cv ∈ V (F ), we have that
Uv = U ∩ Cv is a cut in Cv which is not tiny. By the construction, Cv can be the parent of
at most five other vertices in F and it can have at most one parent. Therefore, there are at
most six edges in T3 with a vertex in Cv. So we can charge e and at most five other edges to
z(δ(Uv)). Since z(δ(Uv)) ≥ 0.1 we get |T31| ≤ 60 · z(δ(U)).

Second for each e = {u, v} ∈ T32 where u ∈ Cu for some Cu ∈ V (F ), we have that
Uu = U ∩Cu is a cut in Cu which is not tiny. Therefore, the same argument for Cv as in the
first case, applies here for Cu and we get |T32| ≤ 60 · z(δ(U)).
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Finally, for T33 we need to find a constant α33 such that |T33| ≤ α33 · z(δ(U)). First, we
define a new cut U1 as follows. For every C ∈ V (F ) with C ∩U 6= ∅, if C ∩U 6= C, we add all
the other vertices of C to U and we say that C is important. This process leads to a new cut
U1 such that for every C ∈ F , either C ∩U1 = ∅ or C ⊆ U1. Let U2 = {C ∈ V (F ) : C ⊆ U1}.
Let X = {C ∈ V (F ) : C /∈ U2} and Y = X ∪ {a}.

Let

T331 = {{u, v} ∈ T33 : u ∈ U, u ∈ C for some C ∈ V (F ) with degF [U2](C) < 19}.

Let also T332 = T33 \ T331.
For each edge e = {u, v} ∈ T331 where u ∈ U and u ∈ Cu for some Cu ∈ V (F ), we have

degF [U2](Cu) < 19. By Lemma 10, we know that for any C,C ′ ∈ V (F ), z(C,C ′) ≤ 0.1.
Therefore, we get z(Cu, Y ) ≥ 0.2. Note that there are at most six edges in T331 with a
vertex in Cu. So we can charge e and at most five other edges to z(Cu, Y ). Therefore,
|T331| ≤ 30 · z(δ(U)).

Let V1 = {C ∈ U2 : degF [U2](C) ≥ 19} and V2 = {C ∈ U2 : degF [U2](C) ≤ 5}. By Euler’s
formula, we know that the average degree of a planar graph is at most 6. Since F [U2] is
planar, we get |V1| ≤ |V2|. For any C ∈ V2, if C is important, then C ∩ U is a cut for C and
we have z(C ∩ U, Y ) ≥ 0.1. If C is not important, then we have z(C, Y ) ≥ 1.5. Note that
for any C ′ ∈ V1, there are at most six edges in T332 with a vertex in C ′. Therefore, we have
|T332| ≤ 60 · z(δ(U)).

Now since T3 = T31 ∪ T32 ∪ T331 ∪ T332, we have |T3| ≤ 210 · z(δ(U)) completing the
proof. J

I Lemma 17. T is a O(1)-thin spanning tree in G.

Proof. By Lemma 13 we know that T is a spanning tree. For any U ⊆ V (G), by Lemmas
14, 15 and 16 we get |T | ≤ 320 · z(δ(U)). This completes the proof. J

We are now ready to prove the main result of this Section.

I Theorem 18. Let G be a 1-apex graph and let z : E(G)→ R≥0 be β-thick for some β > 0.
Then there exists a polynomial time algorithm which given G and z outputs a O(1/β)-thin
spanning tree in G (w.r.t. z).

Proof. For β ≥ 2, by Lemma 17 we know that we can find a 320-thin spanning tree in G.
For any β with 0 < β < 2, the assertion follows by scaling z by a factor of 2/β. J

7 Thin forests in graphs with many apices

Let a ≥ 1. In this section, we describe an algorithm for finding thin-forests in an a-apex
graph. The high level approach is analogous to the case of 1-apex graphs. We construct a
similar graph F of components and contract each vertex of F to some apex.

Let e0 = {u0, v0} ∈ E(G). Let G′ be obtained from G by contracting e0. We define
a new weight function z′ on the edges of G′ as follows. For any {u, v0} ∈ E(G), we set
z′({u, v0}) = z({u, v0}) + z({u, u0}). For any other edge e we set z′(e) = z(e). We say that
z′ is induced by z. Similarly, when G′ is obtained by contracting a subset X of edges in G,
we define z′ by inductively contracting the edges in X in some arbitrary order.

For the remainder of this section let G be a a-apex graph with the set of apices A =
{a1,a2, · · · ,aa}. Let Γ be the planar part of G. Let z be a 2-thick weight function on the
edges of G. The algorithm proceeds in 5 phases.

APPROX/RANDOM’16



16:12 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

Phase 1. We say that a cut U is tiny (w.r.t. z) if z(δ(U)) < 1/(100 · a). Similar to the case
of 1-apex graphs, we start with Γ and repeatedly partition it via tiny cuts until there are no
more such cuts and we let Γ′ be the resulting graph.

Phase 2. For each connected component C of Γ′ we find a O(a)-thin tree TC using The-
orem 9.

Phase 3. We define F and G′ exactly the same way as in the case of 1-apex graphs.

I Lemma 19. For every {C,C ′} ∈ E(F ), we have z(C,C ′) ≤ 1/(100 · a).

Proof. The same argument as in Lemma 10 applies here. The only difference here is that a
cut U is tiny if z(δ(U)) < 1/(100 · a). J

Phase 4. We construct a forest T ′ on G′. Let m = |V (F )|. We define a sequence of
planar graphs F0, F1, · · · , Fm, a sequence of graphs G′0, G′1, · · · , G′m and a sequence of weight
functions z0, z1, · · · , zm as follows. Let F0 = F , G′0 = G′ and z0 = z. We also define a
sequence of forests P0, . . . , Pm where each Pj contains a tree rooted at each ai ∈ A. We set
P0 to be the forest that contains a tree for each ai ∈ A and with no other vertices.

Let C ∈ V (Fj) for some j. For any ai ∈ A, we say that C is ai-heavy in Fj if
zj(C, {ai}) ≥ 1/a. Let C ′ ∈ V (F ). For any ai ∈ A, we say that C ′ is originally ai-heavy if
C ′ is ai-heavy in F .

We maintain the following inductive invariant:
(I1) For any j ∈ {0, . . . ,m− 1}, let v ∈ V (Fj) be a vertex of minimum degree. Then either

there exists some ai ∈ A such that v is originally ai-heavy or v ∈ V (Pj).

Consider some i ∈ {0, . . . ,m − 1}. Let vi ∈ V (Fi) be a vertex with minimum degree.
If vi is originally aj-heavy for some aj ∈ A, then we contract vi to aj . Otherwise, by the
inductive invariant (I1), we have that vi ∈ V (Pi). Thus there exists a tree in Pi containing
vi that is rooted in some aj ∈ A; we contract vi to aj . In either case, by contracting vi to aj
we obtained G′i+1 from G′i. We also delete vi from Fi to obtain Fi+1. We let zi+1 be the
weight function on G′i+1 induced by zi.

Finally, we need to define Pi+1. If vi was originally aj-heavy then we add vi to Pi via an
edge {vi,aj}. For each u ∈ V (Fi) that is a neighbor of vi, and is not in V (Pi), we add u to
Pi+1 by adding the edge {vi, u} iff the following conditions hold:
(i) For all ar ∈ A, we have that u is not ar-heavy in Fi.
(ii) u is aj-heavy in Fi+1.
In this case we say that v is the parent of u. This completes the description of the process
that contracts each vertex in V (G′) into some apex.

I Lemma 20. Let j ∈ {0, 1, . . . ,m− 1}. Let C ∈ V (Fj) be a vertex with minimum degree.
Then there exists ai ∈ A such that C is ai-heavy in Fj.

Proof. Since C has at most 5 neighbors in Fj , by Lemma 19 we have zj(C,A) ≥ 2− 5/(100 ·
a) ≥ 1. Therefore by averaging, there exists an apex ai such that zj(C, {ai}) ≥ 1/a. J

I Lemma 21. For any j ∈ {0, . . . ,m} and for any v ∈ V (Γ)∩V (Pj), we have degPj
(v) ≤ 6.

Proof. By the construction, in each step we pick a vertex of minimum degree and contract
it into some apex. Since Fi is planar, its minimum degree is at most 5. This means that for
any v ∈ V (Γ) ∩ V (Pj), v can be the parent of at most five other vertices and can have at
most one parent. This completes the proof. J
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I Lemma 22. The inductive invariant (I1) is maintained.

Proof. For any j ∈ {0, . . . ,m− 1}, let v ∈ V (Fj) be a vertex of minimum degree. If there
exists some ai ∈ A such that v is originally ai-heavy, then we are done. Suppose for all
ai ∈ A, v is not originally ai-heavy. By Lemma 20 we know that there exists some al ∈ A
such that v is al-heavy in Fj . Let j∗ ∈ {1, . . . , j} be minimum such that v is not at-heavy in
Fj∗−1 for all at ∈ A, and v is at′ -heavy in Fj∗ for some at′ ∈ A. Let u ∈ V (Fj∗−1) be vertex
that is contracted to some apex in step j∗. It follows by construction that u is the parent of
v in Pj∗ . Since j ≥ j∗ it follows that v ∈ V (Pj), concluding the proof. J

Now we are ready to describe how to construct T ′ in G′. For any l ∈ {0, . . . ,m− 1}, let
C ∈ V (Fl) be a vertex of minimum degree. If C is originally ai-heavy for some ai ∈ A and
we contract C to ai, we pick an arbitrary edge e between C and ai and we add it to T ′.
Otherwise, by Lemma 22 we have C ∈ V (Pl). This means that C has a parent C ′. In this
case, we pick an arbitrary edge e between C and C ′ and we add it to T ′.

Phase 5. We construct a forest T in G the same way as in the 1-apex case. We set
E(T ) = E(T ′) ∪

⋃
C∈V (F )E(TC).

This completes the description of the algorithm.

7.1 Analysis
By the construction, T has a connected components. We will show that T is a O(a)-thin
spanning forest. Let U be a cut in G. Similar to the 1-apex case, we partition E(T ) ∩ δ(U)
into three subsets:
1. T1 = {{ai, v} ∈ E(T ) ∩ δ(U) : ai ∈ A, v ∈ V (Γ)}.
2. T2 = {{u, v} ∈ E(T ) ∩ δ(U) : u and v are in the same component of Γ′}.
3. T3 = {{u, v} ∈ E(T ) ∩ δ(U) : u and v are in different components of Γ′}.

I Lemma 23. There exists a constant α1 such that |T1| ≤ α1 · a · z(δ(U)).

Proof. A similar argument as in the case of 1-apex graph applies here with two differences.
First, a cut U is tiny if z(δ(U)) < 1/(100 · a). Second, for any ai ∈ A and C ∈ V (F )
where C is originally ai-heavy, we have that z(C, {ai}) ≥ 1/a. Therefore, we get |T1| ≤
100 · a · z(δ(U)). J

I Lemma 24. There exists a constant α2 such that |T2| ≤ α2 · a · z(δ(U)).

Proof. Again, a similar argument as in the case of 1-apex graphs applies here. The only
difference here is the definition of tiny cut. Therefore, we get |T2| ≤ 100 · a · z(δ(U)). J

I Lemma 25. There exists a constant α3 such that |T3| ≤ α3 · a · z(δ(U)).

Proof. Similar to the 1-apex case, we partition T3 into three subsets:
1. T31 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F ) s.t. u ∈ Cu, v ∈ Cv, U ∩ Cv 6= ∅}.
2. T32 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F ) s.t. u ∈ Cu, v ∈ Cv, U ∩ Cu 6= ∅}.
3. T33 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F ) s.t. u ∈ Cu, v ∈ Cv, U ∩ Cv = ∅, Cu ⊆

U}.

The arguments for T31 and T32 are the same as in 1-apex graphs. The only difference here
is that a cut U is tiny if z(δ(U)) < 1/(100 · a). Therefore, we have |T31| ≤ 600 · a · z(δ(U))
and |T32| ≤ 600 · a · z(δ(U)).

APPROX/RANDOM’16
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Now for T33 we want to find a constant α33 such that |T33| ≤ α33 · a · z(δ(U)). We define
two new cuts U1 and U2 as follows. For every C ∈ V (F ) with C∩U 6= ∅, if C∩U 6= C, we add
all other vertices of C to U (delete all other vertices of C from U) to obtain U1 (U2) and we
say that C is U -important. Let U ′1 = {C ∈ V (F ) : C ⊆ U1} and U ′2 = {C ∈ V (F ) : C ⊆ U2}.

For any e = {u, v} ∈ T33 where u ∈ U , v /∈ U , u ∈ Cu and v ∈ Cv for some Cu, Cv ∈ V (F ),
by the construction of T3, we have that both Cu and Cv have been contracted to the same
apex ai for some ai ∈ A. Let j ∈ {0, . . . ,m} be the step during which Cu is contracted to ai.
Let B = {C ∈ V (F ) : C is contracted to ai}. Let D be the connected component of F [B]
containing Cu. Let Din

U ′1
= D[U ′1], Dout

U ′1
= D[V (D) \U ′1], Din

U ′2
= D[U ′2], Dout

U ′2
= D[V (D) \U ′2].

We consider the following two cases:
Case 1: ai /∈ U . We know that Cu ∈ U . By the construction, we have that zj(Cu, {ai}) ≥

1/a. If z0(Cu, {ai}) ≥ 1/(100 · a), we can charge e to z0(Cu, {ai}) and we know that
there are at most six edges in T33 with a vertex in Cu.
Otherwise, we have that z0(Cu, (V (D) \ Cu)) ≥ 99/(100 · a). If z0(Cu, (V (Dout

U ′1
) \ Cu)) ≥

1/(100 ·a), then by the construction of Dout
U ′1

we get z0(Cu, (G\U)) ≥ 1/(100 ·a). Therefore
we can charge e to z0(Cu, (G \ U)).
Otherwise, we have that z0(Cu, (V (Din

U ′1
) \ Cu)) ≥ 98/(100 · a). This implies that

degDin
U′1

(Cu) ≥ 98. Now note that Din
U ′1

is a planar graph and its average degree is

at most 6. Now a similar argument as in the 1-apex case applies here. Let V1 = {C ∈
Din
U ′1

: degDin
U′1

(C) ≥ 98}. Let V2 = {C ∈ Din
U ′1

: degDin
U′1

(C) ≤ 5}. By planarity of Din
U ′1
,

we have that |V1| ≤ |V2|. For any C ∈ V2, if C is U -important, then C ∩ U is a cut
for C which is not tiny. Therefore we have z(C ∩ U,G \ U) ≥ 1/(100 · a). If C is not
U -important, we have z(C,G\U) ≥ 95/(100 ·a). Now note that for any C ′ ∈ V1 there are
at most six edges in T33 with a vertex in C ′. Therefore we have |T33| ≤ 1000 · a · z(δ(U)).

Case 2: ai ∈ U . Let X1 = {C ∈ Dout
U ′2

: degDout
U′2

(C) ≥ 98}. Let X2 = {C ∈ Dout
U ′2

:

degDout
U′2

(C) ≤ 5}. We know that Cv /∈ U . We follow a similar approach as in the first

case by considering U ′2, Din
U ′2

and Dout
U ′2

. The same argument applies here by replacing U ′1,
Din
U ′1
, Dout

U ′1
, X1 and X2 with U ′2, Dout

U ′2
, Din

U ′2
, V1 and V2 respectively. Therefore, we get

|T33| ≤ 1000 · a · z(δ(U)).

Now from what we have discussed, we have |T31| ≤ 600 ·a ·z(δ(U)), |T32| ≤ 600 ·a ·z(δ(U))
and |T33| ≤ 1000 · a · z(δ(U)). Therefore, we get |T3| ≤ 2200 · a · z(δ(U)) completing the
proof. J

I Lemma 26. T is a O(a)-thin spanning forest in G with at most a connected components.

Proof. By the construction, T is a spanning forest and has at most a connected components.
Let α = α1 + α2 + α3, where α1, α2 and α3 are obtained by Lemmas 23, 24, 25. Therefore
for any U ⊂ V (G), we have |T | ≤ α · a · z(δ(U)) = 2400 · a · z(δ(U)) completing the proof. J

We are now ready to prove the main result of this Section.

I Theorem 27. Let a ≥ 1 and let G be a a-apex graph with set of apices A = {a1, . . . ,aa}.
Let z : E(G)→ R≥0 be β-thick for some β > 0. Then there exists a polynomial time algorithm
which given G, A and z outputs a O(a/β)-thin spanning forest in G (w.r.t. z) with at most
a connected components.

Proof. By Lemma 26, for β ≥ 2, we know that we can find a (2400a)-thin spanning forest
in G (w.r.t. z) with at most a connected components. For any other 0 < β < 2, the claim
follows by scaling z by a factor of 2/β. J
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8 Thin forests in higher genus graphs with many apices

In this section we generalize our algorithm for computing a thin tree on a graph with many
apices, to compute a thin forest in a graph of higher genus and with many apices. The
following theorem is implicit in [8].

I Theorem 28 (Erickson and Sidiropoulos [8]). Let G be a graph with eg(G) = g, and let z be
a β-thick weight function on the edges of G for some β ≥ 0. Then there exists a polynomial
time algorithm which given G, z, and an embedding of G into a surface of Euler genus g,
outputs a O(1/β)-thin spanning forest in G (w.r.t. z), with at most g connected components.

In this section, we study the problem in higher genus graphs. First, the following two
Lemmas can be obtained by Euler’s formula.

I Lemma 29. Let G be a graph of genus g ≥ 1 with |V (G)| ≥ 10g. Then there exists
v0 ∈ V (G) with degG(v0) ≤ 7.

I Lemma 30. Let G be an n vertex graph of genus g ≥ 1. Then the average degree of
vertices of G is at most 6 + 12(g − 1)/n.

For the remainder of this section, let G be an a-apex graph with the set of apices
A = {a1,a2, . . . ,aa} on a surface of genus g. Let Γ = G \A, where Γ is a graph of genus g.
Let z be a 2-thick weight function on the edges of G. We will find a O(a · g)-thin (w.r.t. z)
spanning forest in G with at most O(a+ g) connected components. The high level approach
is similar to the case where Γ was planar. The algorithm proceeds in 5 phases.

Phase 1. We say that a cut U is tiny (w.r.t. z) if z(δ(U)) < 1/(1000 · a · g). We construct
Γ′ the same way as in Section 7. The only difference here is the definition of tiny cut.

Phase 2. Similar to the planar case, for each connected component C of Γ′ we find a
O(a · g)-thin forest TC , with at most g connected components, using Theorem 28

Phase 3. We define F and G′ the exact same way as in Section 7.

I Lemma 31. For every {C,C ′} ∈ E(F ), we have z(C,C ′) ≤ 1/(1000 · a · g).

Proof. The same argument as in Lemma 10 applies here. The only difference here is the
definition of tiny cut. J

Phase 4. We construct a spanning forest T ′ on G′, with at most a + 10g connected
components. We follow a similar approach as in the planar case. Let m = |V (F )| − 10g. If
m ≤ 0, we set E(T ′) = ∅ and we skip to the next phase. Otherwise, we define two sequences
of graphs F0, F1, . . . , Fm, G′0, G′1, . . . , G′m, a sequence of weight functions z0, z1, . . . , zm, a
sequence of forests P0, P1, . . . , Pm satisfying the inductive invariant (I1) the exact same way
as in Section 7. For any j ∈ {0, 1, . . . ,m − 1}, C ∈ V (Fj) and ai ∈ A, we also define the
notion of ai-heavy and originally ai-heavy the same way as in Section 7. The only differences
here is that m = |V (F )| − 10g instead of |V (F )|.

I Lemma 32. Let j ∈ {0, 1, . . . ,m}. Let C ∈ V (Fj) be a vertex of minimum degree. Then
there exists ai ∈ A such that C is ai-heavy in Fj.
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Proof. By the construction, |V (Fj)| ≥ 10g. Therefore by Lemma 29, we have degFj
(C) ≤ 7.

Therefore by Lemma 31, we get zj(C,A) ≥ 2− 7/(1000 · a · g) ≥ 1. This implies that there
exists ai ∈ A such that zj(C, {ai}) ≥ 1/a. J

I Lemma 33. For any j ∈ {0, . . . ,m} and for any v ∈ Γ ∩ Pj, we have degPj
(v) ≤ 8.

Proof. A similar argument as in the planar case applies here. The only difference here is
that the minimum degree is at most 7. Therefore, every vertex can be the parent of at most
7 other vertices and can have at most one parent. J

I Lemma 34. The inductive invariant (I1) is maintained.

Proof. The exact same argument as in Section 7 applies here. J

Now we construct a forest T ′ on G′ the same way as in Section 7.

I Lemma 35. T ′ has at most a+ 10g connected components.

Proof. If |V (F )| ≤ 10g, then we are done. Otherwise, we have |Fm| = 10g. Now since
|A| = a, by the construction, we have that the number of connected components of T ′ is at
most a+ 10g. J

Phase 5. We construct a forest T in G the exact same way as in Section 7, by setting
E(T ) = E(T ′) ∪

⋃
C∈V (F )E(TC).

This completes the description of the algorithm.

8.1 Analysis
I Lemma 36. T is a spanning forest in G, with at most O(a+ g) connected components.

Proof. For any C ∈ V (F ), let gC be the genus of Γ[C]. By Theorem 28 we know that the
number of connected components in TC is at most gC . Therefore, by Lemma 35 we have that
the number of connected components in T is at most a+ 10g +

∑
C∈V (F ) gC ≤ a+ 11g. J

For the thinness of T , we follow a similar approach as in the planar case. There are two
main differences here: First for any j ∈ {0, 1, . . . ,m}, by Lemma 30 we have that the average
degree of Fj is at most 20g. Second a cut U is tiny if z(δ(U)) < 1/(1000 · a · g).

