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Abstract
The celebrated Weil bound for character sums says that for any low-degree polynomial P and
any additive character χ, either χ(P ) is a constant function or it is distributed close to uniform.
The goal of higher-order Fourier analysis is to understand the connection between the algebraic
and analytic properties of polynomials (and functions, generally) at a more detailed level. For
instance, what is the tradeoff between the equidistribution of χ(P ) and its “structure"?

Previously, most of the work in this area was over fields of prime order. We extend the tools
of higher-order Fourier analysis to analyze functions over general finite fields. Let K be a field
extension of a prime finite field Fp. Our technical results are:
1. If P : Kn → K is a polynomial of degree 6 d, and E[χ(P (x))] > |K|−s for some s > 0 and non-

trivial additive character χ, then P is a function of Od,s(1) many non-classical polynomials
of weight degree < d. The definition of non-classical polynomials over non-prime fields is one
of the contributions of this work.

2. Suppose K and F are of bounded order, and let H be an affine subspace of Kn. Then, if
P : Kn → K is a polynomial of degree d that is sufficiently regular, then (P (x) : x ∈ H) is
distributed almost as uniformly as possible subject to constraints imposed by the degree of
P . Such a theorem was previously known for H an affine subspace over a prime field.

The tools of higher-order Fourier analysis have found use in different areas of computer science,
including list decoding, algorithmic decomposition and testing. Using our new results, we revisit
some of these areas.
(i) For any fixed finite field K, we show that the list decoding radius of the generalized Reed

Muller code over K equals the minimum distance of the code.
(ii) For any fixed finite field K, we give a polynomial time algorithm to decide whether a given

polynomial P : Kn → K can be decomposed as a particular composition of lesser degree
polynomials.

(iii) For any fixed finite field K, we prove that all locally characterized affine-invariant properties
of functions f : Kn → K are testable with one-sided error.
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1 Introduction

In this work, we provide new results about polynomials over finite fields, relating their
algebraic structure to the distribution of their output. We then apply them to improve
previous work on list-decoding bounds for the Reed-Muller code, testability of affine-invariant
properties, and algorithms for polynomial decomposition.

1.1 Structure versus Randomness for Polynomials over Finite Fields
In many areas of mathematics, there is a remarkable phenomenon where natural objects are
either close to random or have a high degree of structure. A prime example of this is the
Weil bound for character sums [49], a deep result in algebraic geometry.

Let F be a finite field of prime order p, and let K be a finite field extension of F.
Let P : K → K be a univariate polynomial of degree 6 |K|1/2−δ for some δ > 0. If we
let χ : K → C denote a non-trivial additive character, then according to Weil’s bound,
either χ(P (x)) is constant or else, χ(P (x)) is distributed close to uniform in the sense
that |E[χ(P (x))]| 6 |K|−δ. Deligne later [17] proved the same statement for multivariate
polynomials P : Kn → K.

Higher-order Fourier analysis [46] is a recent generalization of some aspects of Fourier
analysis. Over finite fields, one of the main components of the theory is a detailed study of the
interplay between the algebraic structure and analytic properties of polynomials. Consider
the case when K = Fp is a prime field and p is small, for example 2. Weil’s bound does not
apply for d > √p. However, in the context of higher-order Fourier analysis, Kaufmann and
Lovett [37] (extending previous work by Green and Tao [30]) showed that if P : Fnp → Fp is a
polynomial of degree d, then for any non-trivial additive character χ, either |E[χ(P (x))]| < ε

or else, P is a function of a Oε,d,p(1) polynomials of strictly lesser degree. The regime here
is different from that of Weil’s bound (large n versus large |K|) but the result is similar in
spirit.

These recent developments have spurred a deeper look at the dichotomy between random-
ness and structure in polynomials over finite fields. For instance, instead of using the bias,
|E[χ(P (x))]|, as a measure of randomness, one can look at how well P is equidistributed on
affine subspaces. This gives rise to the Gowers norm [28, 29], a central notion in higher-order
Fourier analysis. Low Gowers norm is a much stronger notion of pseudorandomness than
low bias. Green and Tao [30] showed the Gowers inverse theorem, which states that if
P : Fnp → Fp is a polynomial of degree d < p, then either its Gowers norm of order d is
smaller than ε or it is a function of Oε,d,p(1) polynomials of degree < d. When d > p, this
dichotomy fails to be true [40, 30]; Tao and Ziegler [47] showed that if the Gowers norm is not
small, then the polynomial is a function of a bounded number of non-classical polynomials,
functions mapping to the torus that locally look like low-degree polynomials.

All of these results focused on finite fields of prime order. In general fields, the situation
is more complicated for several reasons. Firstly, the additive characters over F are simply
exponential functions χa(x) = e2πiax/p for a 6= 0 which are bijective, while over general fields
K, the additive characters are χa(x) = e2πiTr(ax)/p for a 6= 0 where the trace Tr : K → F
is a linear map with a possibly large kernel. Secondly, if K is of dimension at least 2 over
F, polynomials like xp have degree p but vanish after taking only 2 derivatives. Define the
weight degree of a polynomial P : Kn → K to be the minimum number of derivatives before P
becomes identically a constant. If a variable has individual degree more than p in a monomial
in P , then the weight degree of P may not equal the total degree. Thirdly, while K can
often be profitably viewed as simply a vector space over F, affine subspaces in Kn are not
necessarily vector spaces over F.
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In this work, we prove the first structure-versus-randomness dichotomy result for poly-
nomials over general fields in the higher-order Fourier analysis setting. We show that if
P : Kn → K is a polynomial of total degree d, then either its Gowers norm of order d is
less than |K|−s (and hence, so is the bias of any additive character of P ), or else, P is a
function of Od,s(1) many non-classical polynomials over Kn of weight degree less than d.
Our definition of non-classical polynomials uses the multiplicative structure of K. Also, note
that unlike the results quoted above, our result is non-trivial when |K| is not constant. For
constant d, our result continues to give information about the structure of the polynomial
even when its bias is less than |K|−1/2, the limit of Weil’s bound. To make our bounds hold
in this regime, we use some results recently given by Bhowmick and Lovett [13] where they
mainly1 studied higher-order Fourier analysis over growing prime fields.

Our next dichotomy result holds for constant sized K. Let c be a positive integer bound,
and let P : Kn → K be a polynomial of weight degree d. Then, either for some α ∈ K, Tr(αP )
is expressible in terms of polynomials of lower degree, or the distribution of P on random
affine subspaces of Kn of dimension c is as uniform as possible subject to the constraints
imposed by the weight degree of P . For instance, if the weight degree of P is 1, then
P (x+ y+ z)−P (x+ y)−P (x+ z) +P (x) = 0 for all x, y, z ∈ Kn and hence, this constraint
must be satisfied by the evaluations of P on any affine subspace. The second possibility in
the dichotomy is that modulo such constraints, the value of P is almost unconstrained on
subspaces of dimension c.

1.2 Applications
In this section, we describe three different problems involving a finite field K, which previously
had been solved only when |K| was prime but which we can now solve for arbitrary finite K.

Throughout, let F be a fixed prime order field, and let K be a finite field that extends F.
Let q = |K|, p = |F| and q = pr for r > 0.

1.2.1 List-decoding Reed-Muller codes
The notion of list decoding was introduced by Elias [18] and Wozencraft [50] to decode error
correcting codes beyond half the minimum distance. The goal of a list decoding algorithm
is to produce all the codewords within a specified distance from the received word. At
the same time one has to find the right radius for which the number of such codewords
is small, otherwise there is no hope for the algorithm to be efficient. After the seminal
results of Goldreich and Levin [20] and Sudan [43] which gave list decoding algorithms for
the Hadamard code and the Reed-Solomon code respectively, there has been tremendous
progress in designing list decodable codes. See the survey by Guruswami [34, 33] and Sudan
[44].

Reed-Muller codes (RM codes) were discovered by Muller in 1954. Let d ∈ N. The RM
code RMK(n, d) is defined as follows. The message space consists of degree 6 d polynomials
in n variables over K and the codewords are evaluation of these polynomials on Kn. Let
δq(d) denote the normalized distance of RMK(n, d). Let d = a(q− 1) + b where 0 6 b < q− 1.
We have

δK(d) = 1
qa

(
1− b

q

)
.