Let U be a cut in G. Similar to the planar case, we partition E(T ) ∩ δ(U) into three
subsets:
1. T1 = {{ai, v} ∈ E(T ) ∩ δ(U) : ai ∈ A, v ∈ V (Γ)}.
2. T2 = {{u, v} ∈ E(T ) ∩ δ(U) : u and v are in the same component of Γ′}.
3. T3 = {{u, v} ∈ E(T ) ∩ δ(U) : u and v are in different components of Γ′}.

Also similar to the planar case, we partition T3 into three subsets:
1. T31 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F ) s.t. u ∈ Cu, v ∈ Cv, U ∩ Cv 6= ∅}.
2. T32 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F ) s.t. u ∈ Cu, v ∈ Cv, U ∩ Cu 6= ∅}.
3. T33 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F ) s.t. u ∈ Cu, v ∈ Cv, U ∩ Cv = ∅, Cu ⊆

U}.

I Lemma 37. For any index i ∈ {1, 2, 31, 32}, there exists a constant αi such that |Ti| ≤
αi · a · g · z(δ(U)).
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Proof. A similar argument as in Lemmas 23, 24 and 25 applies here. There are two differences
here. First the definition of a tiny cut is different. Second, for each C ∈ V (F ), C can be
the parent of at most seven vertices and can have at most one parent. Therefore we get
|T1| ≤ 1000 · a · g · z(δ(U)), |T2| ≤ 1000 · a · g · z(δ(U)), |T31| ≤ 8000 · a · g · z(δ(U)) and
|T32| ≤ 8000 · a · g · z(δ(U)). J

I Lemma 38. There exists a constant α33 such that |T33| ≤ α33 · a · g · z(δ(U)).

Proof. Let e = {u, v} ∈ T33. We follow a similar approach as in the planar case. We define
U1, U2, U ′1, U ′2, B, Din

U ′1
, Dout

U ′1
, Din

U ′2
and Dout

U ′2
the exact same way as in Lemma 25. Let

V1 = {C ∈ Din
U ′1

: degDin
U′1

(C) ≥ 98g}, V2 = {C ∈ Din
U ′1

: degDin
U′1

(C) ≤ 20g}, X1 = {C ∈ Dout
U ′2

:

degDout
U′2

(C) ≥ 98g}, and X2 = {C ∈ Dout
U ′2

: degDout
U′2

(C) ≤ 5g}. By Lemma 30 we have that

|V1| ≤ |V2| and |X1| ≤ |X2|. With these definitions, the rest of the proof is the same as in
Lemma 25, and thus we get |T33| ≤ 10000 · a · g · z(δ(U)). J

I Lemma 39. T is a O(a · g)-thin spanning forest in G, with at most O(a+ g) connected
components.

Proof. By combining Lemmas 36, 37 and 38 we get |T | ≤ 24000 · a · g · z(δ(U)), which proves
the assertion. J

We are now ready to prove the main result of this Section.

I Theorem 40. Let a, g ≥ 1. Let G be a graph and A ⊆ V (G), with |A| = a, such that
H = G \ A is a graph of genus g. Let z : E(G) → R≥0 be β-thick for some β > 0. Then
there exists a polynomial time algorithm which given G, A, an embedding of H on a surface
of genus g, and z outputs a O((a · g)/β)-thin spanning forest in G (w.r.t. z) with at most
O(a+ g) connected components.

Proof. For β ≥ 2, by Lemma 39, we can find a (24000 · a · g)-thin spanning forest with at
most a + 11g connected components. For 0 < β < 2, the claim follows by scaling z by a
factor of 2/β. J

9 Thin subgraphs in nearly-embeddable graphs

In this section we give our algorithm for computing a thin subgraph in a (a, g, 1, p)-nearly
embeddable graph, proving Lemma 8. We first handle graphs without any apices, and then
proceed to the general case.

9.1 (0, g, 1, p)-nearly embeddable graphs
We now describe our algorithm for computing a thin subgraph in a (0, g, 1, p)-nearly embed-
dable graph.

For the remainder of this subsection, let ~G be a (0, g, 1, p)-nearly embeddable digraph and
let G be its symmetrization. Let ~H be the single vortex of ~G of width p, attached to some
face ~F of ~G. Let H and F be the symmetrizations of ~H and ~F respectively. Let {Bv}v∈V (F )

be a path-decomposition of H of width p. Let ~W be a closed walk in ~G visiting all vertices
in V ( ~H) and let W be its symmetrization. Let z : E(G)→ R≥0 be α-thick, for some α ≥ 2,
and ~W -dense. Let G′ be the graph obtained by contracting F to a single vertex v∗ in G \H.

Following [8] we introduce the following notation. For any u, v ∈ V (G), a ribbon R

between u and v is the set of all parallel edges e = {u, v} such that for every e, e′ ∈ R, there
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exists a homeomorphism between e and e′ on the surface. Let R′ be a set of parallel edges in
G. We say that an edge e ∈ R′ is central if the total weight of edges on each side of e in R′
(containing e), is at least z(R′)/2.

We will find a O(1)-thin spanning forest S in G′ (w.r.t. z), with at most g connected
components, such that S is O(1)-thin in G (w.r.t. z). We follow a similar approach to [8] to
construct S. We apply some modifications that assure S is O(1)-thin in G (w.r.t. z).

9.1.1 The modified ribbon-contraction argument
If |V (G′)| ≤ g, then we set E(S) = ∅ and we are done. Otherwise, let l = |V (G′)| − g. We
define two sequences of graphs G0, . . . , Gl and G′0, . . . , G′l, with G0 = G and G′0 = G′. For
each j ∈ {0, . . . , l}, Gj is obtained by uncontracting v∗ ∈ V (G′j). Let i ≥ 0 and suppose we
have defined G′i. Let Ri be the heaviest ribbon in G′i (w.r.t. z). Let R′i ⊆ E(Gi) be the
corresponding set of edges in Gi. We contract all the edges in Ri and we let G′i+1 be the
graph obtained after contracting Ri. We also perform the contraction in a way such that for
all i ∈ {0, . . . , l − 1} we have v∗ ∈ G′i.

Let i ∈ {0, . . . , l− 1}. If Ri = {u, v} where u, v 6= v∗, similar to [8], we let ei be a central
edge in Ri and we add ei to S. Otherwise, suppose that Ri = {u, v∗} for some u ∈ V (G′i).
If there exists an edge e ∈ Ri with e ∈ W or z(e) ≥ 0.1, we let ei = e and we add it to S.
Otherwise, we can assume that there is no edge e ∈ R with e ∈W or z(e) ≥ 0.1.

Let Qi be the set of vertices v ∈ V (F ) with an endpoint in R′i. By the construction, Qi
is a subpath of F . Let v1, v2 ∈ V (F ) be the endpoints of Qi. Let W ′i be the restriction of
W on

⋃
v∈Qi

Bv. Let W ′′i be the subgraph of W ′i obtained by deleting all edges e with both
endpoints in Bv1 or Bv2 .

For any subgraph C of W , we define the i-load of C as follows. The i-load of C is the total
weight of all edges in R′i with an endpoint in C. Let Ci be the connected component of W ′′i
with the maximum i-load. Let Yi = {e ∈ R′′i : e has an endpoint in Ci}. We let ei be a
central edge in Yi and we add ei to S.

We set T = S∪W . We will show that T is a O(p2)-thin spanning subgraph of G (w.r.t. z),
with at most g connected components.

I Lemma 41. T is a spanning subgraph of G with at most g connected components.

Proof. By the construction, S has at most g connected components in G′. Now note that
W is a closed walk visiting H in G. Therefore, all vertices of F are in the same connected
component in T . This means that T has at most g connected components. J

I Lemma 42. For any i ∈ {0, . . . , l − 1}, W ′i has at most 2p connected components.

Proof. This follows immediately from the fact that {Bv}v∈V (F ) is a path-decomposition of
width p and there is no edge in Ri ∩W . J

I Lemma 43. For any i ∈ {0, . . . , l − 1}, W ′′i has at most p(p+ 1) connected components.
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Proof. By Lemma 42 we know thatW ′i has at most 2p connected components. W ′′i is obtained
by deleting at most p(p− 1) edges of W ′i . Therefore, W ′′i has at most p(p+ 1) = 2p+ p(p− 1)
connected components. J

I Lemma 44. For any i ∈ {0, . . . , l − 1}, the i-load of W ′i is at least 0.4.

Proof. The i-load of W ′i is z(R′i). Following [8] we know that z(Ri) ≥ 2/5 and thus
z(R′i) ≥ 2/5. J

I Lemma 45. For any i ∈ {0, . . . , l − 1}, the i-load of W ′′i is at least 0.2.

Proof. By Lemma 44 the i-load of W ′ is at least 0.4. By the construction, we have
z({u, v1}) ≤ 0.1 and z({u, v2}) ≤ 0.1. By deleting edges with both endpoints in Bv1 or Bv2 ,
we decrease the i-load by at most 0.2. Therefore, the i-load of W ′′i is at least 0.2. J

I Lemma 46. For any i ∈ {0, . . . , l − 1}, the i-load of Ci is at least 1/5p(p+ 1).

Proof. By Lemma 45 we know that the i-load of W ′′i is at least 0.2. By Lemma 43 there
are at most p(p + 1) connected components in W ′′i . Therefore the i-load of Ci is at least
1/5p(p+ 1). J

I Lemma 47. There exists a constant β such that for any U ⊆ V (G), we have |S ∩ δ(U)| ≤
β · p2 · z(δ(U)).

Proof. First we partition S ∩ δ(U) into two subsets:
1. S1 = {{u, v} ∈ S ∩ δ(U) : u, v 6∈ V (F )}.
2. S2 = {{u, v} ∈ S ∩ δ(U) : v ∈ V (F )}.

By the construction, following [8] we have |S1| ≤ 20 · z(δ(U)). Let e = {u, v} ∈ S2. Let
i ∈ {0, . . . , l−1} be the step that we add e to S. If e ∈W , we can charge it to z(e) ≥ 1/2 and
we are done. Suppose e 6∈W . If there exists an edge e′ ∈ E(Ci)∩ δ(U), we know that by the
construction, e′ does not have both endpoints in Bv1 or Bv2 . Therefore, for all j 6= i we have
e′ /∈ E(Cj). Thus we can charge e to z(e′) ≥ 1/2 and we are done. Otherwise, suppose there
is no edge in E(Ci)∩ δ(U). In this case, by the construction, for all e′′ ∈ Ri with an endpoint
in Ci, we have e′′ ∈ δ(U). Now we know that e is the central edge in Yi. By Lemma 46 we
know that the i-load of Ci is at least 1/5p(p+ 1). Therefore, we can charge e to the i-load of
Ci and we get |S2| ≤ 10 · p2z(δ(U)). Therefore, we have |S ∩ δ(U)| ≤ 20 · p2 · z(δ(U)). J

I Lemma 48. Let ~G be a (0, g, 1, p)-nearly embeddable digraph, let ~H be its vortex, and let
~W be a walk in ~G visiting all vertices in V ( ~H). Let G, H, and W be the symmetrizations of
~G, ~H, and ~W respectively. Let z : E(G)→ R≥0 be α-thick for some α ≥ 2, and ~W -dense.
Then there exists a polynomial time algorithm which given ~G, ~H, ~W , z, and an embedding
of ~G \ ~H into a surface of genus g, outputs a subgraph S ⊆ G \H, satisfying the following
conditions:
1. W ∪ S is a spanning subgraph of G and has O(g) connected components.
2. W ∪ S is O(p2)-thin w.r.t. z.

Proof. The assertion follows immediately by Lemmas 41 and 47. J
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9.2 (a, g, 1, p)-nearly embeddable graphs
For the remainder of this subsection, let a, g, k, p ≥ 0 and ~G be an n-vertex (a, g, 1, p)-nearly
embeddable digraph and let G be its symmetrization. Let ~H be the single vortex of width p,
attached to a face ~F of ~G. Let H and F be the symmetrization of ~H and ~F respectively. Let
A ⊆ V (G) with |A| = a be the set of apices of G, where Γ = G \ (A ∪H) is a graph of genus
g. Let ~W be a walk in ~G visiting all vertices in V ( ~H) and let W be its symmetrization. Let
z : E(G)→ R≥0 be α-thick, for some α ≥ 2, and ~W -dense. Let G′ be the graph obtained by
contracting F to a single vertex v∗ in G \H.

We follow a similar algorithm as in Section 8 to find a O(a · g + p2)-thin spanning forest
S in G′, with at most O(a+ g) connected components. We modify the algorithm such that
S is a O(a · g + p2)-thin subgraph of G.

We first start with Γ and construct Γ′ the same way as in Section 8. For each connected
component C of Γ′, we want to find a O(p2)-thin spanning forest TC , with at most g connected
components. Let Cv∗ be the connected component of Γ′ with v∗ ∈ Cv∗ . Cv∗ is a graph of
genus at most g. For this component, we apply the modified ribbon-contraction argument
on Subsection 9.1 to find TCv∗ . Therefore, TCv∗ is a O(p2)-thin spanning forest in Cv∗ with
at most g connected components. The rest of the algorithm is the same as in Section 8
and we find a O(a · g + p2)-thin spanning forest S in G′, with at most O(a+ g) connected
components. Let T = S ∪W .

I Lemma 49. T is a spanning subgraph of G with at most O(a+ g) connected components.

Proof. The same proof as in Lemma 41 applies here. The only difference here is that S has
at most O(a+ g) connected components in G′. Therefore, T has at most O(a+ g) connected
components in G. J

I Lemma 50. S is a O(a · g + p2)-thin subgraph of G (w.r.t. z).

Proof. Let U ⊆ V (G) be a cut. Similar to Subsection 9.1, we partition S ∩ δ(U) into two
subsets.
1. S1 = {{u, v} ∈ S ∩ δ(U) : u, v 6∈ V (F )}.
2. S2 = {{u, v} ∈ S ∩ δ(U) : v ∈ V (F )}.

First, by the construction and Lemma 39, we have |S1| ≤ 24000 · a · g · z(δ(U)). Now we
partition S2 into three subsets.
1. S21 = {{aj , v} ∈ S2 : aj ∈ A, v ∈ V (F )}.
2. S22 = {{u, v} ∈ S2 : v ∈ V (F ), u and v are in different components of Γ′}.
3. S23 = {{u, v} ∈ S2 : v ∈ V (F ), u, v ∈ Cv∗}.

By the construction, we know that |S21| ≤ 1 and |S22| ≤ 7. Also, by Lemma 47 we have
|S23| ≤ 20 · p2 · z′(δ(U)). Therefore, we have |S ∩ δ(U)| ≤ 8(24000 · a · g + 20p2)z(δ(U)). J

I Lemma 51. T is a O(a · g + p2)-thin subgraph of G (w.r.t. z).

Proof. By Lemma 50 we know that S is a O(a · g + p2)-thin subgraph of G (w.r.t. z).
Now note that z is ~W -dense. Therefore, T = S ∪W is a O(a · g + p2)-thin subgraph of G
(w.r.t. z). J

We are now ready to prove the main result of this Section.

Proof of Lemma 8. It follows by Lemmas 49 and 51. J
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10 A preprocessing step for the dynamic program

I Definition 52 (Facial normalization). Let g ≥ 0, p ≥ 1 and let ~G be a (0, g, 1, p)-nearly
embeddable graph. Let ~F be the face on which the vortex is attached. We say that ~G is
facially normalized if the symmetrization of ~F is a simple cycle and every v ∈ V (~F ) has at
most one incident edge that is not in E(~F ).

I Lemma 53. Let g ≥ 0, p ≥ 1 and let ~G be a (0, g, 1, p)-nearly embeddable graph. There
exists a polynomial-time computable (0, g, 1, p)-nearly embeddable facially normalized graph
~G′ such that the following holds. Let ~H be the vortex in ~G and let ~H ′ be the vortex in ~G′.
Then OPT~G(V ( ~H)) = OPT~G′(V ( ~H ′)). Moreover there exists a polynomial-time algorithm
which given any closed walk ~W ′ in ~G′ that visits all vertices in V ( ~H ′), outputs some closed
walk ~W in ~G that visits all vertices in V ( ~H) with cost~G( ~W ) = cost~G′( ~W

′).

Proof. Let ~F be the face in ~G that ~H is attached to. Let F be the symmetrization of ~F .
We first construct a (0, g, 1, p)-nearly embeddable graph ~G′′, with a vortex ~H ′′ attached to a
face ~F ′′ such that the symmetrization of ~F ′′ is a simple cycle. Initially we set ~G′′ = ~G. If
~F is a simple cycle then there is nothing to be done. Otherwise, suppose that ~F is not a
simple cycle. Therefore, ∂F contains a family of simple cycles C = {C1, . . . , Ck} for some k,
and a family of simple paths P = {P1, . . . , Pl} for some l, such that every Pi ∈ P is a path
x1, x2, . . . , xm where x1 ∈ Cα and xm ∈ Cβ for some Cα, Cβ ∈ C. We allow P to contain
paths of length 0.

For every P = x1, x2, . . . , xm ∈ P, where x1 ∈ C and xm ∈ C ′ for some C,C ′ ∈ C, we
update ~G′′ as follows. Let x′1 ∈ V (C) and x′m ∈ V (C ′) be neighbors of x1 and xm. We first
duplicate P to get a new path P ′ = y1, y2, . . . , ym. For every edge e ∈ E(P ), we set the cost
of the corresponding edge e′ ∈ P ′ equal to the cost of e. Also, for every j ∈ {1, . . . ,m}, we
add two edges (xi, yi) and (yi, xi) to ~G′′ with cost~G′′(xi, yi) = cost~G′′(yi, xi) = 0. Also, we
delete edges (x1, x

′
1), (x′1, x1), (xm, x′m), and (x′m, xm) and we add edges (y1, x

′
1), (x′1, y1),

(ym, x′m) and (x′m, ym) with the same cost respectively.

By the construction, ~G′′ is a (0, g, 1, p)-nearly embeddable graph, such that ~F ′′ is a simple
cycle. Also suppose that ~W ′′ is a closed walk in ~G′′ that visits all vertices in V ( ~H ′′). Then we
can find a closed walk ~W in ~G that visits all vertices in V ( ~H) with cost~G( ~W ) = cost~G′′( ~W

′′).
Now we construct a facially normalized graph ~G′. Initially we set ~G′ = ~G′′. For every

v ∈ V (~F ′′) that has more than one incident edge in E(~G′′) \ E(~F ′′) we update ~G′ as follows.
Let vleft, vright ∈ V (~F ′′) be the left and right neighbors of v on ~F ′′. Let V = {v1, . . . , vm}
be the set of all neighbors of v in V (~G′′) \ V (~F ′′). Let V ′ = {v′1, . . . , v′m}. First we delete
v from ~G′ and we add V ′ to V (~G′). For every (v, vi) ∈ E(~G′′) we add (v′i, vi) to E(~G′)
with cost~G′(v

′
i, vi) = cost~G′′(v, vi). Also, for every j ∈ {1, . . . ,m− 1}, we add (v′j , v′j+1) and

(v′j+1, v
′
j) to E(~G′) with cost~G′(v

′
j , vj+1) = 0. Finally we add (v′1, vleft), (vleft, v

′
1), (v′m, vright)

and (vright, v
′
m) to ~G′ with the same costs as in ~G′′.
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It is immediate that ~G′ is the desired graph. J

I Lemma 54. Let g ≥ 0, p ≥ 1 and let ~G be a (0, g, 1, p)-nearly embeddable graph. There
exists a polynomial-time computable (0, g, 1, p)-nearly embeddable facially normalized graph
~G′′ such that the following conditions hold:
1. Let ~H be the vortex in ~G and let ~H ′′ be the vortex in ~G′′. Then OPT~G(V ( ~H)) =

OPT~G′(V ( ~H ′′)).
2. There exists a polynomial-time algorithm which given any closed walk ~W ′′ in ~G′′ that

visits all vertices in V ( ~H ′′), outputs some closed walk ~W in ~G that visits all vertices in
V ( ~H) with cost~G( ~W ) = cost~G′′( ~W

′′).
3. Let ~Γ be the genus-g piece of ~G′′. Let ~F ′′ be the face of ~Γ on which the vortex ~H ′′ is

attached. Then any v ∈ V (~Γ) \ V (~F ′′) has degree at most 4.
4. There exists some closed walk ~W ∗ in ~G′′ that visits all vertices in V ( ~H ′′), with cost~G′′( ~W

∗)
= OPT~G′′(V ( ~H ′′)), and such that every edge in ~Γ is traversed at most once by ~W ∗.

We say that a graph ~G′′ satisfying the above conditions is cross normalized.

Proof. We begin with computing the facially normalized graph ~G′ given by Lemma 53.
Clearly ~G′ satisfies conditions (1) and (2).

We next modify ~G′ so that it also satisfies (3). This can be done as follows. Let ~Γ′ be
the genus-g piece of ~G′ and let ~F ′ be the face on which the vortex is attached. We replace
each v ∈ V (~Γ′) \ V (~F ′) of degree d > 4 by a tree Tv with d leaves and with maximum degree
4; we replace each edge incident to v an edge incident to a unique leaf, and we set the length
of every edge in E(Tv) to 0.