1 As we discuss later, they also study non-prime fields in Section 4.9 but they restrict to the case d < p
whereas we focus on small p.

APPROX/RANDOM’16
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RM codes are one of the most well studied error correcting codes. Many applications in
computer science involve low degree polynomials over small fields, namely RM codes. Given
a received word g : Kn → K the objective is to output the list of codewords (e.g. low-degree
polynomials) that lie within some distance of g. Typically we will be interested in regimes
where list size is either independent of n or polynomial in the block length qn.

Let Pd(Kn) denote the class of degree 6 d polynomials f : Fn → F. Let dist denote the
normalized Hamming distance. For RMK(n, d), η > 0, let

`F(n, d, η) := max
g:Fn→F

|{f ∈ Pd(Fn) : dist(f, g) 6 η}| .

Let LDRK(n, d) (short for list decoding radius) be the maximum ρ for which `K(n, d, ρ− ε)
is upper bounded by a constant depending only on ε, |K|, d for all ε > 0.

It is easy to see that LDRK(n, d) 6 δK(d). The difficulty lies in proving a matching lower
bound. We review some previous work next. The first breakthrough result was the celebrated
work of Goldreich and Levin [20] who showed that in the setting of d = 1 over F2 (Hadamard
Codes) LDRF2(n, 1) = δF2(1) = 1/2. Later, Goldreich, Rubinfield and Sudan [21] generalized
the field to obtain LDRK(n, 1) = δK(1) = 1 − 1/|K|. In the setting of d < |K|, Sudan,
Trevisan and Vadhan [45] showed that LDRK(n, d) > 1−

√
2d/|K| improving previous work

by Arora and Sudan [2], Goldreich et al [21] and Pellikaan and Wu [41]. Note that this falls
short of the upper bound which is δK(d).

In 2008, Gopalan, Klivans and Zuckerman [26] showed that LDRF2(n, d) = δF2(d).They
posed the following conjecture.

I Conjecture 1 ([26]). For fixed d and finite field K, LDRK(n, d) = δK(d).

It is believed [26, 25] that the hardest case is the setting of small d. An important step
in this direction was taken in [25] that considered quadratic polynomials and showed that
LDRK(n, 2) = δK(2) for all fields K and thus proved the conjecture for d = 2. Recently,
Bhowmick and Lovett [14] resolved the conjecture for prime K.

Our main result for list decoding is a resolution of Conjecture 1.

I Theorem 2. Let K be a finite field. Let ε > 0 and d, n ∈ N. Then,

`K(d, n, δK(d)− ε) 6 c|K|,d,ε.

Thus,

LDRK(n, d) = δK(d).

I Remark (Algorithmic Implications). Using the blackbox reduction of algorithmic list decoding
to combinatorial list decoding in [26] along with Theorem 18, for fixed finite fields, d and ε > 0,
we now have list decoding algorithms in both the global setting (running time polynomial in
|K|n) and the local setting (running time polynomial in nd).

I Remark. Note that the bound on the list size in Theorem 2 depends on |K|. The recent
work of Bhowmick and Lovett [13] shows that this is not necessary when d < p. It is an open
question to show this for general fields. Our dichotomy result for polynomials on general
fields can’t be used in their proof because it only holds for polynomials mapping to K, not
for the more general non-classical polynomials.
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1.2.2 Algorithmic polynomial decomposition
Consider the following family of properties of functions over a finite field K.

I Definition 3. Given a positive integer k, a vector of positive integers ∆ = (∆1,∆2, . . . ,∆k)
and a function Γ : Kk → K, we say that a function P : Kn → K is (k,∆,Γ)-structured if
there exist polynomials P1, P2, . . . , Pk : Kn → K with each deg(Pi) 6 ∆i such that for all
x ∈ Kn,

P (x) = Γ(P1(x), P2(x), . . . , Pk(x)).

The polynomials P1, . . . , Pk are said to form a (k,∆,Γ)-decomposition.

For instance, an n-variate polynomial over the field K of total degree d factors nontrivially
exactly when it is (2, (d− 1, d− 1), prod)-structured where prod(a, b) = a · b. We shall use the
term degree-structural property to refer to a property from the family of (k,∆,Γ)-structured
properties.

The problem here is, for arbitrary fixed k,K,∆,Γ, given a polynomial, decide efficiently
if it is degree structural and if yes, output the decomposition. An efficient algorithm for
the above would imply a (deterministic) poly(n)-time algorithm for factoring an n-variate
polynomial of degree d over K. Also, it implies a polynomial time algorithm for deciding
whether a d-dimensional tensor over K has rank at most r. Also, it would give polynomial time
algorithms for a wide range of problems not known to have non-trivial solutions previously,
such as whether a polynomial of degree d can be expressed as P1 · P2 + P3 · P4 where each
P1, P2, P3, P4 are of degree d− 1 or less.

This problem was solved for prime K = F, satisfying d < p by Bhattacharyya [6] and
later for all d and prime F by Bhattacharyya, Hatami and Tulsiani [12]. Our main result in
this line of work establishes this for all fixed finite fields.

I Theorem 4. For every finite field K, positive integers k and d, every vector of positive
integers ∆ = (∆1,∆2, . . . ,∆k) and every function Γ : Kk → K, there is a deterministic
algorithm AK,d,k,∆,Γ that takes as input a polynomial P : Kn → K of degree d that runs in
time polynomial in n, and outputs a (k,∆,Γ)-decomposition of P if one exists while otherwise
returning NO.

1.2.3 Testing affine-invariant properties
The goal of property testing, as initiated by [15, 4] and defined formally by [42, 22], is to
devise algorithms that query their input a very small number of times while correctly deciding
whether the input satisfies a given property or is “far” from satisfying it. A property is called
testable if the query complexity can be made independent of the size of the input.

More precisely, we use the following definitions. Let [R] denote the set {1, . . . , R}. Given
a property P of functions in {Kn → [R] | n ∈ Z>0}, we say that f : Kn → [R] is ε-far from
P if

min
g∈P

Prx∈Kn [f(x) 6= g(x)] > ε,

and we say that it is ε-close otherwise.

I Definition 5 (Testability). A property P is said to be testable (with one-sided error) if
there are functions q : (0, 1) → Z>0, δ : (0, 1) → (0, 1), and an algorithm T that, given as
input a parameter ε > 0 and oracle access to a function f : Kn → [R], makes at most q(ε)

APPROX/RANDOM’16
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queries to the oracle for f , always accepts if f ∈ P and rejects with probability at least
δ(ε) if f is ε-far from P. If, furthermore, q is a constant function, then P is said to be
proximity-obliviously testable (PO testable).

The term proximity-oblivious testing is coined by Goldreich and Ron in [24]. As an
example of a testable (in fact, PO testable) property, let us recall the famous result by Blum,
Luby and Rubinfeld [15] which initiated this line of research. They showed that linearity of
a function f : Kn → K is testable by a test which makes 3 queries. This test accepts if f is
linear and rejects with probability Ω(ε) if f is ε-far from linear.

Linearity, in addition to being testable, is also an example of a linear-invariant property.
We say that a property P ⊆ {Kn → [R]} is linear-invariant if it is the case that for any f ∈ P
and for any K-linear transformation L : Kn → Kn, it holds that f ◦L ∈ P . Similarly, an affine-
invariant property is closed under composition with affine transformations A : Kn → Kn (an
affine transformation A is of the form L+ c where L is K-linear and c ∈ K). The property
of a function f : Kn → K being affine is testable by a simple reduction to [15], and is itself
affine-invariant. Other well-studied examples of affine-invariant (and hence, linear-invariant)
properties include Reed-Muller codes [4, 3, 19, 42, 1] and Fourier sparsity [27]. In fact, affine
invariance seems to be a common feature of most interesting properties that one would
classify as “algebraic”. Kaufman and Sudan in [39] made explicit note of this phenomenon
and initiated a general study of the testability of affine-invariant properties (see also [23]).

Our main theorem for testing is a very general positive result:

I Theorem 6 (Main testing result). Let P ⊆ {Kn → [R]} be an affine-invariant property that
is t, w-lightly locally characterized, where t, R, w, and char(K) are fixed positive integers.
Then, P is PO testable with t queries.

We are yet to define several terms in the above claim, but as we will see, the weight restriction
is trivial when the field size is bounded. This yields the following characterization.