It remains to modify ~G′ so that it also satisfies (4). Let ~H ′ be the vortex in ~G′. Let ~W ′
be a walk in ~G′ that visits all vertices in ~H ′ with cost~G′( ~W

′) = OPT~G′(V ( ~H ′)). We may
assume w.l.o.g. that ~W ′ contains at most n2 edges. Thus, every vertex in v ∈ V (~Γ′) \ V (~F ′)
is visited at most n2 times by ~W ′. We replace each v ∈ V (~Γ′) \ V (~F ′) by a grid Av of size
3n2 × 3n2, with each edge having length 0. Each edge incident to v in ~G′, corresponds to a
unique sides of Av so that the ordering of the sides agrees with the ordering of the edges
around v (in ψ). We replace each (u, v) ∈ E(~Γ′), by a matching of size 3n2 between the
corresponding sides of Au and Av, where each edge in the matching has length equal to the
length of (u, v). Let ~G′′ be the resulting graph.

We obtain the desired walk ~W ∗ in ~G′′ as follows. Let x1, . . . , x4` be the vertices in the
boundary of Av, with ` = 3n2 − 1, appearing in this order along a clockwise traversal of
Av, and such that x1 is the lower left corner. Then for any i ∈ {1, . . . , 4}, the vertices
x(i−1)`+1, . . . , x(i−1)`+n2 correspond to the copies of v on the i-th side of Av. We traverse ~G′

starting at some arbitrary vertex in V ( ~H ′), and we inductively construct the walk ~W ∗. We
consider each edge (u, v) in the order that it is traversed by ~W ′. Suppose that (u, v) is the
t-th edge traversed by ~W ′, for some t ∈ {1, . . . , n2}. For each i ∈ {1, . . . , 4}, we let the t-th
copy of v on the i-th side of Av to be x(i−1)`+t. We distinguish between the following cases:
(i) If u, v ∈ V ( ~H ′), then (u, v) ∈ E(~G′′) and we simply traverse (u, v) in ~G′′. (ii) If u ∈ V ( ~H ′)
and v /∈ V ( ~H ′) then we traverse the edge in ~G′′ that connects u to the t-th copy of v in
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the appropriate side of Av. (iii) If u /∈ V ( ~H ′) and v ∈ V ( ~H ′) then we traverse the edge in
~G′′ that connects the t-th copy of u in the appropriate side of Au to v. (iv) If u, v /∈ V ( ~H ′)
then we traverse the edge in ~G′′ that connects the t-th copy of u to the t-th copy of v in
the appropriate sides of Au and Av respectively. Finally, for any pair of consecutive edges
(u, v), (v, w) traversed by ~W ′, with v /∈ V ( ~H ′), we need to add a path P in Av connecting
two copies of v in the corresponding sides of Av. Since Av is a grid of size 3n2 × 3n2 this
can be done so that all these paths are edge-disjoint. More precisely, this can be done as
follows. Suppose that (u, v) is the t-th edge traversed by ~W ′, for some t ∈ {1, . . . , n2}. If P
connects vertices x and y in consecutive sides of Av, then we proceed as follows. We may
assume w.l.o.g that x = xt and y = x`+t+1, since other cases can be handled in a similar
way. We set P to be the unique path starting at xt, following t+ 1 horizontal edges in Av,
and finally following `− t vertical edges to x`+t+1. Otherwise, if P connects vertices x and y
in opposite sides of Av, then we proceed as follows. We may assume w.l.o.g that x = xt and
y = x2`+t+1, since other cases can be handled in a similar way. We set P to be the unique
path starting at xt, following t+ n2 horizontal edges in Av, and then following `− 2t vertical
edges, and finally following `− t− n2 − 1 horizontal edges to x2`+t+1.

By the construction, it is immediate that all the paths P constructed above are pairwise edge-
disjoint, which implies that every edge in E(~G′′) is visited by ~W ∗ at most once, concluding
the proof. J

11 Uncrossing an optimal walk traversing a vortex

Let g ≥ 0, p ≥ 1 and let ~G be a (0, g, 1, p)-nearly embeddable graph. By Lemma 54 we may
assume w.l.o.g. that ~G is facially normalized and cross normalized. Let ~G′ ⊆ ~G be the piece
of genus g and fix a drawing ψ of ~G′ into a surface of genus g. Let ~H be the single vortex
in ~G and suppose that ~H is attached to some face ~F of ~G′. Fix an optimal solution ~WOPT,
that is a closed walk in ~G that visits all vertices in ~H minimizing cost~G( ~W ); if there are
multiple such walks pick consistently one with a minimum number of edges. Since ~G is cross
normalized we may assume w.l.o.g. that ~WOPT traverses every edge in E(~G′) \E(~F ) at most
once.

11.1 The structure of an optimal solution
I Definition 55 (Shadow). Let W be a collection of walks in ~G. We define shadow of W
(w.r.t. ~G′) to be the collection of open and closed walks obtained by restricting every walk in
W on ~G′ (note that a walk in W can give rise to multiple walks in W ′, and every open walk
in W ′ must have both endpoints in ~F ).

We say that two edje-disjoint paths P , P ′ in ~G′ cross (w.r.to ψ) if there exists v ∈
V (P ) ∩ V (P ′) such that v has degree 4 (recall that ~G is cross normalized), with neighbors
u1, . . . , u4, such that the edges {v, u1}, . . . , {v, u4} appear in this order around v in the
embedding ψ, P contains the subpath u1, v, u3, and P ′ contains the subpath u2, v, u4. We
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say that two walks in ~G′ cross (at v, w.r.to ψ) if they contain crossing subpaths. Finally, a
walk is self-crossing if it contains two disjoint crossing subpaths.

I Lemma 56 (Uncrossing an optimal walk of a vortex). There exists a collection W =
{ ~W1, . . . , ~W`} of closed walks in ~G satisfying the following conditions:
1. Every edge in E(~G′) \ E(~F ) is traversed in total at most once by all the walks in W.
2. V ( ~W1) ∪ . . . ∪ V ( ~W`) is a strongly-connected subgraph of ~G.
3. V ( ~H) ⊆ V ( ~W1) ∪ . . . ∪ V ( ~W`).
4.
∑`
i=1 cost~G( ~Wi) ≤ OPT~G(V ( ~H)).

5. Let W ′ be the shadow of W. Then the walks in W ′ are non-self-crossing and pairwise
non-crossing.

Proof. Initially, we set W = { ~WOPT}. Recall that since ~G is cross normalized, every edge
in E(~G′) \ E(~F ) is traversed at most once by ~WOPT. Clearly, this choice of W satisfies
conditions (1)–(4). We proceed to iteratively modify W until condition (4) is also satisfied,
while inductively maintaining (1)–(4).

Suppose that the current choice for W does not satisfy (5). This means that either there
exist two distinct crossing walks in W , or there exists some self-crossing walk in W . In either
case, it follows that there exist subpaths P , P ′ of the walks in W that are crossing (w.r.to
φ). This means that there exists v ∈ V (P ) ∩ V (P ′) and e1, e2 ∈ E(P ), e3, e4 ∈ E(P ′) such
that ψ(e1), ψ(e4), ψ(e2), ψ(e3) appear in this order around ψ(v). We modify P and P ′ by
swapping e1 and e3. It is immediate that the above operation preserves conditions (1)–(4).
Moreover, after performing the operation, the total number of crossings and self-crossings
(counted with multiplicities) between the walks in W decreases by at least one. Since the
original number of crossings is finite, it follows that the process terminates after a finite
number of iterations. By the inductive condition, it is immediate that when the process
terminates the collection W satisfies condition (5), concluding the proof. J

For the remainder of this section let W and W ′ be as in Lemma 56. Let I be a graph
with V (I) =W ′ and with E(I) =

{
{W,W ′} ∈

(W′
2
)

: V (W ) ∩ V (W ′) 6= ∅
}
.

Let ~W, ~Z be distinct closed walks in some digraph, and let v ∈ V ( ~W ) ∩ V (~Z). Suppose
that ~W = x1, . . . , xk, v, xk+1, . . . , xk′ , x1 and ~Z = y1, . . . , yr, v, yr+1, . . . , yr′ , y1. Let ~S be
the closed walk x1, . . . , xk, v, yr+1, . . . , yr′ , y1, . . . , yr, v, xk+1, . . . , xk′ , x1. We say that ~S is
obtained by shortcutting ~W and ~Z (at v).

Let J be a subgraph of I. Let WJ be a collection of walks in ~G constructed inductively
as follows. Initially we set WJ =W . We consider all {W,W ′} ∈ E(J ) in an arbitrary order.
Note that since {W,W ′} ∈ E(J ), it follows that W and W ′ cross at some v ∈ V (~G′). Let R
and R′ be the walks in WJ such that W and W ′ are sub-walks of R and R′ respectively. If
R 6= R′ then we replace R and R′ in WJ by the walk obtained by shortcutting R and R′ at
v. This completes the construction of WJ . We say WJ is obtained by shortcutting W at J .

I Lemma 57. There exists some forest F in I such that the collection of walks obtained by
shortcutting W at F contains a single walk.

Proof. Let F be a forest obtained by taking a spanning subtree in each connected component
of I. Let W,W ′ ∈ W. Let WF be obtained by shortcutting W at F . It suffices to show
that W and W ′ become parts of the same walk in WF . By condition (2) of Lemma 56 we
have that there exists a sequence of walks W1, . . . ,Wt ∈ W, with W1 = W , Wt = W ′, and
such that for any i ∈ {1, . . . , t − 1}, there exists some walk Ai ∈ Wi ∩ ~G′, and some walk
Bi+1 ∈ Wi+1 ∩ ~G′ such that {Ai, Bi+1} ∈ E(I). Therefore Ai and Bi+1 are in the same
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connected component of I. Thus there exits some tree Ti in F such that Ai, Bi+1 ∈ V (Ti).
It follows that after shortcutting W at F , the walks Ai and Bi+1 become parts of the same
walk. By induction on i ∈ {1, . . . , t− 1}, it follows that A1 and Bt become parts of the same
walk in WF , and thus so do W and W ′, concluding the proof. J

For the remainder let F be the forest given by Lemma 57.

I Lemma 58. All leaves of F intersect F .

Proof. Suppose that there exists some leaf ~W of F with V ( ~W ) ∩ V (F ) = ∅. Then simply
removing ~W fromW leaves a new collection of walks that visits all vertices in V ( ~H) and such
that the union of all walks is a strongly-connected subgraph of ~G. Thus after shortcutting
all these walks we may obtain a new single walk ~R that visits all vertices in V ( ~H) with
cost~G(~R) ≤ cost~G( ~WOPT) and with fewer edges than ~WOPT, contradicting the choice of
~WOPT. J

12 The dynamic program for traversing a vortex in a planar graph

For the remainder of this section let ~G be a n-vertex (0, 0, 1, p)-nearly embeddable graph
(that is, planar with a single vortex). Let ~H be the vortex in ~G and suppose it is attached on
some face ~F . Fix an optimal solution ~WOPT, that is a closed walk in ~G that visits all vertices
in ~H minimizing cost~G( ~W ); if there are multiple such walks pick consistently one with a
minimum number of edges. Let F be the symmetrization of ~F . We present an algorithm
for computing a walk traversing all vertices in V ( ~H) based on dynamic programming. By
Lemma 54 we may assume w.l.o.g. that ~G is facially normalized and cross normalized.

Fix a path-decomposition {Bv}v∈V (F ) of ~H of width p.
Let S be a collection of walks in ~G. For any v ∈ V (~G) we denote by in-degreeS(v)

the number of times that the walks in S enter v; similarly, we denote by out-degreeS(v)
the number of times that the walks in S exit v. We define ~G[S] to be the graph with
V (~G[S]) =

⋃
W∈S V (W ) and E(~G[S]) =

⋃
W∈S E(W ).

12.1 The dynamic program
Let P be the set of all subpaths of F , where we allow allow for simplicity in notation that a
path be closed. Let u, v be the endpoints of P . Let ~HP = ~H

[⋃
x∈V (P )Bx

]
. Let CP be the

set of all possible partitions of Bu ∪Bv. Let Din
P = {0, . . . , n}Bu∪Bv , Dout

P = {0, . . . , n}Bu∪Bv ,
that is, every element of Din

P ∪ Dout
P is a function f : Bu ∪Bv → {0, . . . , n}. Let A = V (F )2.

12.1.1 The dynamic programming table
The dynamic programming table is indexed by all pairs (P, φ) where P ∈ P and φ =
(C, f in, fout, a, l, r, p) ∈ IP , where

IP = CP ×Din
P ×Dout

P × (A∪ (A×A) ∪ nil)× (V (~G) ∪ nil)× (V (~G) ∪ nil)× (V (~G) ∪ nil).

A partial solution is a collection of walks in ~G.
We say that a partial solution S is compatible with (P, φ) if the following conditions are

satisfied:
(T1) For every x ∈ V ( ~HP ) there exists some walk in S that visits x. That is V ( ~HP ) ⊆⋃

Q∈S V (Q).
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(T2) If a 6= nil and a ∈ A, let a = (u′, v′). Let Q1 be the shortest path from u′ to l in ~G. Let
Q2 be the shortest path from l to r in ~G. Let Q3 be the shortest path from r to v′ in ~G.
Let Q∗1 be the walk from u′ to v′ obtained by the concatenation of Q1, Q2 and Q3. Then
Q∗1 is a sub-walk of some walk in S. We refer to Q∗ as the grip of S, and in this case we
say that it is an unbroken grip. If a ∈ V (P )2 then we say that the unbroken grip is closed
and otherwise we say that it is open. Otherwise, if a ∈ (A×A), let a = ((u′1, v′1), (u′2, v′2)).
Let Q′1 be the shortest path from u′1 to l in ~G. Let Q′2 be the shortest path from l to v′1
in ~G. Let Q∗2 be the path from u′1 to v′1 obtained by the concatenation of Q′1 and Q′2.
Let Q′′1 be the shortest path from u′2 to r in ~G. Let Q′′2 be the shortest path from r to v′2
in ~G. Let Q∗3 be the path from u′2 to v′2 obtained by the concatenation of Q′′1 and Q′′2 .
Then Q∗2 and Q∗3 are sub-walks of some walks in S. We refer to (Q∗2, Q∗3) as the broken
grip of S.

(T3) If a = nil or a ∈ A, then every open walk in S has both endpoints in Bu ∪Bv, except
possibly for one walk W ∈ S that contains the grip as a sub-walk. If a = (Q1, Q2) ∈
(A×A), then every open walk in S has both endpoints in Bu ∪Bv, except possibly for
at most two walks W1,W2 ∈ S that contain Q1 and Q2 as sub-walks (note that Q1 and
Q2 might be sub-walks of the same walk in S).

(T4) For all x ∈ Bu ∪Bv we have f in(x) = in-degreeS(x) and fout(x) = out-degreeS(x).
(T5) For any x, y ∈ Bu ∪Bv we have that if x and y are in the same set of the partition C

then they are in the same weakly-connected component of
⋃
W∈SW . Moreover for any

z ∈ V ( ~HP ) there exists z′ ∈ Bu∩Bv such that z and z′ are in the same weakly-connected
component of

⋃
W∈SW .

12.1.2 Merging partial solutions
We compute the values of the dynamic programming table inductively as follows. Let
P, P1, P2 ∈ P such that E(P1) 6= ∅, E(P2) 6= ∅, E(P1) ∩ E(P2) = ∅, and P = P1 ∪ P2. Let
u ∈ V (P1), w ∈ V (P1) ∩ V (P2), v ∈ V (P2) such that u,w are the endpoints of P1 and w, v
are the endpoints of P2. Let

φ = (C, f in, fout, a, l, r, p) ∈ IP ,

φ1 = (C1, f
in
1 , f

out
1 , a1, l1, r1, p1) ∈ IP1 ,

φ2 = (C2, f
in
2 , f

out
2 , a2, l2, r2, p2) ∈ IP2 .

For any i ∈ {1, 2} let Si be a partial solution that is compatible with (Pi, φi). We proceed
to compute a collection of walks S that is compatible with (P, φ). This is done in phases, as
follows:

Merging phase 1: Joining the walks. We check that for all x ∈ Bw we have f in
1 (x) = fout

2 (x)
and f in

2 (x) = fout
1 (x). If not then the merging procedure return nil. For any x ∈ Bw

and for any i ∈ {1, 2} let Ei(x)in (resp. Ei(x)out) be the multiset of all edges in all walks
in Si that are incoming to (resp. outgoing from) x counted with multiplicities. Since
fout

1 (x) = f in
2 (x) and fout

2 (x) = f in
1 (x) it follows that |E in

1 (x)∪E in
2 (x)| = |Eout

1 (x)∪Eout
2 (x)|.

Pick an arbitrary bijection σx : E in
1 (x) ∪ E in

2 → Eout
1 (x) ∪ Eout

2 (x). We initially set
S = S1 ∪ S2. For each x ∈ Bw we proceed as follows. For each e ∈ E in(x)

1 ∪ E in
2 (x) we

modify the walk traversing e so that immediately after traversing e it continues with the
walk traversing σx(e) ∈ Eout

1 ∪ Eout
2 .

Merging phase 2: Updating the grip. We check that at least one of the following conditions
is satisfied:
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1. Suppose that a = l = r = p = a1 = l1 = r1 = p1 = a2 = l2 = r2 = p2 = nil. Then
there is nothing to do.

2. Suppose that a1 = l1 = r1 = p1 = nil, l = l2, r = r2, p = p2 and a = a2 = (u∗2, v∗2) ∈ A
with {u∗2, v∗2} ∩ V (P1) ⊆ {u,w}, or a2 = l2 = r2 = p2 = nil, l = l1, r = r1, p = p1 and
a = a1 = (u∗1, v∗1) ∈ A with {u∗1, v∗1} ∩ V (P2) ⊆ {w, v}. Then there is nothing to do.

3. Suppose that a1 6= nil, a2 6= nil, and a 6= nil. Suppose a1 = a2 = a = (u∗, v∗) ∈ A,
with a ∈ V (P1)× V (P2) or a ∈ V (P2)× V (P1). Suppose l1 = l2 = l, r1 = r2 = r and
p1 = p2 = p. Then we proceed as follows to ensure that (T2) holds. We may assume
w.l.o.g. that a ∈ V (P1)× V (P2) since the remaining case can be handled in a similar
way. Let Q∗ be the grip between u∗ and v∗ in ~G. It follows by (T2) that for any
i ∈ {1, 2} there exists a walk ~Wi ∈ Si that contains Q∗ as a sub-walk. It follows by
the definition of the merging phase 1 that for any i ∈ {1, 2} there exists ~W ′i ∈ S that
contains Q∗ as a sub-walk. We will modify S in order to ensure that (T2) holds. We
remove Q∗ from ~W ′2 and we merge ~W ′1 with ~W ′2 \Q∗ (via concatenation).

4. Suppose that a1, a2, a ∈ A. Suppose that a1 = (u∗1, v∗1), a2 = (u∗2, v∗2), a = (u∗, v∗),
with u∗ ∈ {u∗1, u∗2}, and v∗ ∈ {v∗1 , v∗2}. Suppose that l1 = l, l2 = r2 = r and
p1 = p2 = p, or l2 = l, l1 = r1 = r and p1 = p2 = p, or l = r = p1 = p2 and l2 = r2, or
l = r = p1 = p2 and l1 = r1. Then we proceed as follows to ensure that (T2) holds.
We may assume w.l.o.g. that a = (u∗2, v∗1), l1 = l, l2 = r2 = r and p1 = p2 = p since
the other cases can be handled in a similar way. For any i ∈ {1, 2} let Q∗i be the
grip of Si. It follows by (T2) that for any i ∈ {1, 2} there exists a walk ~Wi ∈ Si that
contains Q∗i as a sub-walk. It follows that for any i ∈ {1, 2} there exists ~W ′i ∈ S that
contains Q∗i as a sub-walk. We will modify S in order to ensure that (T2) holds. If
a = a1 or a = a2 then there is nothing left to do. Otherwise, let R′1 be the shortest
path in ~G from u∗1 to r1. Let R′′1 be the shortest path in ~G from r1 to l2. Let R′′′1 be
the shortest path in ~G from l2 to v∗2 . Let R∗1 be the path in ~G from u∗1 to v∗2 obtained
by concatenation of R′1, R′′1 and R′′′1 . Let R′2 be the shortest path in ~G from u∗2 to p.
Let R′′2 be the shortest path in ~G from p to l1. Let R′′′2 be the shortest path in ~G from
l1 to v∗1 . Let R∗2 be the path in ~G from u∗2 to v∗1 obtained by concatenation of R′2, R′′2
and R′′′2 . We remove Q∗1 and Q∗2 from ~W ′1 and ~W ′2 and replace them by R∗1 and R∗2.

5. Suppose that a1 = nil and a = a2 ∈ (A×A), or a2 = nil and a = a1 ∈ (A×A). Then
there is nothing to do.

6. Suppose that a1 ∈ A, a2 ∈ A and a ∈ (A×A). Suppose a1 = (u1, v1), a2 = (u2, v2)
and a = ((u′, v′), (u′′, v′′)), with v′ ∈ {v1, v2} and u′′ ∈ {u1, u2}. We may assume
w.l.o.g that a = ((u′, v1), (u2, v

′′)). Suppose that l = l1 = r1, r = l2 = r2 and
p = p1 = p2. For any i ∈ {1, 2}, let Qi be the grip of Si. It follows by (T2) that for
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any i ∈ {1, 2} there exists a walk ~Wi ∈ Si that contains Qi as a sub-walk. It follows
that for any i ∈ {1, 2} there exists ~W ′i ∈ S that contains Qi as a sub-walk. Let Q′1 be
the shortest path in ~G from u1 to l1. Let Q′2 be the shortest path in ~G from l1 to l2.
Let Q′3 be the shortest path in ~G from l2 to v2. Let Q∗1 be the path in ~G from u1 to v2
obtained by concatenation of Q′1, Q′2 and Q′3. Let Q′′1 be the shortest path in ~G from
u′ to l1. Let Q′′2 be the shortest path in ~G from l1 to v1. Let Q∗2 be the path in ~G

from u′ to v1 obtained by concatenation of Q′′1 and Q′′2 . Let Q′′′1 be the shortest path
in ~G from u2 to l2. Let Q′′′2 be the shortest path in ~G from l2 to v′′. Let Q∗3 be the
path in ~G from u2 to v′′ obtained by concatenation of Q′′′1 and Q′′′2 . Then we remove
Q1 and Q2 from ~W ′1 and ~W ′2, and replace them by Q∗1, Q∗2 and Q∗3.

7. Suppose that a1 ∈ (A×A), a2 ∈ A and a ∈ (A×A), or a1 ∈ A, a2 ∈ (A×A) and
a ∈ (A × A). We may assume w.l.o.g that a1 ∈ (A × A), a2 ∈ A and a ∈ (A × A).
Suppose that a1 = ((u1, v1), (u′1, v′1)), a2 = (u2, v2) and a = ((u, v), (u′, v′)), with
(u, v) = (u1, v1), u′ ∈ {u1, u2}, and v′ ∈ {v1, v2}, or (u, v) = (u2, v2), u′ ∈ {u1, u2},
and v′ ∈ {v1, v2}. We may assume w.l.o.g that (u, v) = (u1, v1) and (u′, v′) = (u2, v

′
1).

Suppose that l = l1, r = l2 = r2 and p = p1 = p2. Let (Q1, Q
′
1) be the grip of S1 and

let Q2 be the grip of S2. Let R1 be the shortest path in ~G from u′1 to r1. Let R2 be
the shortest path in ~G from r1 to r2. Let R3 be the shortest path in ~G from r2 to v2.
Let R′ be the path in ~G from u′1 to v2 obtained by concatenation of R1, R2 and R3.
Let R′1 be the shortest path in ~G from u2 to r2. Let R′2 be the shortest path in ~G

from r2 to v′1. Let R′′ be the path in ~G from u2 to v′1 obtained by concatenation of
R′1 and R′2. Then we remove Q′1 and Q2, and replace them by R′ and R′′.

If none of the above holds then the merging procedure returns nil.
Merging phase 3: Checking connectivity. We check that condition (T5) holds for S and

we return nil if it does not.

I Lemma 59. If the merging procedure outputs some partial solution S then S is compatible
with φ.

Proof. It follows immediately by the definition of compatibility. J

12.1.3 Initializing the dynamic programming table
For all P ∈ P containing at most one edge and for all φ ∈ IP with φ = (C, f in, fout, a, l, r, p)
we proceed as follows. We enumerate all partial solutions S that are compatible with (P, φ)
and have minimum cost. Any walk in any such partial solution can intersect ~G \ ~H only
on the at most two oppositely-directed edges in E(P ). Moreover there are at most O(n7)
possibilities for a, l, r and p. Thus the enumeration can clearly be done in time nO(1) by
ensuring that for all walks W ∈ S, their sub-walks that do not intersect E(P ) are shortest
paths between vertices in Bu ∪ Bv. The total running time of this initialization step is
therefore nO(p).
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Figure 1 Example of a basic path.

12.1.4 Updating the dynamic programming table
For all P ∈ P containing m > 1 edges, and for all P1, P2 ∈ P with E(P1) 6= ∅, E(P2) 6= ∅,
E(P1) ∩ E(P2) = ∅ and P1 ∪ P2 = P , and for all φ1 ∈ IP1 and φ2 ∈ IP2 we proceed as
follows. Suppose that for all paths P ′ containing m′ < m edges and all φ′ ∈ IP ′ we have
computed the partial solutions in the dynamic programming table at (P ′, φ′). If there exist
partial solutions S1 and S2 at (P1, φ1) and (P2, φ2) respectively, we call the merging process
to merge S1 and S2. Suppose that the merging process returns a partial solution S at (P, φ)
for some φ ∈ IP . If there is no partial solution stored currently at (P, φ) then we store S at
that location. Otherwise if there there exists a partial solution S ′ stored at (P, φ) and the
cost of S is smaller than the cost of S ′ then we replace S ′ with S.

12.2 Analysis
Let W be the collection of walks given by Lemma 56. Let W ′ be the shadow of W. Let F
be the forest obtained by Lemma 57. For every connected component T of F pick some
vT ∈ V (T ) and consider T to be rooted at vT .

Let ~G′ be the planar piece of ~G, that is ~G′ = ~G \ (V ( ~H) \ (~F )). Fix some planar drawing
ψ of G′. Let D be the disk with ∂D = ψ(F ) with ψ(~G) ⊂ D.

Let P ∈ P with endpoints u, v, and let T be a subtree of some tree in F . We say that P
covers T if for all D ∈ V (T ) we have V (D) ∩ V (F ) ⊆ V (P ). We say that P avoids T if for
all D ∈ V (T ) we have V (D) ∩ V (P ) ⊆ {u, v}.

I Definition 60 (Basic path). Let P ∈ P. Let u, v ∈ V (P ) be the endpoints of P . We say
that P is basic (w.r.t. W) if either P \ {u, v} does not intersect any of the walks in W (in
this case we call P empty basic) or the following holds. There exists some tree T in F and
some D ∈ V (T ), with children D1, . . . , Dk, intersecting D in this order along a traversal of
D, such that the following conditions are satisfied (see Figure 1):
1. For any i ∈ {1, . . . , k}, let TDi

be the subtree of T rooted at Di and let TD be the subtree
of T rooted at D. Then at least one of the following two conditions is satisfied:
1.1. P covers TD and avoids T \ TD.
1.2. There exists j ∈ {1, . . . , k} such that for all l ≤ j, P covers TDl

and P avoids
TD \

⋃j
m=1 TDm

.
2. Let T ′ be a tree in F with T ′ 6= T . Then either P covers T ′ or P avoids T ′.

I Definition 61 (Facial restriction). Let P ∈ P be basic. Let W ′ be the collection of walks
obtained by restricting every W ∈ W on HP . If P is empty, we say that W ′ is the P -facial
restriction of W . Suppose that P is not empty. Let T , D, TD, k and j be as in Definition 60.

APPROX/RANDOM’16
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Figure 2 Part of the collection of walks in W (left) and the corresponding P -facial restriction of
W depicted in bold (right).

Let F ′ = {T ′ ∈ F : P covers T ′} and let R =
⋃
T ′∈F ′ V (T ′). If P covers TD and avoids

T \ TD, we say that R∪W ′ ∪V (TD) is the P -facial restriction of W . Otherwise, we say that
R∪W ′ ∪ {D} ∪

⋃j
i=1 V (TDi) is the P -facial restriction of W. Figure 2 depicts an example

of a P -facial restriction.

I Definition 62 (Important walk). Let P ∈ P be a basic path. Let W ′ be the P -facial
restriction of W. Let W ′′ be the shadow of W ′. Let Q be a walk in G[W ′′]. We say that Q
is P -important (w.r.to. W) if the following conditions hold:
1. Both endpoints of Q are in V (P ).
2. Q is the concatenation of walks Q1, . . . , Q` such that for each i ∈ {1, . . . , `} there exists

some Wi ∈ W such that Qi is a sub-walk of Wi, and for each j ∈ {1, . . . , `− 1} we have
{Wj ,Wj+1} ∈ E(F).

I Proposition 63. For any u, v ∈ V (P ), there is at most one P -important walk from u to v.

Proof. It follows immediately by the fact that F is a forest. J

I Lemma 64. Let P ∈ P be basic w.r.t. W with endpoints u, v ∈ V (F ), where u = v

if P is closed. Let WP be the P -facial restriction of W. Let Γ =
⋃
~W∈WP

~W . Let C
be the partition of Bu ∪ Bv that corresponds to the weakly-connected components of Γ.
For any x ∈ Bu ∪ Bv let f in(x) = in-degreeWP

(x) and fout(x) = out-degreeWP
(x). Then

there exists some a ∈ A ∪ (A × A) ∪ nil and l, r, p ∈ (V (~G) ∪ nil) such that the dynamic
programming table contains some partial solution S at location (P, (C, f in, fout, a, l, r, p)),
such that cost~G(S) ≤ cost~G(WP ).

Proof. Let us first assume that F contains only one tree. We will deal with the more general
case later on. First suppose that P is an empty basic path. Let P = x1, x2, . . . , xm, where
x1 = u and xm = v. We will prove the assertion by induction onm. For the base case, suppose
thatm = 2, and thus P contains only one edge. Let a = l = r = p = nil. In this case, a partial
solution S at location (P, (C, f in, fout, a, l, r, p)) is computed in the initialization step of the
dynamic programming table and clearly we have cost~G(S) ≤ cost~G(WP ) and we are done. Now
suppose that m > 2 and we have proved the assertion for all m′ < m. We first decompose P
into two edge-disjoint paths P1 and P2, such that V (P1)∩V (P2) = w for some 1 < j < m and
w = xj . For i ∈ {1, 2} let WPi

be the Pi-facial restriction of ~WOPT and let Γi =
⋃
~W∈WPi

~W .
Let C1 be the partition of Bu∪Bw that corresponds to the weakly-connected components of Γ1
and let C2 be the partition of Bw ∪Bv that corresponds to the weakly-connected components
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of Γ2. For any x ∈ Bu ∪ Bw let f in
1 (x) = in-degreeWP1

(x) and fout
1 (x) = out-degreeWP1

(x).
Also for any x ∈ Bw ∪ Bv let f in

2 (x) = in-degreeWP2
(x) and fout

2 (x) = out-degreeWP2
(x).

By the induction hypothesis, there exists partial solutions S1 and S2 that are compatible
with (P1, (C1, f

in
1 , f

out
1 , nil, nil, nil, nil)) and (P2, (C2, f

in
2 , f

out, nil, nil, nil, nil)) respectively, and
we have cost~G(S1) ≤ cost~G(WP1), cost~G(S2) ≤ cost~G(WP2). The dynamic program will
merge S1 and S2 to get the desired S. Note that by the construction, for every x ∈ Bw we
have f in

1 (x) = fout
2 (x) and f in

2 (x) = fout
1 (x). Therefore, by the first merging phase, we can

merge walks in S1 and S2. Also, we let a = l = r = p = nil and we proceed the second phase
of merging. Finally, by the construction and definition of P -facial restriction, (T5) holds and
the merging process returns a partial solution S compatible with (P, (C, f in, fout, a, l, r, p))
with cost~G(S) ≤ cost~G(WP ), as desired.

Now suppose that P is not empty basic. Let T , D, TD, k and j be as in Definition 60.
We will prove the assertion by induction on T . For the base case, suppose that D is a leaf of
T . Suppose that P = x1, x2, . . . , xm for some m > 0, where x1 = u and xm = v, and D is a
(possibly closed) walk from xi ∈ V (P ) to xj ∈ V (P ). We may assume w.l.o.g. that i ≤ j.
There are some possible cases here based on i and j. First suppose that i > 1, j < m and j−
i ≥ 3. In this case, let P1 = x1, . . . , xi, P2 = xi, xi+1, P3 = xi+1, . . . , xj−1, P4 = xj−1, xj and
P5 = xj , . . . , xm. Let P6 = P1∪P2, P7 = P6∪P3 and P8 = P7∪P4. For i ∈ {1, 2, 3, 4, 5, 6, 7, 8}
let WPi

be the Pi-facial restriction of ~WOPT and let Γi =
⋃
~W∈WPi

~W . We also define Ci,
f in
i and fout

i as in the previous case. Note that P1, P3 and P5 are empty basic paths. We
let a1 = a3 = a5 = nil, l1 = l3 = l5 = nil, r1 = r3 = r5 = nil, p1 = p3 = p5 = nil and thus
we can find partial solutions S1, S3 and S5 compatible with (P1, (C1, f

in
1 , f

out
1 , a1, l1, r1, p1)),

(P3, (C3, f
in
3 , f

out
3 , a3, l3, r3, p3)) and (P5, (C5, f

in
5 , f

out
5 , a5, l5, r5, p5)) respectively. We also have

cost~G(S1) ≤ cost~G(WP1), cost~G(S3) ≤ cost~G(WP3) and cost~G(S5) ≤ cost~G(WP5). Let a2 =
a4 = a6 = a7 = a8 = (xi, xj). If D does not have a parent in T , then we let l2 = l4 = l6 =
l7 = l8 = r2 = r4 = r6 = r7 = r8 = p2 = p4 = p6 = p7 = p8 ∈ V (D) to be an arbitrary
vertex of D. Otherwise, suppose that D has a parent D′ in T . If D′ does not have a parent
in T , then we let l2 = l4 = l6 = l7 = l8 = r2 = r4 = r6 = r7 = r8 = p2 = p4 = p6 = p7 =
p8 ∈ V (D) ∩ V (D′). Otherwise, suppose that D′ has a parent D′′ in T . In this case, we
let l2 = l4 = l6 = l7 = l8 = r2 = r4 = r6 = r7 = r8 ∈ V (D) ∩ V (D′) and p2 = p4 = p6 =
p7 = p8 ∈ V (D′) ∩ V (D′′). Therefore, by computing the initialization step, we can find a
partial solution S2 compatible with (P2, (C2, f

in
2 , f

out
2 , a2, l2, r2, p2)) and a partial solution

S4 compatible with (P4, (C4, f
in
4 , f

out
4 , a4, l4, r4, p4)), and we have cost~G(S2) ≤ cost~G(WP2)

and cost~G(S4) ≤ cost~G(WP4). Now by merging S1 and S2, we get a partial solution S6
compatible with (P6, (C6, f

in
6 , f

out
6 , a6, l6, r6, p6)). By merging S6 and S3, we get a partial

solution S7 compatible with (P7, (C7, f
in
7 , f

out
7 , a7, l7, r7, p7)). By merging S7 and S4, we get

a partial solution S8 compatible with (P8, (C8, f
in
8 , f

out
8 , a8, l8, r8, p8)), and finally by merging

S8 and S5, we get the desired partial solution S compatible with (P, (C, f in, fout, a, l, r, p))
with cost~G(S) ≤ cost~G(WP ). If i = 1 or j = m, we will follow a similar approach. The only
different is that instead of dividing P into five paths, we divide it into four paths. Finally,
the last case is when j − i < 3. In this case, if i 6= j, we define the same subpaths P1, P2, P4
and P5, and we follow a similar approach. Otherwise, suppose that i = j. In this case, we
let P1 = x1, . . . , xi and P2 = xi, . . . , xm and by following the same approach by mering two
partial solutions, we get the desired S.

Now suppose that D ∈ V (T ) is non-leaf. In this case, we prove the assertion by induction
on j, where j comes from Definition 60. Note that we perform a second induction inside
the first induction. For the base case, suppose that j = 1. In this case, D1 is a child of D
and P covers TD1 and avoids TD \ TD1 . Therefore, by using the first induction hypothesis

APPROX/RANDOM’16
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on D1, there exists a ∈ A ∪ (A × A) ∪ nil and l, r, p ∈ V (~G) ∪ nil such that the dynamic
programming table contains some partial solution S at location (P, (C, f in, fout, a, l, r, p))
with cost~G(S) ≤ cost~G(WP ). Now for the same a, l, r, p and S, we have that S is compatible
with (P, (C, f in, fout, a, l, r, p)), as desired. Now suppose that we have proved the assertion for
all 1 ≤ j′ < j. By Definition 60, there exists a basic path P1 ⊆ P , where u is the first vertex
of P1, such that for all l ≤ j−1, P1 covers TDl

and avoids TD \(
⋃j−1
m=1 TDm). Also there exists

a basic path P2 ⊆ P , where v is the last vertex of P2, such that P2 covers TDj
and avoids

T \ TDj . Let u′ ∈ V (F ) and v′ ∈ V (F ) be the other endpoints of P1 and P2 respectively. Let
P3 ∈ P be the path between u′ and v′ that does not contain v and let P4 = P1 ∪ P3. By the
construction, P3 and P4 are basic. For i ∈ {1, 2, 3, 4}, let WPi

be the Pi-facial restriction
of ~WOPT and let Γi =

⋃
~W∈WPi

~W . Let C1, C2, C3 and C4 be the partitions of Bu ∪ Bu′ ,
Bv′ ∪ Bv, Bu′ ∪ Bv′ and Bu ∪ Bv′ that corresponds to the weakly connected components
of Γ1, Γ2, Γ3 and Γ4 respectively. For any x ∈ Bu ∪ Bu′ let f in

1 (x) = in-degreeWP1
(x)

and fout
1 (x) = out-degreeWP1

(x), for any x ∈ Bv′ ∪ Bv let f in
2 (x) = in-degreeWP2

(x) and
fout

2 (x) = out-degreeWP2
(x), for any x ∈ Bu′∪Bv′ , let f in

3 (x) = in-degreeWP3
(x) and fout

3 (x) =
out-degreeWP3

(x), and for any x ∈ Bu ∪ Bv′ let f in
4 (x) = in-degreeWP4

(x) and fout
4 (x) =

out-degreeWP4
(x). By the second induction hypothesis, there exists some a1 ∈ A ∪ (A ×

A) ∪ nil and l1, r1, p1 ∈ V (~G) ∪ nil, such that the dynamic programming table contains some
partial solution S1 at location (P1, (C1, f

in
1 , f

out, a1, l1, r1, p1)), with cost~G(S1) ≤ cost~G(WP1).
Also by the first induction hypothesis, there exists some a2 ∈ A ∪ (A × A) ∪ nil and
l2, r2, p2 ∈ V (~G) ∪ nil, such that the dynamic programming table contains some partial
solution S2 at location (P2, (C2, f

in
2 , f

out, a2, l2, r2, p2)), with cost~G(S2) ≤ cost~G(WP2). Let
a3 = l3 = r3 = p3 = nil. Let a4 = a1, l4 = l1, r4 = r1 and p4 = p1. Since P3 is basic, there
exists a partial solution S3 compatible with (P3, (C3, f

in
3 , f

out
3 , a3, l3, r3, p3)). Now we merge

S1 and S3 to get a partial solution S4 compatible with (P4, (C4, f
in
4 , f

out
4 , a4, l4, r4, p4)). Note

that for every x ∈ Bu′ , we have f in
3 (x) = fout

1 (x) and fout
3 (x) = f in

1 (x). Therefore, we can
apply the first merging phase. Also we have a4 = a1, l4 = l1, r4 = r1 and p4 = p1, and thus
we can apply the second merging phase. Finally, by the construction (T5) holds and we
get a partial solution S4 compatible with (P4, (C4, f

in
4 , f

out
4 , a4, l4, r4, p4)). Now, we merge

two partial solutions S4 and S2 to get the desired S. Clearly, for every x ∈ Bv′ we have
f in

4 (x) = fout
2 (x) and fout

4 (x) = f in
2 (x). Therefore, we can apply the first phase of merging.

If a2 = l2 = r2 = p2 = a4 = l4 = r4 = p4 = nil, then we let a = l = r = p = nil. Otherwise,
if a4 = l4 = r4 = p4 = nil and a2 = (u∗2, v∗2) ∈ A with {u∗2, v∗2} ∩ V (P4) ⊆ {u, v′}, then
we let a = a2, l = l2, r = r2 and p = p2. If a2 = l2 = r2 = p2 = nil and a4 = (u∗4, v∗4)
with {u∗4, v∗4} ∩ V (P2) ⊆ {v′, v}, then we let a = a4, l = l4, r = r4 and p = p4. Otherwise,
if a2 6= nil, a4 6= nil, a4 = a2, l4 = l2, r4 = r2 and p4 = p2, then we let a = a4, l = l4,
r = r4 and p = p4. Otherwise, if a2 = (u∗2, v∗2) ∈ A, a4 = (u∗4, v∗4) ∈ A, l4 = r4 and p1 = p2,
then we let a = (u∗, v∗), where u∗ ∈ {u∗2, u∗4} and v∗ ∈ {v∗2 , v∗4}, l = l2, r = r4 and p = p2.
Otherwise, if a2 = nil and a4 ∈ (A × A), then we let a = a4, l = l4, r = r4 and p = p4.
Otherwise, if a4 = nil and a2 ∈ (A × A), then we let a = a2, l = l2, r = r2 and p = p2.
Otherwise, if a2 = (u∗2, v∗2) ∈ A, a4 = (u∗4, v∗4) ∈ A, l2 = r2, l4 = r4 and p2 = p4, then we
let a = ((u′, v′), (u′′, v′′)) where v′ ∈ {v2, v4} and u′′ ∈ {u2, u4}, l = l2, r = r2 and p = p2.
Otherwise, if a4 = ((u4, v4), (u′4, v′4)) ∈ (A×A), a2 = (u2, v2) ∈ A, l2 = r2 and p2 = p4, then
we let a = ((u4, v4), (u2, v

′
4)), l = l4, r = r2 and p = p2. Therefore, after applying the second

merging phase, we get a partial solution S compatible with (P, (C, f in, fout, a, l, r, p)).