I Theorem 7 (Testing result for fixed fields). Let P ⊆ {Kn → [R]} be an affine-invariant
property, where R ∈ Z+ and field K are fixed. Then, P is PO testable with t queries if and
only if P is t-locally characterized.

Previously, [9] (building on [8, 11, 10]) proved Theorem 6 in the case that K is of fixed
prime order using higher-order Fourier analytic techniques. We note that other recent results
on 2-sided testability of affine-invariant properties over fixed prime-order fields [35, 51] can
also be similarly extended to non-prime fields but we omit their description here.

1.2.3.1 Local Characterizations

For a PO testable property P ⊂ {Kn → [R]} of query complexity t, if a function f : Kn → [R]
does not satisfy P, then by Definition 5, the tester rejects f with positive probability. Since
the test always accepts functions with the property, there must be t points a1, . . . , at ∈ Kn
that form a witness for non-membership in P. These are the queries that cause the tester
to reject. Thus, denoting σ = (f(a1), . . . , f(at)) ∈ [R]t, we say that C = (a1, a2, . . . , at;σ)
forms a t-local constraint for P. This means that whenever the constraint is violated by a
function g, i.e., (g(a1), . . . , g(at)) = σ, we know that g is not in P. A property P is t-locally
characterized if there exists a collection of t-local constraints C1, . . . , Cm such that g ∈ P
if and only if none of the constraints C1, . . . , Cm are violated. It follows from the above
discussion that if P is PO testable with q queries, then P is t-locally characterized.

For an affine-invariant property, constraints can be defined in terms of affine forms, since
the affine orbit of a constraint is also a constraint. So, we can describe each t-local constraint
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C as (A1, . . . , At;σ), where for every i ∈ [t], Ai(X1, . . . , Xt) = X1 +
∑t
j=2 ci,jXj for some

ci,j ∈ K is an affine form over K. We define the weight wt of an element c ∈ K as
∑r
k=1 |ck|,

where c is viewed as an r-dimensional vector (c1, . . . , cr) with each ci in the base prime field2
F with respect to a fixed arbitrary basis. The weight of an affine form Ai to be

∑m
j=2 wt(ci,j)

for ci,j as above. A constraint is said to be of weight w if all its affine forms are of weight at
most w, and a property P is said to be t, w-lightly locally characterized if there exist t-local
constraints C1, . . . , Cm, each of weight at most w that characterize P.

Theorem 6 asserts that if P has a light local characterization, then it is testable. There
can exist many local characterizations of a property, and for the theorem to apply, it is only
necessary that one such characterization be of bounded weight. Moreover, we can choose the
basis with which to describe K over F. On the other hand, some restriction in addition to
local characterization is needed, as Ben-Sasson et al. [5] show that there exist affine-invariant
locally characterized properties of functions f : F2n → F2 that require super-constant query
complexity to test.

Another interesting observation is that if a property has a local characterization of
bounded weight, then it has a local single orbit characterization, in the language of [39]. For
linear3 affine-invariant properties, [39] shows that any local single orbit characterized property
is testable. Hence, our result is weaker than [39] in this aspect, though our Theorem 6
allows non-linear properties. It is an interesting open question as to whether dual-BCH codes
and, more generally, sparse affine-invariant codes that were shown to be locally single orbit
characterized in [36] and [31] respectively also have local characterizations of bounded weight.
It is also an open problem to describe a testable property P ⊆ {F2n → F2} that does not
have a local characterization of bounded weight.

1.3 Parallel Work
Subsequent to our first public version of this work [7], Bhowmick and Lovett [13] proved
Theorem 2 for all finite fields, even when the field size is growing with n, but assuming that
the field characteristic is larger than the order of the Reed-Muller code. They focus more on
handling growing field size instead of arbitrary field characteristic, so their techniques are
substantially different.

1.4 Our Techniques

1.4.1 New Ingredients
Our starting point is the observation that K is an r-dimensional vector space over F.
Thus, we can view a function Q : Kn → K as determined by a collection of functions
P1, . . . , Pr : Kn → F where Kn is viewed as Frn. However, it is incorrect to suppose
P1, . . . , Pr are independent as they are generated by the same polynomial over K.

Indeed, in our first dichotomy theorem, we want to deduce structural information about
P just from the fact that P1 is biased. Although we can’t directly prove that biased P1
implies biased Pi for all i ∈ [r], we show that biased DP1 implies biased DPi for all i ∈ [r],
where for a polynomial Q of degree d, DQ(h1, . . . , hd) is the iterated derivative of Q in
directions h1, . . . , hd. Because d is the total degree of the polynomial, the iterated derivative

2 If x ∈ F, |x| is the obvious element of {0, 1, . . . , |F| − 1}.
3 These are properties of functions f : Kn → F, where F is a subfield of K, for which f, g ∈ P implies
αf + βg ∈ P for any α, β ∈ F.

APPROX/RANDOM’16
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is multilinear in h1, . . . , hd. The multilinearity allows us to relate the structure of DP1 to
the rest of the DPis. The same strategy was used in [13]. We then follow the steps of [48] to
integrate each of the DPi’s. We show that all of them are functions of the same collection of
non-classical polynomials. Here, a non-classical polynomial Q(x1, . . . , xn) is determined by
a set of monomials axi11 x

i2
2 · · ·xinn where a and the multiplication is in K; the evaluation of

each monomial is then mapped to (Z/pk+1Z)r for some integer k > 0 and the final output is
an integer linear combination of them. Note that unlike our definition, in the definition of
non-classical polynomials over Fn by [48], the multiplicative structure of the field is never
used. Also, our non-classical polynomials are a strict subset of the functions P : Kn → Tr
which identically vanish after d+ 1 derivatives. In fact, if we had used the latter notion as
defining non-classical polynomials, our theorem would have been quite straightforward.

Over constant-sized fields K, it is more economical to write out P as determined by
P1, . . . , Pr and treat them as independent. Then, we have reduced the problem to studying
polynomials mapping to F. However, even in this setting, we cannot totally ignore the
multiplicative structure of K. To see why, recall the question of testing affine-invariant
properties. When K is of bounded order, we can view any one-sided test as examining the
restriction of the input function on a random K-dimensional affine subspace of Kn, for some
constant integer K. In other words, the test will evaluate the input function at elements of
the set H = {x+

∑K
i=1 aiyi : a1, . . . , aK ∈ K} for some x, y1, . . . , yK ∈ K. Clearly, H is not

an affine subspace of Frn because of K’s multiplicative structure. An important component
of the higher-order Fourier analytic approach is to show that any “sufficiently pseudorandom”
collection of polynomials is equidistributed on H, and the proof of this fact in [9] crucially
uses that H is a subspace of a vector space over a prime field. In our work, we show a strong
equidistribution theorem (Theorem 36) that holds when H is an affine subspace of Kn.

A different place where the multiplicative structure of K rears its head is a key Degree
Preserving Lemma of [9]. Informally, if P1, . . . , PC form a “sufficiently pseudorandom”
collection of polynomials and F (x) = Γ(P1(x), . . . , PC(x)) is a polynomial of degree d
where Γ is an arbitrary composition function, then for any other collection of polynomials
Q1, . . . , QC where deg(Qi) 6 deg(Pi) for every i, G(x) = Γ(Q1(x), . . . , QC(x)) also has
degree 6 d. The lemma is crucially used for the analysis of the Reed-Muller list decoding
bound in [14] and the polynomial decomposition algorithm in [6, 12]. Its proof goes via
showing that if all (d+ 1) iterated derivatives of F : Kn → K vanish, then so must all (d+ 1)
iterated derivatives of G : Kn → K. However, for K that is of size p2 or more, this only
implies a bound on the weight degree of G, not on its degree.

We resolve this issue by giving a different and more transparent proof of the Degree
Preserving Lemma, which actually holds in a much more general setting. Using the above
notation, we prove that if F : Kn → K satisfies some locally characterized property P,
then G : Kn → K does also. Since due to a work of Kaufman and Ron [38], we know that
degree is locally characterized, our desired result follows. Our new proof uses our strong
equidistribution theorem on affine subspaces of Kn. An interesting point to note is that both
the equidistribution theorem and the degree preserving lemma work only assuming that the
field characteristic is constant and that the involved affine constraints are of bounded weight,
without any assumption on the field size.