Now we have to show that cost~G(S) ≤ cost~G(WP ). Let us first suppose that D is a closed
walk. We will deal with the case where D is an open walk later on. If a2 = l2 = r2 = p2 = nil
or a4 = l4 = r4 = p4 = nil, then this is immediate. If a2 = a4, l2 = l4, r2 = r4 and p2 = p4,
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then we have a = a2, l = l2, r = r2 and p = p2, and thus this case is also immediate.
Suppose that a2 = (u∗2, v∗2) 6= nil, a4 = (u∗4, v∗4) 6= nil, l4 = r4 and p1 = p2, and a = (u∗, v∗),
where u∗ ∈ {u∗2, u∗4} and v∗ ∈ {v∗2 , v∗4}. We may assume w.l.o.g that a = (u∗2, v∗4). We have
that l = l2, r = r4 and p = p2. For i ∈ {2, 4} let Q∗i be the grip of Si, and let ~Wi ∈ Si
that contains Q∗i as a sub-walk. Let Y1 be the shortest-path in ~G from u∗2 to l2. Let Y2
be the shortest-path in ~G from l2 to l4. Let Y3 be the shortest-path in ~G from l4 to v∗4 .
Let R∗1 be the path in ~G from u∗2 to v∗4 obtained by concatenation of Y1, Y2 and Y3. Let
Y ′1 be the shortest-path in ~G from u∗4 to r4. Let Y ′2 be the shortest-path in ~G from r4
to l2. Let Y ′3 be the shortest-path in ~G from l2 to v∗2 . Let R∗2 be the path in ~G from
u∗4 to v∗2 obtained by concatenation of Y ′1 , Y ′2 and Y ′3 . Now by the construction, we have
that cost~G(S) = cost~G(S2) + cost~G(S4) + cost~G(R∗1) + cost~G(R∗2) − cost~G(Q∗2) − cost~G(Q∗4).
Note that by the construction, there exists a P -important walk from u∗2 to v∗4 (w.r.t. W)
and a P -important walk from u∗4 to v∗2 (w.r.t. W). By Proposition 63 these walks are
unique. Let R′1 be the P -important walk from u∗2 to v∗4 (w.r.t. W) and let R′2 be the
P -important walk from u∗4 to v∗2 (w.r.t. W). Also, there exists a P2-important walk from
u∗2 to v∗2 (w.r.t. W) and a P4-important walk from u∗4 to v∗4 (w.r.t. W), and thus by
Proposition 63 these walks are unique. Let Q′2 be the P2-important walk from u∗2 to
v∗2 (w.r.t. W) and let Q′4 be the P4-important walk from u∗4 to v∗4 (w.r.t. W). By the
definition of important walks, we have that cost~G(R∗1) ≤ cost~G(R′1), cost~G(R∗2) ≤ cost~G(R′2),
cost~G(Q∗2) ≤ cost~G(Q′2) and cost~G(Q∗4) ≤ cost~G(Q′4). Also by the construction, we have that
cost~G(R′1) + cost~G(R′2) = cost~G(Q′2) + cost~G(Q′4). Therefore, we have

cost~G(S) = cost~G(S2) + cost~G(S4) + cost~G(R∗1) + cost~G(R∗2)− cost~G(Q∗2)− cost~G(Q∗4)
≤ cost~G(S2) + cost~G(S4) + cost~G(R′1) + cost~G(R′2)− cost~G(Q∗2)− cost~G(Q∗4)
= (cost~G(S2)− cost~G(Q∗4)) + (cost~G(S4)− cost~G(Q∗2)) + cost~G(R′1) + cost~G(R′2)
≤ cost~G(WP1) + cost~G(WP2)
= cost~G(WP ).

Now suppose that D is an open walk. If a2 = nil and a4 ∈ (A × A), or a4 = nil and
a2 ∈ (A×A), then this is immediate. If a2 = (u∗2, v∗2) ∈ A, a4 = (u∗4, v∗4) ∈ A, l2 = r2, l4 = r4
and p2 = p4, then we have a = ((u′, v′), (u′′, v′′)) where v′ ∈ {v∗2 , v∗4} and u′′ ∈ {u∗2, u∗4}. We
may assume w.l.o.g that v′ = v∗2 and u′′ = u∗4. Then we have l = l2, r = r2 and p = p2. Let R1
be the shortest-path in ~G from u′ to l2. Let R2 be the shortest-path in ~G from l1 to v′. Let R′
be the path from u′ to v′ obtained by the concatenation of R1 and R2. Let Y1 be the shortest
path in ~G from u′′ to l4. Let Y2 be the shortest path in ~G from l4 to v′′. Let Y ′ be the path
from u′′ to v′′ obtained by the concatenation of Y1 and Y2. Let Z1 be the shortest path in ~G

from u∗2 to l2. Let Z2 be the shortest path in ~G from l2 to l4. Let Z3 be the shortest path in ~G

from l4 to v∗4 . Let Z ′ be the path from u∗2 to v∗4 obtained by the concatenation of Z1, Z2 and
Z3. Let Q∗2 be the grip of S2 and let Q∗4 be the grip of S4. By the construction, we have that
cost~G(S) = cost~G(S2)+cost~G(S4)+cost~G(R′)+cost~G(Y ′)+cost~G(Z ′)−cost~G(Q∗2)−cost~G(Q∗4).
By the construction, there exists a P -important walk from u∗2 to v∗4 , a P -important walk
from u′ to v∗2 , and a P -important walk from u∗4 to v′′. Therefore by Proposition 63, these
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important walks are unique. Let R′′, Y ′′ and Z ′′ be the important walks from u′ to v′, u′′ to
v′′, and u∗2 to v∗4 respectively. Therefore, we have that

cost~G(S) = cost~G(S2) + cost~G(S4) + cost~G(R′) + cost~G(Y ′) + cost~G(Z ′)
− cost~G(Q∗2)− cost~G(Q∗4)
≤ cost~G(S2) + cost~G(S4) + cost~G(R′′) + cost~G(Y ′′) + cost~G(Z ′′)
− cost~G(Q∗2)− cost~G(Q∗4)
≤ cost~G(WP1) + cost~G(WP2) = cost~G(WP ).

If a4 = ((u4, v4), (u′4, v′4)) ∈ (A × A), a2 = (u2, v2) ∈ A, l2 = r2 and p2 = p4, then we
have a = ((u4, v4), (u2, v

′
4)), l = l4, r = r2 and p = p2. Let (Q∗4, Q∗∗4 ) be the grip of S4, and

let Q∗2 be the grip of S2. We may assume w.l.o.g that Q∗4 is a path from u4 to v4, and Q∗∗4 is
a path from u′4 to v′4. Let Y1 be the shortest path in ~G from u2 to l2. Let Y2 be the shortest
path in ~G from l2 to v′4. Let Y ′ be the path from u2 to v′4 obtained by the concatenation of
Y1 and Y2. Let Z1 be the shortest path in ~G from u′4 to r4. Let Z2 be the shortest path in
~G from r4 to l2. Let Z3 be the shortest path in ~G from l2 to v2. Let Z ′ be the path from u′4
to v2 obtained by the concatenation of Z1, Z2 and Z3. By the construction, we have that
cost~G(S) = cost~G(S2) + cost~G(S4) + cost~G(Y ′) + cost~G(Z ′) − cost~G(Q∗2) − cost~G(Q∗∗4 ). By
the construction, there exists a P -important walk from u′4 to v2, and a P -important walk
from u2 to v′4. Therefore by Proposition 63, these important walks are unique. Let Y ′′ and
Z ′′ be the important walks from u2 to v′4, and u′4 to v2 respectively. Therefore we have

cost~G(S) = cost~G(S2) + cost~G(S4) + cost~G(Y ′) + cost~G(Z ′)− cost~G(Q∗2)− cost~G(Q∗∗4 )
≤ cost~G(S2) + cost~G(S4) + cost~G(Y ′′) + cost~G(Z ′′)− cost~G(Q∗2)− cost~G(Q∗∗4 )
≤ cost~G(WP1) + cost~G(WP2) = cost~G(WP ).

Now suppose that F contains more than one tree. Let A = {T1, . . . , Tm} be the set
of all trees in F . For every T ∈ A we define the level of T , L(T ), as follows. Let D
be the root of T . We set L(T ) = 0, if there exists a basic path P ′ that covers T and
avoids all T ′ ∈ F \ {T }. We call a minimal such path, a corresponding basic path for T
and we denote it by PT ; it is immediate that there is a unique such minimal path. Let
F0 = {T ∈ F : L(T ) = 0}. Now for i ≥ 0, suppose that we have defined trees of level i
and Fi. Suppose that L(T ) /∈ {0, . . . , i}. We set L(T ) = i+ 1 if there exists a basic path
P ′ that covers T such that for all T ′ ∈

⋃i
j=0 Fj , P ′ either avoids or covers T ′, and for all

T ′′ ∈ (F \ {T }) \
⋃i
j=0 Fj , P ′ avoids T ′′. We also call a minimal such path corresponding

basic for T and we denote it by PT . Let Fi+1 = {T ∈ F : L(T ) = i+ 1}.
We say that some T ∈ F is outer-most if there is no T ′ ∈ F with L(T ′) > L(T ) and

PT ⊂ PT ′ .
Let us first suppose that there exists only one outer-most tree T ∈ F , such that PT ⊆ P .

We will deal with the more general case later. Also, suppose that T ∈ Fm for some m ≥ 0.
We will prove the assertion by induction on m. We also prove that for this case, we have
a = l = r = p = nil. For the base case, if m = 0, then by the construction, T is the only
tree with a corresponding basic path PT ⊆ P . For this case, we have already established
the assertion and we are done. Now suppose that we have proved the assertion for all
m′ < m. Let F ′ = F \ {T }. Let T1, . . . , Tt ∈ F ′ be all outer-most trees in F ′, such that for
j ∈ {1, . . . , t} we have PTj

⊆ P , and they intersect F in this order. By the construction, for
every j ∈ {1, . . . , t} we have L(Tj) < m. For every j ∈ {1, . . . , t} let PTj be a corresponding
basic path for Tj . By the induction hypothesis, for every j ∈ {1, . . . , t} there exists a partial



D. Marx, A. Salmasi, and A. Sidiropoulos 16:35

solution Sj for PTj . Now, we can apply the same argument when we had only one tree T ∈ F
for T . Note that for each j ∈ {1, . . . , t}, we have aj = lj = rj = pj = nil. The only difference
is that the intermediate basic paths here are not necessarily empty basic paths, and each Tj
appears as an intermediate basic path, with a partial solution Sj . Therefore, by following a
similar approach to the previous cases and merging appropriately we get a partial solution S,
as desired.

Now, suppose that there exist more than one outer-most trees T ∈ F , where PT ⊆ P . Let
B = {T1, . . . , Tt} be the set of all such trees, where they intersect consecutive subpaths of
P in this order. In this case, we prove the assertion by induction on t. For the base case
where t = 1, we have already proved the assertion. Now suppose that we have proved the
assertion for all t′ < t. Let B′ = {T1, . . . , Tt−1}. Let P ′ ⊆ P be the subpath of P such that
B′ is the set of all outer-most trees, with PTj

⊆ P ′ for all 1 ≤ j ≤ t− 1. By the induction
hypothesis, there exists a partial solution S ′ for P ′. Let P ′′ = P ⊆ P ′. By the construction,
P ′′ is a corresponding basic path for Tt, and thus by the induction hypothesis, there exists a
partial solution S′′ for P ′′. Therefore, by merging S ′ and S ′′ we get a partial solution S for
P , as desired. J

I Theorem 65. Let ~G be an n-vertex (0, 0, 1, p)-nearly embeddable graph (that is, planar
with a single vortex) and let ~H be the vortex of ~G. Then there exists an algorithm which
computes a walk ~W visiting all vertices in V ( ~H) of total length OPT~G(V ( ~H)) in time nO(p).

Proof. We have F ∈ P and it is immediate to check that F is basic. Since F is a cycle,
both the endpoitns of F are some vertex v◦. It follows by Lemma 64 that there exists some
φ ∈ IF such that the dynamic programming table contains a partial solution S at location
(F, φ). Let φ = (C, f in, fout, a, l, r, p). It follows by condition (T4) that for all x ∈ Bv◦

we have in-degreeS(x) = out-degreeS(x). Thus by repeatedly merging pairs of walks that
respectively terminate to and start from the same vertex, we obtain a collection S ′ of closed
walks with cost~G(S ′) = cost~G(S) that visit all vertices in V ( ~H). By Lemma 57 we can
assume that C is the trivial partition containing only one cluster, that is C = {{Bv◦}}. Since
C is trivial, it follows by (T5) that all vertices in V ( ~H) are in the same weakly-connected
component of

⋃
W∈SW . Thus all vertices in V ( ~H) are in the same strongly-connected

component of
⋃
W∈S′W . Since all walks in S ′ are closed, by repeatedly shortcutting

pairs of intersecting walks, we obtain a walk ~W with that visits all vertices in V ( ~H) with
cost~G( ~W ) = cost~G(S ′) = cost~G(S) ≤ cost~G( ~WOPT) = OPT~G.

The running time is polynomial in the size of the dynamic programming table, which is
at most |P| ·maxP∈P |IP | = O(n2) · pO(p) · nO(p) ·O(n2) = nO(p). J
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13 The dynamic program for traversing a vortex in a bounded genus
graph

For the remainder of this section let ~G be a n-vertex (0, g, 1, p)-nearly embeddable graph.
Let ~H be the vortex in ~G, attached to some face ~F . Let ~G′ = ~G \ (V ( ~H) \ (~F )) and fix
some embedding ψ of ~G′ on a surface S of genus g. Let F be the symmetrization of ~F .
Let ~WOPT be a closed walk in ~G that visits all vertices in ~H with minimum cost~G( ~W ).
Fix a path-decomposition {Bv}v∈V (F ) of ~H of width p. We present a similar algorithm
as in Section 12 for computing a walk traversing all vertices in V ( ~H) based on dynamic
programming. By Lemma 54 we may assume w.l.o.g. that ~G is facially normalized and cross
normalized.

13.1 The dynamic program
Let Q be the set of all (possible closed) subpaths of F . For any integer m, let

Pm = {A ⊆ Q : |A| ≤ m, for every Q,Q′ ∈ A we have V (Q) ∩ V (Q′) = ∅}

and let

P∞ = {A ⊆ Q : For every Q,Q′ ∈ A we have V (Q) ∩ V (Q′) = ∅}.

For every P = {Q1, . . . , Qm} ∈ P∞, let E(P ) =
⋃m
i=1E(Qi) and let V (P ) =

⋃m
i=1 V (Qi).

For each i ∈ {1, . . . ,m}, let ui and vi be the endpoints of Qi. Similar to the planar case, let
~HP = ~H

[⋃
x∈V (P )Bx

]
. Let B =

⋃m
i=1(Bui

∪Bvi
). Let CP be the set of all possible partitions

of B. Let Din
P = {0, . . . , n}B, Dout

P = {0, . . . , n}B, that is, every element of Din
P ∪ Dout

P is a
function f : B → {0, . . . , n}.

13.1.1 The dynamic programming table.
Let P = P324000g4 . With these definitions, the dynamic programming table is indexed the
exact same way as in the planar case. Also, a partial solution is a collection of walks in ~G.

We say that a partial solution S is compatible with (P, φ) if the same conditions (T1)-(T5)
as in the planar case are satisfied. The only difference is that instead of Bu ∪Bv, we have B.

13.1.1.1 Merging partial solutions

We follow a similar approach as in the planar case. Let P = {Q1, . . . , Qm}, P1 =
{Q′1, . . . , Q′m′}, P2 = {Q′′1 , . . . , Q′′m′′} ∈ P such that E(P1) 6= ∅, E(P2) 6= ∅, E(P1) ∩
E(P2) = ∅, and E(P ) = E(P1) ∪ E(P2). Let φ = (C, f in, fout, a, l, r, p) ∈ IP , φ1 =
(C1, f

in
1 , f

out
1 , a1, l1, r1, p1) ∈ IP1 , φ2 = (C2, f

in
2 , f

out
2 , a2, l2, r2, p2) ∈ IP2 .

Let S1 and S2 be partial solutions compatible with (P1, φ1) and (P2, φ2) respectively.
Similar to the planar case, we compute a partial solution S compatible with (P, φ) as follows.

Merging phase 1: Joining the walks. For every w ∈ V (P1) ∩ V (P2), we check that for all
x ∈ Bw we have f in

1 (x) = fout
2 (x) and f in

2 (x) = fout
1 (x). If not then the merging procedure

returns nil. Otherwise, for every w ∈ V (P1) ∩ V (P2) and every x ∈ Bw, we follow the
exact same approach as in the planar case.

Merging phase 2: Updating the grip. This phase is identical to the planar case.
Merging phase 3: Checking connectivity. Similar to the planar case, we check that condi-

tion (T5) holds for S and we return nil if it does not.
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13.1.2 Initializing the dynamic programming table.
For all P ∈ P1 with |E(P )| ≤ 1, we follow the same approach as in the planar case.

13.1.3 Updating the dynamic programming table.
For all P ∈ P with |E(P )| > 1, and for all P1, P2 ∈ P with E(P1) 6= ∅, E(P2) 6= ∅,
E(P1) ∩ E(P2) = ∅ and E(P1) ∪ E(P2) = E(P ), and for all φ1 ∈ IP1 and φ2 ∈ IP2 we
proceed as follows. Suppose that for all P ′ ∈ P with |E(P ′)| < |E(P )| and all φ′ ∈ IP ′ , we
have computed the partial solutions in the dynamic programming table at (P ′, φ′). Now
similar to the planar case, if there exists partial solutions S1 and S2 at (P1, φ1) and (P2, φ2)
respectively, we call the merging process to (possibly) get a partial solution S at (P, φ) for
some φ ∈ IP . Now similar to the planar case, if there is no partial solution at (P, φ) then we
store S at (P, φ). Otherwise if there there exists a partial solution S ′ stored at (P, φ) and
cost~G(S) < cost~G(S ′) then we replace S ′ with S.

13.2 Analysis
LetW be the collection of walks given by Lemma 56. Let F be the forest given by Lemma 57.
Let T be a subtree of F . We say that T is trivial if ψ(F ) ∪

⋃
D∈V (T ) ψ(D) is contractible.

Otherwise, we say that T is non-trivial.
Let Q ∈ Q, and let T be a subtree of some tree in F . We define the terms Q covers T

and Q avoids T the exact same way as in the planar case. Let P = {Q1, . . . , Qm} ∈ P∞.
We say that P covers T if for all D ∈ V (T ) we have V (D) ∩ V (F ) ⊆ V (Q1 ∪ . . . ∪Qm). We
say that P avoids T if for all Qi ∈ P we have that Qi avoids T .

I Definition 66 (Basic family of paths). Let P = {Q1, . . . , Qm} ∈ P∞. For each i ∈
{1, . . . ,m}, let ui and vi be the endpoints of Qi. We say that P is basic (w.r.t. W) if either
V (P ) \ (

⋃m
i=1{ui, vi}) does not intersect any of the walks in W (in which case we call it

empty basic) or there exists T ∈ F and D ∈ V (T ), with children D1, . . . , Dk, intersecting
D in this order along a traversal of D, such that the exact same conditions (1) & (2) as in
Definition 60 hold, and |P | is minimal subject to the following:
3. If P covers TD and avoids T \ TD, let T [P ] = TD, and otherwise let T [P ] =

⋃j
i=1 TDi

.
For every two disjoint subtrees T1 and T2 of T [P ], the following holds. If there exists
Qi ∈ P such that Qi covers T1 ∪T2 and avoids T \ (T1 ∪T2), then there exist edge-disjoint
subpaths Q′i, Q′′i of Qi such that Qi = Q′i ∪Q′′i , Q′i covers T1 and avoids T \ T1, and Q′′i
covers T2 and avoids T \ T2 (see Figure 3 for an example).

Moreover if for each non-trivial tree T ′ in F with T ′ 6= T , we have that P avoids T ′, then
we say that P is elementary. Furthermore, if for each non-trivial tree T ′ in F , we have that
P avoids T ′, then we say that P is trivial.

I Definition 67 (Twins). Let P, P ′ ∈ P∞. We say that P and P ′ are twins if for each subtree
T of F , P covers T if and only if P ′ covers T , and P avoids T if and only if P ′ avoids T .

I Definition 68 (Succinctness). Let P = {Q1, . . . , Qm} ∈ P∞ be basic. For each i ∈
{1, . . . ,m}, let ui and vi be the endpoints of Qi, let Q′i = Qi \ {ui} and let Q′′i = Qi \ {vi}.
We say that P is succinct if for all i ∈ {1, . . . ,m}, P and {Q1, . . . , Qi−1, Q

′
i, Qi+1, . . . , Qm}

are not twins, and moreover P and {Q1, . . . , Qi−1, Q
′′
i , Qi+1, . . . , Qm} are not twins.

I Lemma 69. Let P ∈ P∞ be non-empty basic. Then there exists some succinct and basic
P ′ ∈ P∞ such that P and P ′ are twins with E(P ′) ⊆ E(P ).

Proof. It is immediate by Definition 68. J
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Figure 3 Example of a non-basic family of paths. P = {Qi} is not basic. Let T1 = D1 ∪D2 and
T2 = D3. Then Qi covers T1 ∪ T2 and avoids T \ (T1 ∪ T2), but there is no edge-disjoint subpaths
Q′i, Q

′′
i of Qi satisfying the third condition.

I Lemma 70. Let P ∈ P∞ be non-empty basic elementary and succinct. Let T , D, j,
D1, . . . , Dj be as in Definition 66. Then there exist P1, P2 ∈ P∞ satisfying the following
conditions:
1. P1 and P2 are non-empty basic elementary and succinct.
2. P1 covers

⋃j−1
i=1 TDi and avoids T \ (

⋃j−1
i=1 TDi).