1.4.2 Reed-Muller codes
For a received word g : Kn → K our goal is to upper bound |{f ∈ Pd : dist(f, g) 6 η}|, where
η = δK(d) − ε for some η > 0 and Pd is the class {Q : Kn → K : deg(Q) 6 d}. The proof
technique is similar in structure as [14]. We apply the weak regularity lemma (Corollary 40)
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to the received word g : Kn → K and reduce the problem to a structured word g′ : Kn → K.
More specifically, whenever dist(f, g) 6 η, we have dist(f, g′) 6 η + ε/2. From here, we first
express each function f : Kn → K as a linear combination of functions f ′ : Kn → F. It can be
then shown that the analysis in [14] works for functions f ′ : Kn → F. A naive recombination
of the f ′ : Kn → F to f : Kn → K gives us useful bounds only when d < char(|F|). To
circumvent this problem, we use our improved degree preserving theorem. This is crucial
to our analysis as the technique of [14] can be used only to analyze the weight degree of
polynomials which is not enough for the argument to work for arbitrary d and |K|.

1.4.3 Polynomial decomposition
The algorithm and its analysis follows the lines of [6, 12]. Given a polynomial P : Kn → K
(where |K| is bounded), we consider the collection of polynomials {Tr(α1P ), . . . ,Tr(αrP )}
where α1, . . . , αr ∈ K are linearly independent. We regularize this collection into a pseudo-
random polynomial factor and set one variable to 0 such that the degrees of the polynomials
do not change. We then recursively solve the problem on n − 1 variables and then apply
a lifting procedure to get a decomposition for the original problem. A naive analysis of
the lifting procedure over non-prime fields requires that deg(P ) < char(F). In order to get
around this, we use our improved degree preserving theorem which applies for arbitrary
degrees.

1.4.4 Testing affine-invariant properties
Suppose P ⊆ {Kn → [R]} is a locally characterized affine-invariant property (where R and
char(K) are bounded but n|K| is growing). Our proof follows the lines of [11, 10, 9]. Suppose
f is far from P. We first identify a low-rank function close to f in an appropriate Gowers
norm which also contains the violation that f contains. Here, low rank is with respect to a
collection B of non-classical polynomials mapping to T. We then investigate the distribution
of B on the affine constraint that f violates. Since these are affine with respect to Kn, we
need to use our strong equidistribution theorem. The rest of the proof proceeds along the
same lines as [9].

Because the proof of Theorem 6 is very analogous to that in [9] (except for the use of the
new equidistribution theorem) and requires significant additional notation, we omit it here.

1.5 Some Open Questions
We conclude the introduction by giving a list of open questions suggested by this line of
work:

In our dichotomy result, can we show that if P : Kn → K is a polynomial of weight
degree d, then either a character of it is unbiased or P is expressible in terms of other
polynomials of weight degrees less than d? In the current form of the theorem, d is the
degree of P .
Can we show the dichotomy theorem for non-classical polynomials P? Together with the
first item, we would then be able to iteratively regularize collections of polynomials over
finite fields of growing size. Such a procedure would help resolve the list decoding radius
for Reed-Muller codes over such fields, for instance.
Can we improve the bound on the list size for Reed-Muller codes, compared to what we
obtain in Theorem 2 or what is obtained in [13]?
Can we use higher-order Fourier analysis to investigate the list-decoding radius for other
codes, most notably, the Reed-Solomon code or the lifted Reed-Muller codes [32]?

APPROX/RANDOM’16



23:10 On Higher-Order Fourier Analysis over Non-Prime Fields

Is the notion of bounded weight characterization of affine-invariant properties an artifact
of our proof or is it indeed linked to testability?

1.6 Organization
We formally define some notions like polynomials, bias, Gowers norm, and rank in Section 2.
In Section 3, we show the bias versus rank dichotomy for non-classical polynomials. In
Section 4, we show the equidistribution results for polynomials over subspaces. The next two
sections, Sections 5 and 6, describe how the new tools can be used to prove the results for
Reed-Muller list-decoding radius and algorithmic polynomial decomposition.

2 Preliminaries

Fix a prime number p > 2. Let F be the finite field of order p, and let K be a finite field
of characteristic p. Let r denote the dimension of K as a vector space over F; so, |K| = pr.
Note that r is a parameter and may not be held constant.

Let Tr : K→ F denote the trace function: Tr(x) = x+ xp + xp
2 + · · ·+ xp

r−1 for x ∈ K.
Recall that {x→ Tr(ax) : a ∈ K} is in bijection with the set of all F-linear maps from K to
F.

For every K of order r over F, fix a choice of r linearly independent field elements
α1, α2, . . . , αr ∈ K. Then, there exists a dual basis, β1, β2, . . . , βr ∈ K such that any x ∈ K
can be written as

x =
r∑
i=1

βiTr(αix) (1)

In particular, Tr(αiβj) equals 1 if i = j and 0 otherwise.
Let T denote the torus R/Z. This is an abelian group under addition. . For an integer

k > 0, let Uk := 1
pk
Z/Z. Note that Uk is a subgroup of T. Let ι : F → U1 be the

bijection ι(a) = |a|
p (mod 1). This map naturally extends to κ : K→ U1[Z1, Z2, . . . Zr] where

Z1, . . . , Zr are formal variables, by the bijection κ(x) =
∑r
i=1 ι(Tr(αix)) · Zi.

Let e : T→ C be the function e(x) = e2πix. By abuse of notation, we sometimes write
e(x) for x ∈ F to mean e(ι(x)).

2.1 Classical and Non-Classical Polynomials
We start by defining classical polynomials.

I Definition 8. (Classical polynomials over K). We say that P : Kn → K is a classical
polynomial of degree 6 d if there exist coefficients {ci1,...,in ∈ K : i1, . . . , in > 0} such that
for all x ∈ Kn:

P (x) =
∑

i1,...,in>0,
∑

j
ij6d

ci1,...,inx
i1
1 · · ·xinn

where ci1,...,in , x1, . . . , xn ∈ K.

As discussed above, there is a bijection κ : K→ T[Z1, . . . , Zr] where Z1, . . . , Zr are formal
variables. This bijection carries a classical polynomial P : Kn → K of degree 6 d to a
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function of the form:

κ(P (x)) =
r∑
j=1

∑
06i1,...,in:∑

j
ij6d

(
|Tr(αj · ci1,...,in · x

i1
1 · · ·xinn )|

p
(mod 1)

)
· Zj

where ci1,...,in ∈ K. Non-classical polynomials are defined to map to T[Z1, . . . , Zr] and have
a similar representation.

I Definition 9 (Non-classical polynomials over K). We say that Q : Kn → T[Z1, . . . , Zr] is a
non-classical polynomial of degree 6 d and height 6 k if Q can be written as:

Q(x) =
r∑
j=1

γj +
k∑
`=0

∑
06i1,...,in<pr:∑
j
ij6d−`(p−1)

(
|Tr(αj · ci1,...,in,` · x

i1
1 · · ·xinn )|

p`+1 (mod 1)
) · Zj

for some ci1,...,in,` ∈ K and γj ∈ T.

Crucially, note that the coefficients ci1,...,in,` do not depend on j. Also, observe that non-
classical polynomials of height 0 correspond to classical polynomials and that if K = F, this
definition is identical to the one in [48].

In many parts of this paper, we will speak of non-classical polynomials P : Kn → T.
More precisely, this means that we identify K with Frn, and P is actually a non-classical
polynomial over F. In particular, it has the form:

P (x1, . . . , xn) = α+
k∑
`=0

∑
06di,j<p ∀i∈[n],j∈[r]:∑n

i=1

∑r

j=1
di,j6d−k(p−1)

cd1,1,...,dn,r,k

∏n
i=1
∏r
j=1 |Tr(αjxi)|di,j

p`+1 (mod 1)

where α ∈ T and cd1,1,...,dn,r ∈ {0, 1, . . . , p− 1}
A particular type of classical polynomial plays an important role in our analysis.

I Definition 10 (Classical, symmetric, multilinear (CSM) forms). We say that a polynomial
T : (Kn)d → K is in CSMd(Kn) if T (h1, . . . , hd) is of the form

T (h1, . . . , hd) =
∑

i1,...,id∈[n]

c{i1,...,id}h1,i1 · · ·hd,id

where c{i1,...,id} ∈ K and h1, . . . , hd ∈ Kn. T satisfies the following properties
1. Multilinear: Each term in T has the form above.
2. Symmetric: T is invariant with regards to permutations of h1, . . . , hd.
3. Classical: T (h1, . . . , hd) vanishes whenever at least p of the h1, . . . , hd ∈ Kn are equal.

2.2 Additive Derivatives and Weight Degree
Although polynomials are defined in the above section in terms of their global representation,
we will often be interested in local constraints obeyed by functions.

I Definition 11 (Additive derivative and Weight degree). Given a function f : Kn →
T[Z1, . . . , Zr], its additive derivative in direction h ∈ Kn is Dhf : Kn → T[Z1, . . . , Zr],
given by

Dhf(x) = f(x+ h)− f(x).

APPROX/RANDOM’16
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A function P : Kn → T[Z1, . . . , Zr] is said to have weight degree 6 w if for all
x, h1, h2, . . . , hw+1 ∈ Kn,

Dh1Dh2 · · ·Dhw+1P (x) = 0. (2)

If f : Kn → T[Z1, . . . , Zr] and f(x) =
∑r
i=1 fi(x) · Zi, then it is clear that f has weight

degree 6 w if and only if each fi : Kn → T is a non-classical polynomial of degree 6 w (in
the sense of [48]). This is because for functions mapping from a vector space over F to T,
the notion of degree and weight degree coincide. In particular:

I Fact 12. The degree and weight degree of any non-classical polynomial P : Kn → T are
equal.

But what about the relation between degree and weight degree for functions mapping to
T[Z1, . . . , Zr]? Here, we can make two remarks.
I Remark. As mentioned above, a bound of w for the weight degree of a function f =

∑
i fi ·Zi

means that each fi is individually of (weight) degree 6 w, but it does not impose any
relationship whatsoever between the different fi’s. On the other hand, in Definition 9, the
different fi’s are all determined by the same set of coefficients in K.
I Remark. If P : Kn → T[Z1, . . . , Zr] is a non-classical polynomial, then its weight degree
is the maximum weight degree of any of its terms, where the weight degree of a term
Tr(αjci1,...,in,`x

i1
1 ···x

in
n )

p`+1 is `(p− 1) + wt(i1) + wt(i2) + · · ·+ wt(in) and wt(i) for 0 6 i < pr is
the sum of the r digits of i in its p-ary expansion. Hence, if every individual degree ik is less
than p, then the weight degree equals the degree of the polynomial. Also, clearly, the weight
degree is always at most the degree for any non-classical polynomial.

2.3 Bias and Gowers norm
I Definition 13. The bias of a function f : Kn → K is defined as
bias(P ) = |Ex∈Kn e(Tr(P (x)))|.

Here, we could have used any non-trivial additive character instead of the trace, but we
choose this definition for concreteness (without any loss of generality). The Gowers norm of
a function measures the bias of its iterated derivative.

I Definition 14 (Gowers norm). Given a function P : Kn → K and an integer d > 1, the
Gowers norm of order d for P is given by

‖P‖Ud =
∣∣∣∣ E
h1,...,hd,x∈Kn

[e(Dh1 · · ·DhdTr(P (x)))]
∣∣∣∣1/2d .

Note that as ‖f‖U1 = bias(f) the Gowers norm of order 1 is only a semi-norm. However for
d > 1, it is not difficult to show that ‖·‖Ud is indeed a norm. Also, note that ‖P‖Ud > bias(P )
for any d > 1.

We can also write the Gowers norm in a slightly different way which will be convenient
for us.

I Definition 15 (Derivative polynomial). If P : Kn → K is a classical polynomial of degree
d (i.e., some term of P has total degree exactly d), then let the derivative polynomial be
DP : Knd → K defined as DP (h1, . . . , hd) = Dh1Dh2 · · ·DhdP (x), which is independent of x.

I Lemma 16. Let P : Kn → K be a classical polynomial of degree d. Then, DP ∈ CSMd(Kn),
and ‖P‖2dUd = bias(DP ).
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Note that if d were the weight degree instead of the degree in Lemma 16, then DP would
be multilinear in the sense that for any i ∈ [d], DP (hi + h′i, (hj)j 6=i) = DP (hi, (hj)j 6=i) +
DP (h′i, (hj)j 6=i), but individual variables could have degree more than 1 (any power of p) in
DP and so could not be in CSMd(Kn) according to Definition 10.

2.4 Rank
I Definition 17. Let P : Kn → K be a classical polynomial of weight degree w. The
K-rank of P is the smallest integer c such that there exist functions Q1, . . . , Qc : Kn →
T[Z1, . . . , Zr] of weight degree < w and a function Γ : T[Z1, . . . , Zr]c → K such that
P (x) = Γ(Q1(x), . . . , Qc(x)).

We will often restrict to the case when p and r are constant. In this case, we can
look at the collection of polynomials P = {Tr(α1P ), . . . ,Tr(αrP )}. These are non-classical
polynomials of degree w from Frn to T. Then, upto a factor of r, the minimum F-rank of
any nonzero linear combination of the polynomials in P is at most the K-rank of P .

3 Inverse Theorem for Classical Polynomials

In this section, we establish the Gowers Inverse theorem for polynomial phases over growing
field sizes.

I Theorem 18. Let d, p, r, s ∈ N, and K be a field extension of F = Fp with [K : F] = r. Then,
there exists c = c18(d, s) such that the following is true. Consider any classical polynomial
P : Kn → K of degree 6 d such that ‖P‖Ud > |K|−s. Then, there exist non-classical
polynomials R1, . . . , Rc : Kn → T[Z1, . . . , Zr] of weight degrees 6 d − 1 and a function
Γ : T[Z1, . . . , Zr]c → K such that P = Γ(R1, . . . , Rc).

For context, recall Deligne’s multivariate generalization of Weil’s bound which implies that if
d = deg(P ) is a constant, and bias(P ) > |K|−1/2, then P must have weight degree 0. Our
theorem shows the structure of constant-degree polynomials when their bias is smaller but
still lower bounded by an inverse polynomial in K.

An immediate corollary of Theorem 18 is that:

I Corollary 19. Let d, p, r, s ∈ N, and K be a field extension of F = Fp with [K : F] = r.
Then, there exists c = c18(d, s) such that the following is true. Consider any classical
polynomial P : Kn → K of degree and weight degree d such that bias(P ) > |K|−s. Then,
rank(P ) 6 c18(d, s).

It is open how to remove the restriction that the degree and weight degree of P are equal.
We now go on to the proof of Theorem 18.

Proof. Let DP denote the derivative polynomial of P . By Lemma 16,

bias(Tr(DP )) > |K|−s2
d

If the weight degree of P is strictly less than d, we are already done. If not, then DP is a
nonzero polynomial. We will show that there exist non-classical polynomials Q1, . . . , Qc :
Kn → T[Z1, . . . , Zr] of weight degree < d such that for every i ∈ [r],

Tr(αiDP ) = DΓi(Q1, . . . , Qc) (3)
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for some function Γi mapping to F. Therefore, because trace and derivative commute and
using (1):

DP = D

(
r∑
i=1

Γi(Q1, . . . , Qc) · βi

)

In other words, P and
∑r
i=1 Γi(Q1, . . . , Qc) · βi differ by a polynomial of weight degree

6 d− 1, proving the theorem.
Our proof for (3) will heavily use the structure of CSM forms. To this end, let us make a

couple of definitions and observations about operations on CSM forms.

I Definition 20 (Concatenation). Let P ∈ CSMk(Kn) and Q ∈ CSM`(Kn) for integers
k, ` > 1. Then the concatenation operator P ∗Q ∈ CSMk+`(Kn) is defined as

P ∗Q(y1, . . . , yk+`) =
∑

A⊆[k+`],|A|=k

P ((yi)i∈A)Q((yi)i∈[k+`]\A)

I Lemma 21. Given two classical polynomials P : Kn → K and Q : Kn → K, D(P ·Q) =
DP ∗DQ.

I Definition 22 (Symmetric Power). Let d > 2 and P ∈ CSMd(Kn), then for m > 1, the
symmetric power Symm(P ) ∈ CSMmd(Kn) is defined as

Symm(P )(h1, . . . , hmd) =
∑
A

∏
A∈A

P ((hi)i∈A)

where the sum is over all possible partitions A of {1, . . . ,md} into m-equal sized subsets.