3. P2 covers TDj
and avoids T \ TDj

.
4. E(P1) ⊆ E(P ), E(P2) ⊆ E(P ), and E(P1) ∩ E(P2) = ∅.

Proof. We begin by defining auxiliary Z1, Z2 ∈ P∞. The desired P1 and P2 will be succinct
twins of Z1 and Z2. First we define Z1. Initially, we set Z1 = P and we inductively modify
Z1 until it covers C1 =

⋃j−1
i=1 TDi and avoids A1 = T \ (

⋃j−1
i=1 TDi) as follows: If Z1 contains

a path Q that does not intersect C1 then we remove Q from Z1. If Z1 contains a path Q that
intersects both C1 and A1 then we proceed as follows: let R be the collection of paths obtained
from Q by deleting all vertices in A1∩Q; let R′ be the collection obtained from R by removing
all paths that do not intersect C1; let R′′ be the collection obtained from R′ by replacing each
Q′ ∈ R′ be the minimal subpath Q′′ ⊆ Q′ with V (Q′′) ∩ C1 = V (Q′) ∩ C1. We repeat the
above process until the resulting Z1 covers C1 =

⋃j−1
i=1 TDi

and avoids A1 = T \ (
⋃j−1
i=1 TDi

).
In a similar fashion we define Z2 that covers C2 = TDj and avoids A2 = T \ TDj . It is
immediate by construction that E(Z1) ⊂ E(P ), E(Z2) ⊂ E(P ) and E(Z1) ∩ E(Z2) = ∅.

Next we argue that Z1 is basic. It is immediate that conditions (1) & (2) of Definition 66 are
satisfied. It remains to establish condition (3) of Definition 66. Let Q ∈ P1. By construction
there exists Q′ ∈ P such that Q ⊆ Q′. Let T [Z1] and T [P ] be as in Definition 66. Let T1
and T2 be disjoint subtrees of T [Z1] such that Q covers T1 ∪ T2 and avoids T \ (T1 ∪ T2). Let
TQ′ be the minimal subtree of T [P ] that contains all the nodes of T [P ] that are covered by
Q′. Let T ′ = TQ′ ∪ T1 ∪ T2. By definition we have that T ′ is a subtree of T [P ]. Therefore
there exist disjoint subtrees T ′1 and T ′2 of T ′ such that T1 ⊆ T ′1 , T2 ⊆ T ′2 , and T ′ = T ′1 ∪ T ′2 .
Since P is basic, it follows by condition (3) of Definition 66 that there exist edge-disjoint
subpaths Q′1, Q′2 of Q′ such that Q′1 covers T ′1 and avoids T \T ′1 and Q′2 covers T ′2 and avoids
T \ T ′2 . Let Q1 = Q ∩Q′1 and Q2 = Q ∩Q′2. It now follows that Q1 covers T1 and avoids
T \ T1 and Q2 covers T2 and avoids T \ T2, establishing Condition (3) of Definition 66.

It remains to show that |P1| is minimal subject to condition (3) of Definition 66. Suppose
not. Then there are Q,Q′ ∈ P1 that are consecutive in F such that we can replace Q and Q′
in P1 by some subpath Q′′ that contains Q and Q′. If Q and Q′ are subpaths of the same
path in P then this is a contradiction because by construction there must exist a vertex in
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V (Q′′) \ (V (Q) ∪ V (Q′)) that P1 must avoid. Therefore there must exist distinct R,R′ ∈ P
such that Q ⊆ R and Q′ ⊆ R′. However this means that we can replace R and R′ in P

by some subpath containing both R and R′, contradicting the fact that P is basic. This
establishes that |P1| is minimal subject to condition (3) of Definition 66. We have thus
obtained that Z1 is basic. It is also immediate by construction that since P is elementary,
Z1 is also elementary. By the exact same argument it follows that Z2 is also basic and
elementary.

For any i ∈ {1, 2} let Pi be a succinct twin of Zi obtained by Lemma 69. Since Zi is
basic and elementary, it follows that Pi is also basic and elementary, and thus condition (1)
is satisfied. Since Pi is a twin of Zi, it follows that conditions (2) & (3) are satisfied. Since
E(Zi) ⊂ E(P ) and E(Pi) ⊆ E(Zi), we get E(Pi) ⊂ E(P ). Finally, since E(Z1) ∩E(Z2) = ∅,
we have E(P1)∩E(P2) = ∅, and thus condition (4) is satisfied, which concludes the proof. J

I Definition 71 (P -facial restriction). Let P = {Q1, . . . , Qm} ∈ P∞ be basic. We define the
P -facial restriction of W the exact same way as in Definition 61. We remark that P is now a
family of paths, while in the planar case P is a single path; the definition remains the same
by replacing the notion of basic path given in Definition 60 by the notion of basic family of
paths given in Definition 66.

I Lemma 72 (Malnič and Mohar [21]). Let S be an either orientable or non-orientable surface
of Euler genus g, and let x ∈ S. Let X be a collection of noncontractible curves. Suppose
that at least one of the following holds:
(i) The curves in X are disjoint and (freely) nonhomotopic.
(ii) There exist x ∈ S such that for every C,C ′ ∈ X , we have C ∩C ′ = x, and the curves in
X are nonhomotopic (in π1(S, x)).

Then,

|X | ≤


0 if S is the 2-sphere
1 if S is the torus or the projective plane
3(g − 1) otherwise

We recall the following result on the genus of the complete bipartite graph [14].

I Lemma 73. For any n,m ≥ 1, the Euler genus of Km,n is d(m− 2)(n− 2)/4e.

I Lemma 74. Let P ∈ P∞ be elementary and succinct. Then |P | ≤ 18000g3.

Proof. Let T [P ] be as in Definition 66. If T [P ] is trivial, we can find Q ∈ Q such that Q
covers T [P ] and avoids T \ T [P ], and thus |P | = 1 and we are done. Now suppose that
T [P ] is non-trivial. Let m = |P | and suppose that P = {Q1, . . . , Qm} such that Q1, . . . , Qm
are subpaths of F in this order along a traversal of F . Let Z1, . . . , Zm′ be a sequence of
disjoint subsets of P such that P =

⋃m′
i=1 Zi, and each Zi is maximal subject to the following

condition: Let Z ′i be the minimal subpath of F that contains all the paths in Zi and does
not intersect any other paths in P ; then Z ′i avoids all non-trivial tress in F \ T . For every
j ∈ {1, . . . ,m′−1}, let Pj be the subpath between Z ′j and Z ′j+1 and let P ′ = {P1, . . . , Pm−1}.
Note that since P is basic, for every two consecutive Z ′j and Z ′j+1, there exists a non-trivial
tree Tj such that Tj intersects Pj .

We construct a set R of non-trivial trees as follows. We initially set R = {T1}. In each
step i > 1, if there exists T ′ ∈ R such that T ′ intersects Pi, we continue to the next step.
Otherwise, we let T ′i be some non-trivial tree that intersects Pi and we add T ′i to R and we
continue to the next step. We argue that |R| ≤ 20g. Suppose not. For each T ′ ∈ R where
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T ′ intersects some P ′ ∈ P ′ at some x′ ∈ V (P ′), we construct a path γT ′ in the surface,
with both endpoints on ψ(F ), and such that after contracting ψ(F ) into single point, the
loop resulting from γT ′ is non-contractible, as follows. First suppose that ψ(T ′) contains
some non-contractible loop γ. Then let ζ be a path in ψ(T ′) between x′ and some point
in γ. We set γT ′ to be the path starting at x′, traversing ζ, followed by γ, followed by the
reversal of ζ, and terminating at x′. Otherwise, suppose that ψ(cT ′) does not contain any
non-contractible loops. Since T ′ is non-trivial, it follows that ψ(T ′) contains some path ξ
with both endpoints in ψ(F ) such that after contracting ψ(F ) into a single point, the loop
obtained from ξ is non-contractible. Let ξ′ be some path in ψ(T ′) between x′ and some
point in ξ. By Thomassen’s 3-path condition [22] it follows that ξ ∪ ξ′ contains some path
ξ′′ with both endpoints in ψ(F ), such that one of these endpoints is x′, and such that after
contracting ψ(F ) into a single point, the loop resulting from ξ′′ is non-contractible. We set
γT ′ to be ξ′′.

Let L be the set of all loops obtained from the paths γT ′ as follows. Pick a point x in
the interior of the disk bounded by ψ(F ). Connect x to both endpoints of each γT ′ by paths
such that all chosen paths are interior disjoint. During this process each path γT ′ gives
rise to a non-contractible loop in L such that any two loops in L intersect only at x. Let
L′, L′′, L′′ ∈ L be distinct. We show that L′, L′′ and L′′′ can not be all homotopic. Suppose
not. Since they are interior-disjoint, by removing them from the surface we obtain three
connected components. Since ψ(T ) does not intersect any of L′, L′′ and L′′′, it has to be
inside one of the three connected components completely. We may assume w.l.o.g that T is
inside the component which is bounded by L′ and L′′. Therefore, there is no path from T to
L′′′ without crossing L′ ∪ L′′, which is a contradiction.

Let L′ ⊆ L be a maximal subset such that for all L′, L′′ ∈ L′ we have that L′ and
L′′ are non-homotopic. Since |L| > 20g and for every three loops in L′ we know that at
most two of them are homotopic, we have that |L′| > 10g, which contradicts Lemma 72.
Therefore, we have that |R| ≤ 20g and thus there exists T0 ∈ R such that T0 intersects at
least 10g = 200g2/20g elements of P ′. Let x1 be a point inside the face. Let x2 be a point in
the root of T0 and let x3 be a point in ψ(D). There exists P ′1, . . . , P ′10g ∈ P ′ such that for
every i ∈ {1, . . . , 10g}, T0 intersects P ′i . For every i ∈ {1, . . . , 10g}, let yi be a point on P ′i .
By the construction, for every yi we can find non-crossing paths to x1, x2 and x3. Therefore,
we get an embedding of K3,10g in a surface of genus g which contradicts Lemma 73. This
establishes that m′ ≤ 200g2.

Let i ∈ {1, . . . ,m′}. We next we bound |Zi|. Suppose Zi = {Qa, Qa+1, . . . , Qa+`}. Let
x be an arbitrary point in ψ(D). For each j ∈ {0, . . . , b(`− 1)/2c} pick an arbitrary point
xj ∈ ψ(Qa+2j)∩ ψ(T ); we define a path in the surface between xj and x as follows: we start
from the vertex D′ of T containing xj ; if D′ is a closed walk then we traverse D′ clockwise
until we reach the point that connects D′ to its parent; otherwise we traverse the unique path
between xj and the point that connects D′ to its parent. We continue in this fashion until we
reach D, and we finally traverse D clockwise until we reach x. This completes the definition
of the path γj . It is immediate that for all j 6= j′, the paths γj and γj′ are non-crossing.

Let S′ be the surface obtained by contracting ψ(F ) into a single point y, and identifying
x with y (note that S′ has Euler genus at most g + 2). For each j ∈ {0, . . . , b(` − 1)/2c}
let γ′j be the loop in S′ obtained from γj after the above contraction and identification.
We argue that there can be at most 4 loops γ′j that are pairwise homotopic. Suppose for
the sake of contradiction that there are at least 5 such loops. It follows that there must
exist t ∈ {0, . . . , b(` − 1)/2c} such that γ′t, γ′t+1, and γ′t+2 are all pairwise homotopic. We
are going to obtain a contradiction by arguing that the paths Qa+2t and Qa+2t+1 violate
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the fact that P is basic. To that end, let Q′ be the minimal subpath of F that contains
both Qa+2t and Qa+2t+1 and does not intersect any other paths in P . We will show that
(P \ {Qa+2t, Qa+2t+1}) ∪ {Q′} is basic, thus violating the fact that |P | is minimal subject to
condition (3) of definition 66. Let T1, T2 be disjoint subtrees of T [P ] such that Q′ covers
T1 ∪ T2 and avoids T \ (T1 ∪ T2). We need to show that there exist edge-disjoint subpaths
Q′1 and Q′2 of Q′ such that Q′ = Q′1 ∪Q′2, Q′1 covers T1 and avoids T \ T1, and Q′2 covers T2
and avoids T \ T2. Let λ be the subpath of ψ(F ) in S between xt and xt+1 that contains
xt+1. Since γ′t, γ′t+1, and γ′t+2 are homotopic, it follows that γt ∪ λ ∪ γt+2 bounds a disk
Ψ in S. Each xs is contained in the image of a unique vertex D′s of T [P ]. Let B be the
path in T [P ] between D′t and D′t+2. For each r ∈ {1, 2}, Tr intersects B into some possibly
empty subpath Br. It follows that there exist disjoint disks Ψ1,Ψ2 ⊂ Ψ such that for each
r ∈ {1, 2}, ψ(Tr) ∩Ψ ⊂ Ψr. Therefore there exist edge-disjoint subpaths Q′1 and Q′2 of Q′
with Q′ = Q′1 ∪Q′2 such that ψ(Q′) ∩Ψ1 ⊆ ψ(Q′1) and ψ(Q′) ∩Ψ2 ⊆ ψ(Q′2). It follows that
Q′1 covers T1 and avoids T \ T1, and Q′2 covers T2 and avoids T \ T2. This contradicts the
fact that P is basic, and concludes the proof that there are at most four loop γ′t that are
pairwise homotopic.

Pick I ⊆ {0, . . . , b(` − 1)/2c}, with |I| ≥ b(` − 1)/10c such that for all t 6= t′ ∈ I,
we have that γ′t and γ′t′ are non-homotopic. Since the paths γt are non-crossing, we may
assume w.l.o.g. that the paths γ′t are interior disjoint after an infinitesimal perturbation.
By Lemma 72 on S′ it follows that |I| ≤ 3(g + 1). Since |I| ≥ `/15, we get ` ≤ 45(g + 1).
Therefore |Zi| ≤ 45(g + 1).

We conclude thatm ≤
∑m′

i=1 |Zi| ≤ m′ ·maxi∈{1,...,m′} |Zi| ≤ 9000g2(g+1) ≤ 18000g3. J

I Lemma 75. Let P1 = {Q1, . . . , Qm} ∈ P be succinct. Let P2 = {Q′1, . . . , Q′l} ∈ P such
that P1 and P2 are twins, V (P1) ⊆ V (P2) and E(P1) ⊆ E(P2). For every i ∈ {1, . . . ,m},
let ui and vi be the endpoints of Qi. Let B1 =

⋃m
i=1(Bui

∪ Bvi
). Let WP1 be the P1-facial

restriction of W. Let Γ1 =
⋃
~W∈WP1

~W . Let C1 be the partition of B1 that corresponds to
the weakly-connected components of Γ1. For any x ∈ B1 let f in

1 (x) = in-degreeWP1
(x) and

fout
1 (x) = out-degreeWP1

(x). We similarly define C2, f
in
2 , f

out
2 and WP2 for P2. Suppose that

there exists some a1 ∈ A∪(A×A)∪nil and l1, r1, p1 ∈ (V (~G)∪nil) such that the dynamic pro-
gramming table contains some partial solution S1 at location (P1, (C1, f

in
1 , f

out
1 , a1, l1, r1, p1)),

with cost~G(S1) ≤ cost~G(WP1). Then there exists some a2 ∈ A ∪ (A × A) ∪ nil and
l2, r2, p2 ∈ (V (~G) ∪ nil) such that the dynamic programming table contains some partial
solution S2 at location (P2, (C2, f

in
2 , f

out
2 , a2, l2, r2, p2)), with cost~G(S2) ≤ cost~G(WP2).

Proof. Let E1 = E(P2) \ E(P1). For every e ∈ E1, let Qe ∈ Q be the path containing
a single edge e, and let Pe = {Qe}. Note that Pe is an empty basic family of paths and

APPROX/RANDOM’16



16:42 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

|E(Pe)| = 1. Therefore for every e ∈ E1, the initialization step of the dynamic programming,
finds a partial solution Se for Pe. By merging S1 with all these partial solutions sequentially
in an arbitrary order, we get a partial solution S2 for P2, as desired. J

I Lemma 76. Let P = {Q1 . . . , Qm} ∈ P be basic and trivial (w.r.t. W). For every
i ∈ {1, . . . ,m}, let ui and vi be the endpoints of Qi. Let B =

⋃m
i=1(Bui

∪Bvi
). Let WP be the

P -facial restriction of W. Let Γ =
⋃
~W∈WP

~W . Let C be the partition of B that corresponds
to the weakly-connected components of Γ. For any x ∈ B let f in(x) = in-degreeWP

(x) and
fout(x) = out-degreeWP

(x). Then there exists some a ∈ A ∪ (A × A) ∪ nil and l, r, p ∈
(V (~G) ∪ nil) such that the dynamic programming table contains some partial solution S at
location (P, (C, f in, fout, a, l, r, p)), with cost~G(S) ≤ cost~G(WP ).

Proof. Since P is trivial, we have that P ∈ P1, and thus the exact same argument as in
Lemma 64 applies here. J

I Lemma 77. Let P = {Q1 . . . , Qm} ∈ P be succinct and elementary (w.r.t. W). For every
i ∈ {1, . . . ,m}, let ui and vi be the endpoints of Qi. Let B =

⋃m
i=1(Bui

∪Bvi
). Let WP be the

P -facial restriction of W. Let Γ =
⋃
~W∈WP

~W . Let C be the partition of B that corresponds
to the weakly-connected components of Γ. For any x ∈ B let f in(x) = in-degreeWP

(x) and
fout(x) = out-degreeWP

(x). Then there exists some a ∈ A ∪ (A × A) ∪ nil and l, r, p ∈
(V (~G) ∪ nil) such that the dynamic programming table contains some partial solution S at
location (P, (C, f in, fout, a, l, r, p)), with cost~G(S) ≤ cost~G(WP ).

Proof. Let T , D, k, D1, . . . , Dk and j be as in Definition 66. We prove the assertion by
induction on T . For the base case, where D is a leaf of T , the same argument as in Lemma 64
applies here. Suppose that D is non-leaf. In this case, we prove the assertion by another
induction on j. For the base case, where j = 1, the same argument as in Lemma 64 applies
here. Now suppose that we have proved the assertion for all j′ < j. Let P1 ∈ P∞ such that
V (P1) ⊆ V (P ), E(P1) ⊆ E(P ), P1 covers

⋃j−1
i=1 TDi

and avoids T \ (
⋃j−1
i=1 TDi

). Let P2 ∈ P∞
such that E(P2) = E(P ) \E(P1). By the construction, P1 and P2 are elementary. Therefore,
by Lemma 69, there exists elementary and succinct P ′1 ∈ P∞ and P ′2 ∈ P∞ for P1 and P2
respectively. Moreover, by Lemma 70, we have that E(P ′1) ⊆ E(P ), E(P ′2) ⊆ E(P ) and
E(P ′1) ∩ E(P ′2) = ∅ . By Lemma 74 we have that P, P ′1, P ′2 ∈ P18000g3 . We next define some
P ′′1 ∈ P∞. Let Γ be the graph obtained as the union of all paths in P , that is Γ =

⋃
Q∈P Q.

Similarly, let Γ′ =
⋃
Q∈P ′2

Q, let Γ′′ = Γ \E(Γ′), and let Γ′′′ be the graph obtained from Γ′′
by deleting all isolated vertices. We define P ′′1 to be the set of connected components in Γ′′′.
Note that Γ′′′ has at most 36000g3 connected components, and each such component is a
path. Thus P ′′1 ∈ P36000g3 , and E(P ′1) ⊆ E(P ′′1 ). By the induction hypothesis, there exists a
partial solution S ′1 for P ′1, and thus by Lemma 75, there exists a partial solution S ′′1 for P ′′1 .
Also, by the induction hypothesis, there exists a partial solution S ′2 for P ′2. By merging S ′′1
and S ′2, we get a partial solution S for P , as desired. J

We define the following three types of non-trivial trees in F :
1. We say that a non-trivial tree T is of the first type, if there exists a non-leaf D ∈ V (T ),

such that D is a closed walk, with V (D) ∩ V (F ) = ∅, such that ψ(D) is non-contractible.
2. We say that a non-trivial tree T is of the second type, if it is not of the first type and

there exists a leaf D ∈ V (T ) such that ψ(D) ∪ ψ(F ) is non-contractible.
3. We say that a non-trivial tree T is of the third type, if it is not of the first type nor of the

second type.

We say that a non-trivial tree T is good, if at least one of the following conditions holds:



D. Marx, A. Salmasi, and A. Sidiropoulos 16:43

Figure 4 Example of good non-trivial trees T0, T1, and T2 that are pairwise friends; note that T0

is of the second type while T1 and T2 are of the third type.

1. T is of the second type, and for every D1, D2 ∈ V (T ) where ψ(D1) ∪ ψ(F ) and ψ(D1) ∪
ψ(F ) are non-contractible, we have that the loops obtained from ψ(D1) and ψ(D1) by
contracting ψ(F ) into a single poit x are homotopic in π1(S, x). Let D ∈ V (T ) such that
ψ(D)∪ ψ(F ) is non-contractible. We let β(T ) to be the homotopy class of the loop ψ(D)
in the surface obtained after contracting ψ(F ) into a single point.

2. T is of the third type and the following holds. Let X = ψ(F ) ∪
⋃
D∈V (T ) ψ(D) and

let X ′ be the image of X after contracting ψ(F ) into a single point x. Then and all
non-contractible loops in X ′ are homotopic in π1(S, x). We let β(T ) be the homotopy
class in π1(S, x) of all non-contractible loops in X ′; note that we may always take a
non-contractible loop in X ′ that contains the basepoint x since X is connected.