I Remark. Note that d > 2 in the definition of symmetric power. If d = 1, then the symmetric
power need not satisfy the third condition in Definition 10 and hence may not be CSM.
I Remark. Below, we’ll apply the symmetric power operation to the trace of a CSMd(Kn)
form, rather than to the form directly. However, note that the trace of a CSM is also classical,
symmetric and multilinear, though now mapping to F.

Now, we continue with the main thread of our proof. Our first step shows the structure
of high-bias CSM forms.

I Theorem 23 (Analog of Theorem 6.6 in [48]). Suppose d > 2 and s > 1. Let T ∈ CSMd(Kn)
such that bias(T (h1, . . . , hd)) > |K|−s. Then, there exists a subspace V ⊆ Kn of codimension
6 r23(d, s) such that restricted to V d, Tr(T ) is a linear combination over F of at most
t23(d, s) expressions of the form:

Symm1(Tr(S1)) ∗ · · · ∗ Symmk(Tr(Sk))

for some m1, . . . ,mk > 1 and 2 6 d1, . . . , dk < d where Sj ∈ CSMdj (V ′) for j ∈ [k] with
m1d1 + · · ·+mkdk = d.

Proof. Our proof is very close to the one by Tao and Ziegler [48]. Where they use the lemma
by Bogdanov and Viola [16] to approximate a biased polynomial by its derivatives, we use
the newer version of this result by Bhowmick and Lovett [13] that gives bounds independent
of field size. By Lemma 3.1 of [13], for any t > 1, we obtain Q1, . . . , Qc : Knd → K and
Γ : Fc → F where c = cBL(d, s, t) such that:

Prx∈Kn [Tr(T (x)) 6= Γ(Tr(Q1(x), . . . ,Tr(Qc(x))))] 6 |K|−t .
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Each Qi here is an additive derivative of T . However, we want an exact representation
of Tr(T ) in terms of lower degree polynomials. Kaufmann and Lovett [37] showed that if
t is large enough in terms of d, and if Tr(Q1), . . . ,Tr(Qc) form a strongly regular factor
in the sense of [37], then in fact, Tr(T ) is exactly a function of Tr(Q1), . . . ,Tr(Qc). We
use the regularization procedure in [12] (Lemma 5.2), which iteratively replaces one of the
polynomials in the current collection Tr(Q1), . . . ,Tr(Qc) with an additive derivative of one
of the polynomials in a chosen direction. We do not repeat the definitions and proofs of
these results as they closely follow previous work. We also note that we can always write
any derivative of a trace of a CSM form in terms of traces of other CSM forms. This follows
from the below claim as trace is linear:

I Claim 24. Let s > 0 be an integer, L ∈ CSMs(Kn), and a ∈ (Kn)s. Then the additive
derivative of L in direction a, DaL, can be written as a linear combination of 2s−1 polynomials
(QS)S⊂[s],S 6=∅, where QS ∈ CSMs−|S|(Kn) and cS > 1.

Proof. We can write

DaL(h1, . . . , hs) = L(h1 + a1, . . . , hs + as)− L(h1, . . . , hs) =
∑
S⊂[s]
S 6=∅

L((hi)i/∈S , (ai)i∈S)

where the second equality follows from multilinearity of T . Now letting
QS := L((hi)i/∈S , (1n)s−|S|) we have that QS ∈ CSMs−|S|(Kn). J

The decomposition into concatenation of symmetric powers follows exactly as in [48]. J

Therefore, applying Theorem 23 with T = DP , we get that for a bounded index subspace
V , Tr(DP ) restricted to V d is a linear combination of a bounded number of expressions of
the form:

Symm1(Tr(S1)) ∗ · · · ∗ Symmk(Tr(Sk)) .

We next note that since DP ∈ CSMd(Kn), Tr(αiDP )(h1, h2, . . . , hd) =
Tr(DP )(αih1, h2, . . . , hd). Also, because S1, . . . , Sk are each CSM, Sj(αih1, h2, . . . , hd)
equals αiSj(h1, h2, . . . , hd) if Sj depends on h1 and equals Sj(h1, h2, . . . , hd) otherwise.
Hence, for every i ∈ [r], we get that restricted to the subspace V , Tr(αiDP ) is a linear
combination of a bounded number of “monomials" of the form:

Symm1(Tr(γi,1S1)) ∗ · · · ∗ Symmk(Tr(γi,kSk)) (4)

where γi,1, . . . , γi,k ∈ K. Crucially, S1, . . . , Sk in all of the above “monomials" are independent
of αi.

Consider any one “monomial" of the form in (4), and we show that there exist non-classical
polynomials Q1, . . . , Qc : Kn → T[Z1, . . . , Zr] of weight degrees < d such that

Symm1(Tr(γi,1S1)) ∗ · · · ∗ Symmk(Tr(γi,kSk)) = D∆i(Q1, . . . , Qk) (5)

for some function ∆i : T[Z1, . . . , Zr]c → F. Restricted to V d, our desired form (3) then
follows from linearity.

We first show a converse to Lemma 16 which resolves the situation when mj = 1.

I Lemma 25. For positive integer d, suppose S ∈ CSMd(Kn). Then there is a degree-d
classical polynomial Q : Kn → K such that DQ = S.

APPROX/RANDOM’16
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Proof. Tao and Ziegler (Lemma 4.5, [48]) show the same result for CSM forms over Fn, and
their proof works without any change. J

The next lemma shows that we can integrate symmetric powers of traces of CSM’s in
terms of non-classical polynomials.

I Lemma 26. Let d > 2 and m > 1, γ1, . . . , γr ∈ K, and let S ∈ CSMd(Kn). Then, there
exists a classical polynomial W : Kn → K of weight degree 6 md such that DTr(αiW ) =
Symm(Tr(γiS)) for all i ∈ [r]. Moreover, if m > 2, then W is a function of a non-classical
polynomial of degree < md.

We defer the proof of Lemma 26 to Section 3.1 but we first explain how to complete the
proof of Theorem 18. Applying Lemma 26 on each term in the concatenation product in (5),
we get for all j ∈ [k], classical polynomials Wj : Kn → K of weight degree 6 mjdj such that
DTr(αiWj) = Symmj (Tr(γi,jSj)), so that the expression in (4) is the derivative polynomial
of U =

∏k
j=1 Tr(αiWj) by Lemma 21. Note that if k > 1, then U is already a function of

more than one classical polynomial of weight degree < d. Otherwise, if k = 1, then m1 > 2
(as d > 2 and d1 < d), and so, U is a function of the non-classical polynomial of degree (and
hence, weight degree) < d determining W1 that is guaranteed to exist by Lemma 26.

We have proved Theorem 18 when all the variables are drawn from V , a subspace of
Kn of co-dimension t 6 t23. We have shown that we have a degree-d classical polynomial S
measurable in non-classical polynomials {R̃1, . . . , R̃C} of weight degrees 6 d− 1 such that
DP = DS on the bounded index subspace V . We can extend the last statement to the
subspace Kn by using a simple derivative trick. Suppose h′1, · · · , h′t are representatives of
the quotient group Kn/V . Thus for any x ∈ Kn, we can have a i ∈ [K] such that x− h′i ∈ V .
We can write

S(x) = S(x− h′i)−D−h′iS(x)

for x and note that deg(D−h′
i
S) < d. This implies that over Kn, S is measurable in

{D−h′1S, . . . ,D−h′tS, R̃1, . . . , R̃C : Kn → T[Z1, . . . , Zc]} and DP = DS. Now, by letting
Q = S and P ′ = P − S, then DP ′ = 0, meaning that weighted degree of P ′ is less than d,
which concludes the proof. J

I Remark. It is worth noticing that in fact, the proof shows that for every i ∈ [r], Tr(αiP )
also has F-rank bounded by c18(d, s), provided that P has degree and weight degree d.

3.1 Proof of Lemma 26
Proof. Our proof follows the outline of the proof of Lemma 6.4 in [48] but with some
modifications.