Otherwise, we say that T is a bad tree.
Let T0 and T1 be non-trivial good trees in F . We say that T0 is a friend of T1 if

β(T0) = β(T1) (see Figure 4 for an example).

I Definition 78 (Friendly). Let P ∈ P∞. We say that P is friendly if the following holds.
1. P avoids all non-trivial bad trees.
2. For any two non-trivial good trees T0 and T1 in F that P covers, we have that β(T0) =

β(T1).
3. If P covers a non-trivial good tree T0, then P covers all non-trivial good trees T1 with

β(T0) = β(T1).

I Lemma 79. There exists at most 12g bad trees in F .

Proof. We partition all bad trees in F into three sets:
1. F1 = {T ∈ F : T is a bad tree of the first type}.
2. F2 = {T ∈ F : T is a bad tree of the second type}.
3. F3 = {T ∈ F : T is a bad tree of the third type}.

We first bound |F1|. Let T ∈ F1. We let β(T ) to be the homotopy class of some non-leaf
D ∈ V (T ), such that D is a closed walk, with V (D)∩V (F ) = ∅, and ψ(D) is non-contractible.
Note that by the definition of trees of the first type, such a non-leaf D ∈ V (T ) exists. Let
T1, T2, T3 ∈ F1 be distinct. We show that β(T1) = β(T2) = β(T3) cannot happen. Suppose
not, and we have that β(T1) = β(T2) = β(T3). For any i ∈ {1, 2, 3}, let Di ∈ V (Ti) such
that β(Ti) is the homotopy class of Di. By removing ψ(D1), ψ(D2) and ψ(D3) from the
surface we obtain three connected components. We may assume w.l.o.g that ψ(D2) is inside
an annulus bounded by ψ(D1) and ψ(D3). Therefore, there is no path in the surface from
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ψ(D2) to ψ(F ), that does not intersect ψ(D1 ∪D3), which is a contradiction. Therefore by
Lemma 72 we have that |F1| ≤ 6g.

Next we bound |F2| and |F3|. Let T ∈ F2. By the construction, there exist D1, D2 ∈ V (T )
where ψ(D1) ∪ ψ(F ) and ψ(D2) ∪ ψ(F ) are non-contractible, and the loops obtained from
ψ(D1) and ψ(D2) after contracting ψ(F ) into a single point y are non-homotopic in π1(S, y).
Let x be a point in the interior of the disk bounded by ψ(F ). For every T ∈ F2, similarly to
Lemma 74, we construct two non-homotopic loops γT ′ and γ′T ′ in the surface, corresponding
to D1 and D2 respectively, such that they only intersect at x. Let L be the set of all these
loops. Let L′, L′′, L′′′ ∈ L be distinct. Similarly to Lemma 74, we show that L′, L′′ and
L′′′ can not be all homotopic. Suppose not. We may assume w.l.o.g. that L′′ is inside the
disk bounded by L′ and L′′′. Let T ′′ ∈ F2 be the tree corresponding to L′′. Now note
that L′′ is inside the disk bounded by L′ and L′′′, and thus all non-contractible loops in
ψ(F ) ∪

⋃
D∈V (T ) ψ(D) are in the same homotopy class as L′′. This contradicts the fact that

ψ(D1) ∪ ψ(F ) and ψ(D2) ∪ ψ(F ) are non-homotopic. Therefore, by Lemma 72 we have that
|F2| ≤ 3g. Using a similar argument, we can show that |F3| ≤ 3g.

Therefore, we have that |F1|+ |F2|+ |F3| ≤ 12g, completing the proof. J

I Lemma 80. Let P = {Q1 . . . , Qm} ∈ P∞ be friendly, succinct and basic (w.r.t. W). For
every i ∈ {1, . . . ,m}, let ui and vi be the endpoints of Qi. Let B =

⋃m
i=1(Bui

∪ Bvi
). Let

WP be the P -facial restriction of W. Let Γ =
⋃
~W∈WP

~W . Let C be the partition of B
that corresponds to the weakly-connected components of Γ. For any x ∈ B let f in(x) =
in-degreeWP

(x) and fout(x) = out-degreeWP
(x). Then there exists some a ∈ A∪ (A×A)∪nil

and l, r, p ∈ (V (~G) ∪ nil) such that the dynamic programming table contains some partial
solution S at location (P, (C, f in, fout, a, l, r, p)), with cost~G(S) ≤ cost~G(WP ).

Proof. If P does not cover any non-trivial trees in F , then P is trivial and thus we have that
P ∈ P1 and by Lemma 76 there exists a partial solution S for P . Otherwise suppose that P
covers a non-trivial good tree T in F . By the definition of friendly, for every non-trivial good
tree T ′ in F with β(T ) = β(T ′), we have that P covers T ′. Let A = {T ′ ∈ F : β(T ) = β(T ′)}.
Suppose that A = {T0, . . . , Tm} such that they intersect F in this order along a traversal
of F . For any i ∈ {0, . . . ,m}, let Pi ∈ P∞ be elementary and succinct such that Pi covers
Ti and avoids any other non-trivial trees in F . By Lemma 74 we have that Pi ∈ P18000g3 .
Moreover, by Lemma 77 we have that there exists a partial solution Si for Pi. For any
i ∈ {0, . . . ,m}, let P ′i ∈ P∞ be succinct and basic, such that P ′i covers

⋃i
j=0 Tj and avoids

any other non-trivial trees in F . By the construction, each P ′i can be obtained by merging
P ′i−1 with Pi and some trivial and empty basic family of paths, and thus we have that
P ′i ∈ P36000g3 . Therefore, by induction and Lemma 76, there exists a partial solution S ′i
for each P ′i , and thus there exists a partial for solution S ′m for P ′m. Note that P ′m = P .
Therefore, we get a partial solution S for P , as desired. J

I Lemma 81. Let P = {F}. Let v◦ ∈ V (F ). Let WP be the P -facial restriction of
W. Let Γ =

⋃
~W∈WP

~W . Let C be the partition of Bv◦ that corresponds to the weakly-
connected components of Γ. For any x ∈ Bv◦ let f in(x) = in-degreeWP

(x) and fout(x) =
out-degreeWP

(x). Then there exists some a ∈ A ∪ (A × A) ∪ nil and l, r, p ∈ (V (~G) ∪ nil)
such that the dynamic programming table contains some partial solution S at location
(P, (C, f in, fout, a, l, r, p)), with cost~G(S) ≤ cost~G(WP ).

Proof. We first partition F to the sets of basic families of paths as follows:
1. F1 = {P ′ ∈ P∞ : P ′ is elementary and succinct, P ′ covers some bad tree T }.
2. F2 = {P ′ ∈ P∞ : P ′ is basic, succinct and friendly}.
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3. F3 = {P ′ ∈ P∞ : P ′ is basic, succinct and trivial}.
4. F4 = {P ′ ∈ P∞ : P ′ is basic, succinct and empty}.

For every bad tree T in F , let P1 ∈ F1 such that P1 covers T and avoids any other
non-trivial tree in F . Since P1 is elementary and succinct, by Lemma 74 we have that
|P1| ≤ 18000g3. Moreover by Lemma 77 there exists a partial solution S1 for P1. Also by
Lemma 79, there exist at most 12g bad trees in F , and thus |F1| ≤ 12g. Therefore there exists
P ′1 ∈ P216000g4 , such that for any T ′ ∈ F , P ′1 covers (resp. avoids) T ′ if and only if there
exists P1 ∈ F1 such that P1 covers (resp. avoids) T ′. Moreover the dynamic programming
table contains a partial solution S ′1 for P ′1. Now we will show that |F2| ≤ 3g. For every
P2 ∈ F2, let T2 be some non-trivial good tree that P2 covers. Let x be a point in the interior
of the disk bounded by ψ(F ). Similar to Lemma 74 we construct a non-contractible loop γP2

that contains x, corresponding to T2. Let L be the set of all these interior-disjoint loops. For
every P ′, P ′′ ∈ F2, since P ′ and P ′′ are succinct and friendly, γP ′ and γP ′′ are not homotopic.
Therefore by Lemma 72 we have that |L| ≤ 3g, and thus |F2| ≤ 3g. Furthermore for every
P2 ∈ F2, by Lemma 80, we have that P2 ∈ P36000g3 , and there exists a partial solution S2 for
P2. Therefore there exists P ′2 ∈ P108000g4 , such that for any T ′ ∈ F , P ′2 covers (resp. avoids)
T ′ if and only if there exists P2 ∈ F2 such that P2 covers (resp. avoids) T ′. Moreover the
dynamic programming table contains a partial solution S ′2 for P ′2. Let P ′1,2 ∈ P324000g4 such
that for any T ′ ∈ F , P ′1,2 covers (resp. avoids) T ′ if and only if there exists P ′ ∈ F1 ∪ F2
such that P ′ covers (resp. avoids) T ′. By merging S ′1 and S ′2 we get a partial solution S ′1,2
for P ′1,2.

Let

F5 = {{Q} ∈ F3 ∪ F4 : Q is maximal subject to E(Q) ∩ E(P ′1,2) = ∅}.

For every P3 ∈ F3, by Lemma 76 we have that P3 ∈ P1 and there exists a partial solution S3
for P3. Finally, for every P4 ∈ F4, we have that P4 ∈ P1 and also the dynamic programming
table contains a partial solution S4 for P4. Therefore for every {Q} ∈ F5, the dynamic
programming table contains a partial solution for {Q}. By merging these partial solutions
with P ′1,2 in an arbitrary order, we get a partial solution S, as desired. We remark that after
merging the current partial solution with the partial solution for some {Q} ∈ F5, we obtain
a new partial solution for some P ∈ P∞ with fewer paths. Therefore for all intermediate
P ∈ P∞ we have P ∈ P324000g4 , concluding the proof. J

I Theorem 82. Let ~G be an n-vertex (0, g, 1, p)-nearly embeddable graph and let ~H be the
vortex of ~G. Then there exists an algorithm which computes a walk ~W visiting all vertices in
V ( ~H) of total length OPT~G(V ( ~H)) in time nO(pg4).

Proof. Let P = {F}. By Lemma 81, there exists a partial solution for P . Now the exact
same argument as in Theorem 65 applies here. J

14 The algorithm for traversing a vortex in a nearly-embeddable
graph

In this Section we obtain an exact algorithm for computing a closed walk that traverses all
the vertices in the single vortex of a nearly-embeddable graph.

Proof of Theorem 6. The algorithm is as follows. Let A ⊂ V (~G) be the set of apices and let
~F be the face on which the vortex is attached. For each A′ ⊆ A we construct a (0, g, 1, p+ a)-
nearly embeddable graph ~GA′ as follows: Initially we set ~GA′ = ~G \A. We then add A′ to
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V (~GA′) and for every u ∈ A′ and every v ∈ V (~F ) we add edges (u, v) and (v, u) of length
d~G(u, v) and d~G(v, u) respectively; let EA′ be the set of all these new edges. We consider A′
as being part of the vortex and we modify the path decomposition of the vortex by adding
A′ to each one of its bubbles; it is immediate that the result is a path decomposition of
width at most a+ p. We then run the algorithm of Theorem 82 on ~GA′ and find an optimal
closed walk visiting all vertices in V ( ~H) ∪ A′. Let ~WA′ be the resulting walk in ~GA′ . We
obtain a walk ~W ′A′ in ~G visiting all vertices in V ( ~H) with cost~G( ~W ′A′) = cost~GA′

( ~WA′) by
replacing every edge in (u, v) ∈ EA′ by a shortest path from u to v in ~G. After considering
all subsets A′ ⊆ A, we output the walk ~W ′A′ of minimum cost that we find. This completes
the description of the algorithm.

It is immediate that the running time is O(2an(a+p)g4) = O(n(a+p)g4). It remains to
show that the algorithm computes an optimum walk. Let ~R be the walk computed by the
algorithm. Let ~WOPT be a walk of minimum cost in ~G visiting all vertices in V ( ~H). Let A∗
be the set of apices visited by ~WOPT, that is A∗ = A ∩ V ( ~WOPT). Let ~G′ be the genus-g
piece of ~G. We can construct a walk ~Z in ~GA∗ that visits all the vertices in V ( ~H) ∪A∗ of
cost cost~G( ~WOPT) as follows: we replace every sub-walk of ~WOPT that is contained in ~G′,
has endpoints u, v ∈ V (~F ), and visits some apex w ∈ A∗, by the path u,w, v in ~GA∗ . It is
immediate that the resulting walk does not traverse any apices and therefore it is contained
in ~GA∗ . Thus we have cost~G(~R) ≤ cost~G( ~W ′A∗) = cost~GA∗

( ~WA∗) ≤ cost~G( ~WOPT) ≤ OPT~G,
which concludes the proof. J

15 The lower bound for graphs of bounded pathwidth

In this section we present the proof of Theorem 2. This is done via the following chain of
reductions:

Clique folklore=====⇒ Multicolored
Biclique

Lemma 86======⇒ Edge
Balancing

Lemma 90======⇒ Constrained
Closed Walk

Lemma 87======⇒ ATSP

15.1 Edge Balancing
Let D be a directed graph and let χ : E(D) → Z+ be an assignment of integers to the
edges. We can extend χ to a set F ⊆ E(D) of edges in the obvious way by defining
χ(F ) =

∑
e∈F χ(e). Let δ+

D(v) and δ−D(v) be the set of outgoing and incoming edges of v,
respectively. We say that χ is balanced at v ∈ V (D) if

∑
e∈δ+

D
(v) χ(e) =

∑
e∈δ−

D
(v) χ(e) holds

and we say that χ is balanced if it is balanced at every v ∈ V (D).

Edge Balancing: Given a directed graph D and a set Xe of positive integers for
every edge e ∈ E(D), the task is to select a χ(e) ∈ Xe for every edge e ∈ E(D)
such that χ is balanced.

An easy counting argument shows that it is sufficient to require that χ balanced at all but
one vertex:

I Proposition 83. If χ is balanced at every vertex of V (D) \ {v}, then it is also balanced
at v.

We give a lower bound for Edge Balancing by a parameterized reduction from Multi-
colored Biclique.
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w1

w2

w3

w4

w5

w6

xji1
+Bxji2

kxji1
+BY2

w

Y1 +Bkxji2

Figure 5 The instance of Edge Balancing constructed in the proof of Lemma 86. The values
on the edges indicate the value of χ corresponding to a solution (vi,ji )i=1,...,2k of the Multicolored
Biclique instance (we have Y1 =

∑
1≤i≤k

xji and Y2 =
∑

k+1≤i≤2k
xji).

Multicolored Biclique: Given a graph G with a partition (V1, . . . , V2k) of
vertices, find a vertex vi ∈ Vi for every 1 ≤ i ≤ 2k such that vi1 and vi2 are adjacent
for every 1 ≤ i1 ≤ k and k + 1 ≤ i2 ≤ 2k.

There is a very simple folklore reduction from Clique to Multicolored Biclique (see,
e.g., [6]) where the output parameter equals the input one, hence the lower bound of Chen
et al. [5] for Clique can be transferred to Multicolored Biclique.

I Theorem 84. Assuming ETH, Multicolored Biclique cannot be solved in time
f(k)no(k) for any computable function f .

The reduction from Multicolored Biclique to Edge Balancing uses the technique
of k-non-averaging sets to encode vertices [10, 17]. We say that a set X of positive integers
is k-non-averaging if for every choice of k (not necessarily distinct) integers x1, . . . , xk ∈ X,
their average is in X only if x1 = x2 = · · · = xk. For example, X = {(k + 1)i | 1 ≤ i ≤ n} is
certainly a k-non-averaging set of size n. However, somewhat surprisingly, it is possible to
construct much denser k-non-averaging sets where each integer is polynomially bounded in k
and the size n of the set.

I Lemma 85 (Jansen et al. [17]). For every k and n there exists a k-non-averaging set X of
n positive integers such that the largest element of X has value at most 32k2n2. Furthermore,
X can be constructed in time O(k2n3) time.

I Lemma 86. Assuming ETH, Edge Balancing has no f(k)no(k) time algorithm for any
computable function f , where k is the number of vertices of D.

Proof. The proof is by reduction from Multicolored Biclique. Let G be an undirected
graph with a partition V1, . . . , V2k of the vertices in V (G). By padding the instance with
isolated vertices, we may assume without loss of generality that each Vi has the same number
n of vertices; let vi,j be the j-th vertex of Vi. We construct an instance of Edge Balancing
on a directed graph D having 2k + 1 vertices w, w1, w2, . . . , w2k. Let us use Lemma 85
to construct a k-non-averaging set X = {x1, . . . , xn} of n positive integers such that the
maximum value in X is M = O(k2n2). Let B = 2kM .

The edges of D and the sets of integers on them are constructed the following way (see
Figure 5). For every 1 ≤ i1 ≤ k and k + 1 ≤ i2 ≤ 2k, we introduce the edge (wi1 , wi2) into
D and we define the set X(wi1 ,wi2 ) the following way: for every edge vi1,j1vi2,j2 between Vi1
and Vi2 , let us introduce the positive integer xj1 + Bxj2 into X(wi1 ,wi2 ). Next, for every
1 ≤ i ≤ k, we introduce the edge (w,wi) and let X(w,wi) = {kx+By | x ∈ X, 1 ≤ y ≤ kM}.
Finally, for every k+ 1 ≤ i ≤ 2k, we introduce the edge (wi, w) and let X(wi,w) = {y+Bkx |
x ∈ X, 1 ≤ y ≤ kM}. This completes the description of the reduction.
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Biclique ⇒ balanced assignment χ. Suppose that vi,ji ∈ Vi for 1 ≤ i ≤ 2k form a solution
of Multicolored Biclique. We define χ : E(D) → Z+ the following way. For every
1 ≤ i1 ≤ k and k + 1 ≤ i2 ≤ 2k, we set (see the values on the edges in Figure 5)

χ((wi1 , wi2)) = xji1
+Bxji2

,
χ((w,wi1)) = kxji1

+BY2, where Y2 =
∑
k+1≤i≤2k xji

, and
χ((wi1 , w)) = Y1 +Bkxji2

, where Y1 =
∑

1≤i≤k xji
.

Note that χ(e) ∈ Xe holds for every edge e ∈ E(D). Let us verify that χ is balanced.
For any 1 ≤ i1 ≤ k, we have χ(δ+

D(wi1)) =
∑
k+1≤i2≤2k(xji1

+ Bxji2
) = kxji1

+ BY2 =
χ((w,wi1)) = χ(δ−D(wi1)), as required. Similarly, for for any k + 1 ≤ i2 ≤ 2k, we have
χ(δ−D(wi2)) =

∑
1≤i1≤k(xji1

+ Bxji2
) = Y1 + Bkxji2

= χ((wi2 , w)) = χ(δ+
D(wi2)). Thus we

have shown that χ is balanced at w1, . . . , w2k and it follows by Proposition 83 that χ is
balanced also at w.

Balanced assignment χ ⇒ biclique. For the reverse direction of the equivalence, suppose
that χ : E(D)→ Z+ is a balanced assignment with χ(e) ∈ Xe for every e ∈ E(D). For every
1 ≤ i1 ≤ k, the definition of X(w,wi1 ) implies that χ((w,wi1)) is of the form kxji1

+ Byi1
where xji1

∈ X for some 1 ≤ ji1 ≤ n and yi1 is a positive integer. As kxji1
≤ kM < B

follows from xji1
∈ X, the value of χ((w,wi1)) uniquely determines ji1 and yi1 . Similarly,

for every k + 1 ≤ i2 ≤ 2k, we have that χ((wi2 , w)) is of the form yi2 +Bkxji2
for uniquely

determined positive integers 1 ≤ ji2 ≤ n and yi2 .
Having defined the values j1, . . . , j2k, we show that χ((wi1 , wi2)) = xji1

+Bxji2
for every

1 ≤ i1 ≤ k and k + 1 ≤ i2 ≤ 2k. If this is true, then the vertices vi,ji
∈ Vi for 1 ≤ i ≤ 2k

form a solution of Multicolored Biclique: the fact that xji1
+Bxji2

was introduced into
X(wi1 ,wi2 ) implies that there is an edge between vi1,ji1

∈ Vi1 and vi2,ji2
∈ Vi2 .

As the balance requirement holds at vertex wi1 , it also holds if we count modulo B. We
have that χ((w,wi1)) modulo B is exactly kxji1

< B (here we use that kM < B). For
every k + 1 ≤ i2 ≤ 2k, the value χ((wi1 , wi2)) modulo B is an integer from X and the value
χ(δ+

D(wi1)) modulo B is exactly the sum of these k integers from X (as again by kM < B,
this sum cannot reach B). Therefore, we have that the sum of k integers from X is exactly
kxji1

. Since X is a k-non-averaging set, this is only possible if these k integers are all equal
to xji1

. Thus we have shown that χ((wi1 , wi2)) = xji1
modulo B for every 1 ≤ i1 ≤ k and

k + 1 ≤ i2 ≤ 2k.
Let us consider now a vertex wi2 for k + 1 ≤ i2 ≤ 2k. The balance requirement in par-

ticular implies that bχ(δ+
D(wi2))/Bc = bχ(δ−D(wi2))/Bc. First, we have bχ(δ+

D(wi2))/Bc =
bχ((wi2 , w))/Bc = kxji2

. Therefore, the fact that χ is balanced at wi2 implies kxji2
=

bχ(δ−D(wi2))/Bc =
⌊∑

1≤i1≤k χ((wi1 , wi2))/B
⌋

=
∑

1≤i1≤kbχ((wi1 , wi2))/Bc, where the
third equality holds because we have χ((wi1 , wi2))/B − bχ((wi1 , wi2))/Bc ≤ M/B < 1/k.
The definition of X(wi1 ,wi2 ) implies that bχ((wi1 , wi2))/Bc is an integer from X. Therefore,
the equation above states the the sum of k integers from X is exactly kxji2

. Since X is a
k-non-averaging set, this is only possible if these k integers are all equal to xji2

. Therefore,
we have shown that χ((wi1 , wi2)) modulo B is exactly xij1

and bχ((wi1 , wi2))/Bc is exactly
xji2

, proving that χ((wi1 , wi2)) = xji1
+Bxji2

indeed holds. J

15.2 Constrained Closed Walk and ATSP
To make the hardness proof for ATSP cleaner, we first prove hardness for the variant of
the problem, where instead of optimizing the length of the tour, the only constraint is that
certain vertices cannot be visited more than once.
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Constrained Closed Walk: Given an unweighted directed graph G and set
U ⊆ V (G) of vertices, find a closed walk (of any length) that visits each vertex at
least once and visits each vertex in U exactly once.