Apply Lemma 25 to get that there is a classical polynomial R : Kn → K of degree d
such that DR = S. Let M > 0 be an integer such that pM 6 m < pM+1. There exists
a degree-(d+M(p− 1)) polynomial R̃M : Kn → T[Z1, . . . , Zr] such that pM · R̃M = κ(R).
And then we pull down the polynomial R̃M to the cyclic group (Z/pM+1Z)r and we obtain
a degree-(d+M(p− 1)) polynomial RM : Kn →

(
Z/pM+1Z

)r such that RM = R (mod p).
Define δi,j = |Tr(γiαj)| where i, j ∈ [r], and thus γi =

∑
j δi,jβj . Let

W =
r∑
i=1

(
r∑
j=1

δi,j(RM )j
m

)
(mod p)

 · βi
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where (RM )j denotes the jth component of RM . Define

Wαi = Tr(αiW ) =
( r∑
j=1

δi,j(RM )j
m

)
(mod p)

We claim that
1. deg(Wαi) 6 md.
2. DWαi = Symm(γi,jDR).
Parts 1 and 2 together imply that the weight degree of (W ) is at most md. Fix any i ∈ [r]
and define S =

∑r
j=1 δi,j(RM )j . The last part of the theorem follows from the fact that

d+M(p− 1) < md when m > 1 and that Q can be expressed as a function of R̃M which is
of degree d+M(p− 1). Part 1 will be a special case of the following claim, that is, when
j = 0 and m′ = m.

I Lemma 27. Let j > 0 and m′ 6 m be some parameters. Then

deg
((

Dh1 · · ·DhjS

m′

)
(mod p)

)
6 d− j + (m′ − 1) ·max(d− j, 1).

Proof. We break the claim into two cases:

Case i. (d− j+ (m′ − 1)·max(d− j, 1) < 0): In particular, this implies that m′ < j−d.
We need to show that

(Dh1 ···DhjS
m′

)
is divisible by p. Since deg(S) = d + M(p − 1) then

deg(Dh1 · · ·DhjS) 6 d− j +M(p− 1) for any h1, . . . , hj ∈ Kn. And, it is divisible by pa+1

whenever 0 6 a 6M and d− j + a(p− 1) < 0. In particular, if we choose a = bm
′−1
p−1 c, then

Dh1 · · ·DhjS is divisible by pb
m′−1
p−1 c+1. Observe that

(
n
m

)
(mod p) is divisible by p if n is

divisible by pa and m < pa. Since m′ < pb
m′−1
p−1 c+1 = pa+1, we obtain our claim.

Case ii. (d− j+(m′ −1)·max(d− j, 1) > 0): We will prove this by downward induction
on j. The claim is already true for sufficiently large values of j, so we assume inductively
that the claim is proven for all larger values of j; and for fixed j, we assume inductively that
the claim is proven for all smaller m′. It suffices to show that the expression

deg
(
Dhj+1

(
Dh1 · · ·DhjS

m′

)
(mod p)

)
6 (d− j + (m′ − 1) ·max(d− j, 1)− 1

holds ∀hj+1 ∈ Kn. We will use the combinatorial identity
(
r+s
m

)
=

m∑
i=0

(
r
i

)(
s

m−i
)
and then we

see that

Dh

(
F

m

)
=

m∑
i=1

(
DhF

i

)(
F

m− i

)
for h ∈ Kn and F : Kn → Z/pM+1Z. We can therefore write

Dhj+1

(
Dh1 · · ·DhjS

m′

)
=

m′∑
i=1

(
Dh1 · · ·Dhj+1S

i

)(
Dh1 · · ·DhjS

m′ − i

)
where the both sides of the above equality is over mod p. Now for each summand, we apply
the two induction hypothesis and conclude that the degree of the first factor in the right-hand
side is 6 d− (j + 1) + (i− 1)max(d− (j + 1), 1) and the degree of the second factor in the
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right-hand side is 6 d− j + (m′ − i− 1)max(d− j, 1) and thus the degree of the right-hand
side is atmost

(d− (j + 1) + (i− 1) max(d− (j + 1), 1)) + (d− j + (m′ − i− 1) max(d− j, 1))
6 d− j + (m′ − 1) max(d− j, 1)− 1

whenever i > 1 (by handling the cases d− j > 1 and d− j 6 1 separately), and this concludes
the claim that deg(Wαi) 6 md. J

Now we prove the part 2. We know that

Dh

(
S

m

)
=

m∑
i=1

(
DhS

i

)(
S

m− i

)
for any h ∈ Kn. By the above computations, the polynomial

(
DhS
i

)(
S

m−i
)
has degree

6 d− 1 + (i− 1)(d− 1) + d+ (m− i− 1)d = md− i.

In particular, all the terms of i > 1 have degree < mk − 1 and thus will not contribute to
D
(
S
m

)
. The i = 1 term can be simplified as DhTr(γiR)

(
S

m−1
)
by using the equality

Tr(γi ·R) = Tr
(
(

r∑
i=1

δi,jβi) · (
r∑
j=1

(R)jαj)
)

=
r∑
j=1

δi,j · (R)j

We conclude that

DWαi(h1, . . . , hmd) = D
(
Dhmd

(
S

m

))
(h1, . . . , hmd−1)

= D
((
DhmdTr(γiR)

)
·
(

S

m− 1

))
(h1, . . . , hmd−1)

=
(
D
(
DhmdTr(γiR)

)
∗D
(

S

m− 1

))
(h1, . . . , hmd−1)

=
∑

16i1<···<id−1<md

D
(
DhmdTr(γiR)

)
(hi1 , . . . , hid−1 , hmd) ·D

(
S

m− 1

)
(hj1 , . . . , hjmd−d)

where 1 6 j1 < · · · < jmd−d < md are such that {j1, . . . , jmd−d} = {1, . . . ,md − 1} \
{i1, . . . , id−1} and by Lemma 21, we have the second equality. Now, by induction on m, we
have our claim 2. J

4 Equidistribution of regular factors

Our results in this section imply that a high rank collection of polynomials is “as random as
possible”, subject to the degree and depth bounds of its defining polynomials. We first make
some necessary definitions.

4.1 Definitions
A linear form on k variables is a vector L = (w1, w2, . . . , wk) ∈ Kk that is interpreted as a
function from (Kn)k to Kn via the map (x1, . . . , xk) 7→ w1x1 + w2x2 + · · ·+ wkxk. A linear
form L = (w1, w2, . . . , wk) is said to be affine if w1 = 1. From now, linear forms will always
be assumed to be affine. We define wt of a linear form L = (w1, . . . , wk) to be

∑k
i=2 wt(wi).

We specify a partial order � among affine forms. We say (w1, . . . , wk) � (w′1, . . . , w′k) if
|Tr(αjwi)| 6 |Tr(αjw′i)| for all i ∈ [k], j ∈ [r].
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I Definition 28 (Affine constraints). An affine constraint of size m on k variables is a tuple
A = (L1, . . . , Lm) ofm affine forms L1, . . . , Lm over F on k variables, where: L1(x1, . . . , xk) =
x1. Moreover, it is said to be weight-closed if for any affine form L belonging to A, if L′ � L,
then L′ also belongs to A.

Observe that a weight-closed affine constraint is of bounded size if and only if all its affine
forms are of bounded weight.

Next, we define polynomial factors which play a big role in higher-order Fourier anal-
ysis. Here, we restrict ourselves to non-classical polynomials mapping to T (instead of
T[Z1, . . . , Zr]), essentially because throughout we mainly care about the case of constant r.

I Definition 29 (Factor). A polynomial factor B is a sequence of non-classical polynomials
P1, . . . , PC : Kn → T. We also identify it with the function B : Kn → TC mapping x to
(P1(x), . . . , PC(x)). An atom of B is a preimage B−1(y) for some y ∈ TC . When there is no
ambiguity, we will in fact abuse notation and identify an atom of B with the common value
B(x) of all x in the atom.

The partition induced by B is the partition of Kn given by
{
B−1(y) : y ∈ TC

}
. The

complexity of B, denoted |B|, is the number of defining polynomials C. The order of B,
denoted ‖B‖, is the total number of atoms in B. The degree of B is the maximum degree
among its defining polynomials P1, . . . , PC .

Note that due to Definition 9, if B is defined by polynomials P1, . . . , PC ,

‖B‖ =
C∏
i=1

pdepth(Pi)+1 .

From henceforth, since we will work only with non-classical polynomials P : Kn → T,
rank will denote their F-rank.