There is a simple reduction from Constrained Closed Walk to ATSP that preserves
treewidth.

I Lemma 87. An instance of Constrained Closed Walk on an unweighted directed graph
D can be reduced in polynomial time to an instance of ATSP with polynomially bounded
positive integer weights on an edge-weighted version D∗ of D.

Proof. It is easy to see that if we assign weight 1 to every edge (u, v) with v ∈ U and weight
0 to every other edge, then the Constrained Closed Walk instance has a solution if and
only if the resulting weighted graph has closed walk of length at most |U | (or, equiavelently,
less than |U |+ 1) visiting every vertex. To ensure that every weight is positive, let us replace
every weight 0 with weight ε := 1/(2n2). As a minimum solution of ATSP contains at most
n2 edges, this modification increases the minimum cost by at most 1/2. Thus it remains
true that the Constrained Closed Walk instance has a solution if and only if there is a
closed walk of length less than |U |+ 1 visiting every vertex. Finally, to ensure that every
cost is integer, we multiply each of them by 2n2. J

The rest of the section is devoted to giving a lower bound for Constrained Closed
Walk. The lower bound proof uses certain gadgets in the construction of the instances.
Formally, we define a gadget to be a graph with a set of distinguished vertices called external
vertices; every other vertex is internal. To avoid degenerate situations, we always require
that the external vertices of a gadget are independent and each external vertex has either
indegree 0 or outdegree 0 in the gadget; in particular, this implies that a path between two
external vertices contains no other external vertex. Also, this implies that there is no closed
walk containing an external vertex.

We say that a set P of paths of the gadget satisfies a gadget if (1) both endpoints of each
path are external vertices and (2) every internal vertex of the gadget is visited by exactly one
path in P. If a path P ∈ P connects two external vertices of a gadget, then we define the
type of P to be the (ordered) pair of its endpoints. If P satisfies the gadget, then we define
the type of P to be the multiset of the types of the paths in P. For brevity, we use notation
such as a× (v1, v2) + b× (v3, v4) to denote the type that contains a times the pair (v1, v2)
and b times the pair (v3, v4). For a gadget H, we let the set T (H) contain every possible
type of a set P of paths satisfying H.

We construct gadgets where we can exactly tell the type of the collections of paths that
can satisfy the gadget, that is, the set T (H) is of a certain form. In the first gadget, we have
a simple choice between one path or a specified number of paths.

I Lemma 88. For every s ≥ 1, we can construct in time polynomial in n a gadget Hs with
the following properties:
1. Hs has four external vertices ain, aout, bin, and bout.
2. Hs minus its external vertices has constant pathwidth.
3. T (Hs) contains exactly two types: the type (bin, bout) and the type s× (ain, aout) (in other

words, the gadget can be satisfied by a path from bin to bout), can be satisfied by a collection
of s paths from ain to aout), but cannot be satisfied by any other type of collection of
paths).

APPROX/RANDOM’16
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Figure 6 The gadget of Lemma 88 with two collections of paths satisfying it.

Proof. The gadget Hs has 6s internal vertices vij (1 ≤ i ≤ 6, 1 ≤ j ≤ s) connected as
shown in Figure 6(a). Additionally, we introduce the edges (bin, v1

1), (v6
s , bout, and for every

1 ≤ j ≤ s, the edges (ain, v3
j ) and (v4

j , aout). It is clear that statement (2) holds: Hs minus
its vertices is a graph with constant pathwidth.

This gadget can be satisfied by a path from bin to bout (see Figure 6(b)) and also by a
collection of s paths where the j-th path is ain, v3

j , v2
j , v1

j , v6
j , v5

j , v4
j , aout (see Figure 6(c)).

To complete the proof of statement (3), we need to show that if P satisfies Hs, then P is one
of these two types. The basic observation is that if a path in P contains v2

j , then it has to
contain v1

j and v3
j as well (as each internal vertex is visited exactly once), hence the three

vertices v1
j , v2

j , v3
j have to appear on the same path of P. The same is true for the vertices

v4
j , v5

j , v6
j . Suppose that P contains a path P starting at bin. Then its next vertex is v1

1 ,
which should be followed by v2

1 and v3
1 by the argument above. The next vertex is v4

1 (the
only outneighbor of v3

j not yet visited), which is followed by v5
1 and v6

1 . Now the next vertex
is v1

2 , the only outneighbor of v6
1 not yet visited. With similar arguments, we can show that

P is exactly of the form shown in Figure 6(b), hence P contains only this path, and P is of
type {(bin, bout)}.

Suppose now that P does not contain a path starting at bin. Then the only way to reach
vertex v1

1 is with a path starting as ain, v3
1 , v2

1 , v1
1 . This has to be followed by the unique

outneighbor v6
1 of v1

1 that was not yet visited. This means that the path contains also v5
1

and v4
1 , which has to be followed by aout. Then with similar arguments, we can show for

every j ≥ 2 that v1
j is visited by the path ain, v3

j , v2
j , v1

j , v6
j , v5

j , v4
j , aout. This means that

|P| = s and the type of P is s× (ain, aout). J

I Lemma 89. Let X be a set of n positive integers, each at most M and let S =
∑
x∈X x. In

time polynomial in n andM , we can construct a gadget HX with the following properties:
1. HX has four external vertices ain, aout, cin, and cout.
2. HX minus its external vertices has constant pathwidth.
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ain aout

cin cout

v

Hx1 Hx2 Hx3

Figure 7 The gadget HX of Lemma 89 for a set X = {x1, x2, x3} of three integers. The gray
rectangles represent the internal vertices of the three gadgets Hx1 , Hx2 , and Hx3 .

3. T (Hs) contains exactly |X| types: for every x ∈ X, it contains the type (cin, cout) + (S −
x)× (ain, aout).

Proof. The gadget HX is constructed the following way (see Figure 7). Let us introduce an
internal vertex v and the edge (cin, v). For every x ∈ X, let us introduce a copy of Hx defined
by Lemma 88 where ain, aout, v, cout of HX play the role of ain, aout, bin, bout, respectively.
If we remove the four external vertices of HX , then we get a graph with constant pathwidth:
if we remove one more vertex, v, then we get the disjoint union of internal vertices of the
gadgets Hx’s, which have constant pathwidth by Lemma 88.

For every x ∈ X, the gadget can be satisfied by the following collection of paths. The
copy of Hx in HX can be satisfied by a path from v to cout, which can be extended with
the edge (cin, v) to a path from cin to cout. For every x′ ∈ X, x′ 6= x, we can satisfy the
copy of Hx′ in HX by a collection of x′ paths from ain to aout. This way, we constructed
a collection P of paths satisfying HX that consists of a single path of type (cin, cout) and
exactly

∑
x′∈X\{x} x

′ = S − x paths of type (ain, aout).
To complete the proof of statement (3), consider a collection P of paths satisfying HX .

Let P be the unique path of P visiting vertex v. The vertex of P after v is has to be an
internal vertex of the copy of Hx for some x ∈ X (here we use that the external vertices of
the gadget Hx are independent, hence v cannot be followed by any of ain, aout, and cout).
As v was identified with vertex bin of Hx, Lemma 88 implies that P visits every internal
vertex of this copy of Hx and leaves Hx at its vertex bout, which was identified with cout.
Consider now some x′ ∈ X with x′ 6= x. Vertex bin of Hx′ was identified with v, path P is
the only path of P visiting v, and P does not visit any internal vertex of Hx′ . Therefore,
by Lemma 88, the internal vertices of Hx′ are visited by exactly x′ paths of type (ain, aout).
Thus P contains one path of type (cin, cout) and exactly

∑
x′∈X\{x} x

′ = S − x paths of type
(ain, aout). J

I Lemma 90. Assuming ETH, there is no f(p)no(p) time algorithm for Constrained
Closed Walk on graphs of pathwidth at most p for any computable function f .

Proof. The proof is by reduction from Edge Balancing on a directed graph D with k
vertices w1, . . . , wk. We construct a Constrained Closed Walk instance on a directed
graph D∗ the following way. First, let us introduce the vertices w1, . . . , wk into D∗, as well
as two auxiliary vertices cin and cout. For every edge e = (wi1 , wi2) ∈ E(D) with a set Xe

APPROX/RANDOM’16
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of integers associated to it in the Edge Balancing instance, we construct a copy of the
gadget HXe

defined by Lemma 89 and identify external vertices ain, aout, cin, cout of the
gadget HXe

with vertices wi1 , wi2 , cin, cout of D∗, respectively. Let Se =
∑
x∈Xe

x for every
edge e ∈ V (D), let S+

i =
∑
e∈δ+

D
(wi) Se, let S

−
i =

∑
e∈δ−

D
(wi) Se, and let S∗ =

∑
e∈E(D)Xe =∑k

i=1 S
+
i =

∑k
i=1 S

−
i . We further extend D∗ the following way.

1. For every 1 ≤ i ≤ k, we introduce a set P+
i of S+

i paths of length two from cin to wi (that
is, each of these paths consists of vertex cin, vertex wi, and one extra newly introduced
vertex).

2. For every 1 ≤ i ≤ k, we introduce a set P−i of S−i paths of length two from wi to cout.
3. We introduce a set P∗ of S∗ + |E(D)| paths of length two from cout to cin.
Let Z := {w1, . . . , wk, cin, cout}; note that Z form an independent set in G∗ (as the external
vertices of each gadget are independent). We define U := V (D∗) \ Z to be the set of vertices
that have to be visited exactly once. This completes the description of the reduction.

Observe that if we remove Z from D∗, then what remains is the disjoint union of the
internal vertices of the gadgets HXe , which have constant pathwidth by Lemma 89. As
removing a vertex can decrease pathwidth at most by one, it follows that D∗ has pathwidth
|Z| + O(1) = O(k). Thus if we are able to show that the constructed instance D∗ of
Constrained Closed Walk is a yes-instance if and only if D is a yes-instance of Edge
Balancing, then this implies that an f(p)no(p) time algorithm for Constrained Closed
Walk on graphs of pathwidth p can be used to solve Edge Balancingon k vertex graphs
in time (k)no(k), which would contradict ETH by Lemma 86.

Balanced assignment χ ⇒ closed walk. Suppose that balanced assignment χ : E(D)→ Z+

is a solution to the Edge Balancing instance. For every e = (wi1 , wi2) ∈ E(D), the
construction of the gadget HXe

implies that HXe
can be satisfied by a collection Pe of paths

having type (cin, cout) + (Se − χ(e))× (wi1 , wi2). Let P be a collection of paths that is the
union of the set P∗, the sets P+

i and P−i for 1 ≤ i ≤ k, and the set Pe for e ∈ E(G). Observe
that every vertex of U is contained in exactly one path in P and the paths in P are edge
disjoint. Let H∗ be the subgraph of D∗ formed by the union of every path in P. It is easy
to see that H∗ is connected: every path in P has endpoints in Z and the paths in P∗, P−i ,
P+
i ensure that every vertex of Z is in the same component of H∗. It is also clear that every

vertex of U has indegree and outdegree exactly 1, as each vertex in U is visited by exactly
one path in P . We show below that every vertex of Z is balanced in H∗ (its indegree equals
its outdegree). If this is true, then H∗ has a closed Eulerian walk, which gives a closed walk
in G∗ visiting every vertex at least once and every vertex in U exactly once, what we had to
show.

The endpoints of every path in P are in Z, hence every vertex of U is balanced in H∗ (in
particular has indegree and outdegree exactly 1). Consider now a vertex wi.

For every e ∈ δ+
D(wi), the set Pe contains Se − χ(e) paths starting at wi.

For every e ∈ δ−D(wi), the set Pe contains Se − χ(e) paths ending at wi.
The set P+

i contains S+
i paths ending at wi.

The set P−i contains S−i paths starting at wi.
As these paths are edge disjoint, the difference between the outdegree and the indegree of
wi in H∗ is (S−i +

∑
e∈δ+

D
(wi)(Se − χ(e))) − (S+

i +
∑
e∈δ−

D
(wi)(Se − χ(e))) = (S−i + S+

i −
χ(δ+

D(wi)))− (S+
i +S−i −χ(δ−D(wi))) = 0, since χ is balanced at wi. Consider now vertex cin.

For every 1 ≤ i ≤ k, the set P+
i contains S+

i paths starting at cin.
For every e ∈ E(D), the set Pe contains one path starting at cin.
The set P∗ contains S∗ + |E(D)| paths ending at cin.



D. Marx, A. Salmasi, and A. Sidiropoulos 16:53

It follows that cin is balanced in H∗ with indegree and outdegree exactly S∗ + |E(D)| =∑k
i=1 S

+
i + |E(D)| and a similar argument shows the same for cout. Thus we have shown

that the Constrained Closed Walk instance has a solution.

Closed walk ⇒ balanced assignment χ. For the reverse direction, suppose that the
constructed Constrained Closed Walk instance has a solution (a closed walk W ). The
closed walk can be split into a collection P of walks with endpoints in Z and every internal
vertex in U . In fact, these walks are paths: (1) as each vertex of U is visited only once, the
internal vertices of each walk are distinct, (2) the walk cannot be a cycle, since we have
stated earlier that no gadget has a cycle through an external vertex. When defining the sets
P∗, P+

i , P
−
i , we introduced a large number of vertices into D∗ with indegree and outdegree

1. The fact that these vertices are visited implies that P has to contain the set P∗ and the
sets P+

i and P−i for every 1 ≤ i ≤ k. Moreover, every path of P not in these sets contains
an internal vertex of some gadget HXe (here we use that Z is independent) and a path of
P cannot contain the internal vertices of two gadgets (as this would imply that it has an
internal vertex in Z). Therefore, the remaining paths can be partitioned into sets Pe for
e ∈ E(D) such that the internal vertices of HXe

are used only by the paths in Pe. This
means that the set Pe satisfies gadget HXe . If e = (wi1 , wi2), then it follows by Lemma 89
that Pe has type (cin, cout) + (Se − χ(e))(wi1 , wi2) for some integer χ(e) ∈ Xe. In particular,
this means that Pe contains Se − χ(e) paths starting at wi1 and the same number of paths
ending at wi2 .

We claim that χ form a solution of the Edge Balancing problem. Consider a vertex wi.
Taking into account the contribution of the paths in P−i and Pe for e ∈ δ+

D(wi), we have that
the outdegree of wi in the walkW is exactly S−i +

∑
e∈δ+

D
(wi)(Se−χ(e)) = S+

i +S−i −χ(δ+
D(wi)).

Taking into account the contribution of the paths in P+
i and Pe for e ∈ δ−D(wi), we have that

the indegree of wi in the walkW is exactly S+
i +

∑
e∈δ−

D
(wi)(Se−χ(e)) = S−i +S+

i −χ(δ−D(wi)).
As the indegree of wi in W is clearly the same as its outdegree, these two values have to be
equal. This is only possible if χ(δ+

D(wi)) = χ(δ−D(wi)), that is χ is balanced at wi. As this is
true for every 1 ≤ i ≤ k, it follows that the Edge Balancing instance has a solution. J

References
1 Nima Anari and Shayan Oveis Gharan. Effective-resistance-reducing flows, spectrally thin

trees, and asymmetric tsp. In 55th Annual IEEE Symposium on Foundations of Computer
Science, FOCS, 2015.

2 Arash Asadpour, Michel X Goemans, Aleksander Madry, Shayan Oveis Gharan, and Amin
Saberi. AnO(logn/ log logn)-approximation Algorithm for the Asymmetric Traveling Sales-
man Problem. In SODA, volume 10, pages 379–389. SIAM, 2010.

3 Markus Bläser. A new approximation algorithm for the asymmetric tsp with triangle
inequality. ACM Transactions on Algorithms (TALG), 4(4):47, 2008.

4 Moses Charikar, Michel X Goemans, and Howard Karloff. On the integrality ratio for
asymmetric tsp. In Foundations of Computer Science, 2004. Proceedings. 45th Annual
IEEE Symposium on, pages 101–107. IEEE, 2004.

5 Jianer Chen, Xiuzhen Huang, Iyad A Kanj, and Ge Xia. Strong computational lower bounds
via parameterized complexity. Journal of Computer and System Sciences, 72(8):1346–1367,
2006.

6 Holger Dell and Dániel Marx. Kernelization of packing problems. In Proceedings of the
twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages 68–81. SIAM,
2012.

APPROX/RANDOM’16



16:54 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

7 Reinhard Diestel. Graph theory {graduate texts in mathematics; 173}. Springer-Verlag
Berlin and Heidelberg GmbH & amp, 2000.

8 Jeff Erickson and Anastasios Sidiropoulos. A near-optimal approximation algorithm for
asymmetric tsp on embedded graphs. In Proceedings of the thirtieth annual symposium on
Computational geometry, page 130. ACM, 2014.

9 Uriel Feige and Mohit Singh. Improved approximation ratios for traveling salesperson
tours and paths in directed graphs. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 104–118. Springer, 2007.

10 Fedor V Fomin, Petr A Golovach, Daniel Lokshtanov, and Saket Saurabh. Almost optimal
lower bounds for problems parameterized by clique-width. SIAM Journal on Computing,
43(5):1541–1563, 2014.

11 Alan M Frieze and Giulia Galbiati. On the worst-case performance of some algorithms for
the asymmetric traveling salesman problem. Networks, 12(1):23–39, 1982.

12 Alan M. Frieze, Giulia Galbiati, and Francesco Maffioli. On the worst-case performance
of some algorithms for the asymmetric traveling salesman problem. Networks, 12(1):23–39,
1982. doi:10.1002/net.3230120103.

13 Shayan Oveis Gharan and Amin Saberi. The asymmetric traveling salesman problem on
graphs with bounded genus. In Proceedings of the twenty-second annual ACM-SIAM sym-
posium on Discrete Algorithms, pages 967–975. SIAM, 2011.

14 F. Harary. Graph Theory. Addison-Wesley Series in Mathematics. Perseus Books, 1994.
15 Michael Held and Richard Karp. The traveling salesman problem and minimum spanning

trees. Operations Research, 18:1138–1162, 1970.
16 Michael Held and Richard M Karp. The traveling-salesman problem and minimum spanning

trees. Operations Research, 18(6):1138–1162, 1970.
17 Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed

number of bins revisited. Journal of Computer and System Sciences, 79(1):39–49, 2013.
18 Haim Kaplan, Moshe Lewenstein, Nira Shafrir, and Maxim Sviridenko. Approximation

algorithms for asymmetric tsp by decomposing directed regular multigraphs. Journal of
the ACM (JACM), 52(4):602–626, 2005.

19 Ken-ichi Kawarabayashi and Bojan Mohar. Some recent progress and applications in graph
minor theory. Graphs and Combinatorics, 23(1):1–46, 2007.

20 László Lovász. Graph minor theory. Bulletin of the American Mathematical Society,
43(1):75–86, 2006.

21 A. Malnič and B. Mohar. Generating locally cyclic triangulations of surfaces. Journal of
Combinatorial Theory, Series B, 56(2):147–164, 1992.

22 Carsten Thomassen. Embeddings of graphs with no short noncontractible cycles. Journal
of Combinatorial Theory, Series B, 48(2):155–177, 1990.

http://dx.doi.org/10.1002/net.3230120103

	Introduction
	Our contribution
	Overview of the algorithm
	Organization

	Notation
	The Held-Karp LP
	An approximation algorithm for nearly-embeddable graphs
	Combining the Held-Karp LP with the dynamic program
	Thin trees in 1-apex graphs
	Analysis

	Thin forests in graphs with many apices
	Analysis

	Thin forests in higher genus graphs with many apices
	Analysis

	Thin subgraphs in nearly-embeddable graphs
	(0,g,1,p)-nearly embeddable graphs
	The modified ribbon-contraction argument

	(a,g,1,p)-nearly embeddable graphs

	A preprocessing step for the dynamic program
	Uncrossing an optimal walk traversing a vortex
	The structure of an optimal solution

	The dynamic program for traversing a vortex in a planar graph
	The dynamic program
	The dynamic programming table
	Merging partial solutions
	Initializing the dynamic programming table
	Updating the dynamic programming table

	Analysis

	The dynamic program for traversing a vortex in a bounded genus graph
	The dynamic program
	The dynamic programming table.
	Initializing the dynamic programming table.
	Updating the dynamic programming table.

	Analysis

	The algorithm for traversing a vortex in a nearly-embeddable graph
	The lower bound for graphs of bounded pathwidth
	Edge Balancing
	Constrained Closed Walk and ATSP