I Definition 30 (Rank and Regularity of Polynomial Factor). Let B be a polynomial factor
defined by the sequence P1, . . . , Pc : Kn → T with respective depths k1, . . . , kc. Then, the
rank of B is min(a1,...,ac) rank(

∑c
i=1 aiPi) where the minimum is over (a1, . . . , ac) ∈ Zc such

that (a1 mod pk1+1, . . . , ac mod pkc+1) 6= (0, . . . , 0) .
Given a polynomial factor B and a non decreasing function r : Z+ → Z+, B is r-regular

if B is of rank at least r(|B|).

I Definition 31 (Semantic and Syntactic refinement). Let B and B′ be polynomial factors.
A factor B′ is a syntactic refinement of B, denoted by B′ �syn B if the set of polynomials
defining B is a subset of the set of polynomials defining B′. It is a semantic refinement,
denoted by B′ �sem B if for every x, y ∈ Kn, B′(x) = B′(y) implies B(x) = B(y). Clearly, a
syntactic refinement is also a semantic refinement.

Our next lemma is the workhorse that allows us to convert any factor into a regular one.

I Lemma 32 (Polynomial Regularity Lemma). Let r : Z+ → Z+ be a non-decreasing function
and d > 0 be an integer. Then, there is a function C(r,d)

32 : Z+ → Z+ such that the following is
true. Suppose B is a factor defined by polynomials P1, . . . , PC : Kn → T of additive degree at
most d. Then, there is an r-regular factor B′ consisting of polynomials Q1, . . . , QC′ : Kn → T
of additive degree 6 d such that B′ �sem B and C ′ 6 C

(r,d)
32 (C).

Moreover, if B is itself a refinement of some polynomial factor B̂ that has rank >

(r(C ′) + C ′), then additionally B′ will be a syntactic refinement of B̂.

Proof. Follows directly from Lemma 2.18 of [9] by identifying Kn with Frn. J
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In fact, the regularization process of Lemma 32 can be implemented in time O(nd+1) [12].
Finally, we’ll use the Gowers inverse theorem proved by Tao and Ziegler [48] for non-

classical polynomials mapping to T.

I Theorem 33 (Theorem 1.20 of [48]). Suppose δ > 0 and d > 1 is an integer. There exists
an r = r33(δ, d) such that the following holds. If a non-classical polynomial P : Kn → T with
degree d satisfies ‖P‖Ud > δ, then rank(P ) 6 r.

4.2 Equidistribution results
Let us start with the following simple observation.

I Lemma 34. Given ε > 0, let B be a polynomial factor of degree d > 0, complexity C and
rank r34(d, ε), defined by a sequence of non-classical polynomials P1, . . . , PC : Kn → T having
respective depths k1, . . . , kC . Suppose α = (α1, . . . , αC) ∈ Uk1+1 × · · · × UkC+1. Then:

Prx[B(x) = α] = 1
‖B‖

± ε.

Proof. This is standard. See for example lemma 3.2 of [9]. J

In our applications though, we will often need not just B(x) to be nearly uniformly
distributed but the tuple (B(x) : x ∈ H) for a set H ⊆ Kn to be nearly uniformly distributed.
In particular, we consider the case when H is an affine subspace of Kn. The following lemma
is key.

I Lemma 35 (Near orthogonality). Let A = (L1, . . . , Lm) be a weight-closed affine constraint
of bounded size on ` variables. Suppose B is a polynomial factor of degree d and rank
> r(33)(d, δ), defined by the sequence of non-classical polynomials P1, . . . , Pc : Kn → T. Let
Λ = (λij)i∈[c],j∈[m] be a tuple of integers. Define:

PΛ(x1, . . . , xk) =
∑

i∈[c],j∈[m]

λijPi(Lj(x1, . . . , x`)).

Then one of the following is true.
1. For every i ∈ [c], it holds that

∑
j∈[m] λijQi(Lj(·)) ≡ 0 for all polynomials Qi : Kn → T

with the same degree and depth as Pi. Clearly, this implies PΛ ≡ 0.
2. PΛ 6≡ 0. Moreover, bias(PΛ) 6 δ.

Proof. For j ∈ [m], let (wj,1, . . . , wj,`) ∈ K` denote the affine form given by Lj . Note that
wj,1 = 1.

For each i, we do the following. If for some j, we have wt(Lj) > deg(λi,jPi), λi,j 6= 0,
then, Lj(x1, . . . , x`) = x1 +

∑`
i=2 (

∑r
k=1 ui,k · βk)xi where β is the dual basis to α, each

ui,k ∈ [0, p− 1] and
∑
i,k ui,k > deg(λi,jPi). Using Definition 2, we can replace λi,jPi(Lj) by

a Z-linear combination of Pi(Lj′) where Lj′ � Lj until no such j exists. This is where we use
the fact that the affine constraint is weight-closed. Suppose the new coefficients are denoted by
(λ′i,j). If the λ′i,j are all zero, then for every i ∈ [c] individually,

∑
j∈[m] Pi(Lj(x1, . . . , x`)) ≡ 0.

Indeed,
∑
j∈[m]Qi(Lj(x1, . . . , x`)) ≡ 0 for any Qi with the same degree and depth, as the

transformation from λi,j to λ′i,j did not use any other information about Pi.
Else some λ′i,j 6= 0. Also, wtα(Lj) 6 deg(λ′i,jPi). Then we show the second part of the

lemma, that is |E[e(PΛ(x1, . . . , xk)]| 6 δ.
Suppose without loss of generality that the following is true.
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λ′i,1 6= 0 for some i ∈ [C].
L1 is maximal in the sense that for every j 6= 1, either λ′i,j = 0 for all i ∈ [C] or
wtα(wj,s) < wtα(w1,s) for some s ∈ [`].

For a = (a1, . . . , a`) ∈ K` and y ∈ Kn and P : Kn → T, define

Da,yP (x1, . . . , x`) = P (x1 + a1y, . . . , x` + a`y)− P (x1, . . . , x`).

Then

Da,y(Pi ◦ Lj)(x1, . . . , x`) = (DLj(a)yPi)(Lj(x1, . . . , x`)).

Let ∆ = wtα(L1) 6 d. Define a1, . . . , a∆ be the set of vectors of the form
(−w, 0, . . . , 1, 0, . . . , 0) where 1 is in the ith coordinate for i ∈ [2, `] and for all w ∈ K
satisfying 0 6 wtα(w) < wtα(w1,i). Note that 〈L1, ak〉 6= 0 for k ∈ [∆] but for any j > 1
there exists some k ∈ [∆] such that 〈Lj , ak〉 = 0. Thus,

E
y1,...,y∆,x1,...,x`

[
e
(
(Da∆,y∆ . . . Da1.y1PΛ)(x1, . . . , x`)

)]
=

∥∥∥∥∥
C∑
i=1

λ′i,1Pi

∥∥∥∥∥
2∆

U∆

.

The rest of the analysis is same as Theorem 3.3 in [9] and we skip it here. J

We can now use Lemma 35 to prove our result on equidistribution of regular factors over
affine subspaces of Kn.

I Theorem 36. Let ε > 0. Let B be a polynomial factor defined by non-classical polynomials
P1, . . . , Pc : Kn → T with respective degrees d1, . . . , dc ∈ Z+ and depths k1, . . . , kc ∈ Z>0.
Suppose B has rank at least r(33)(d, ε) where d = max(d1, . . . , dc). Let A = (L1, . . . , Lm)
be a weight-closed affine constraint. For every i ∈ [c], define Λi to be the set of tuples
(λ1, . . . , λm) ∈ [0, pki+1− 1] such that

∑m
j=1 λjQi(Lj(·)) ≡ 0 for all non-classical polynomials

Qi with the same degree and depth as Pi.
Consider (αi,j : i ∈ [c], j ∈ [m]) ∈ Tcm such that for every i ∈ [c] and for every

(λ1, . . . , λm) ∈ Λi,
∑m
j=1 λjαi,j = 0. Then:

Prx1,...,x`∈Kn [B(Lj(x1, . . . , x`)) = (α1,j , . . . , αc,j) ∀j ∈ [m]] =
∏c
i=1 |Λi|
‖B‖m

± ε

Proof.

Prx1,...,x`∈Kn [B(Lj(x1, . . . , x`)) = (α1,j , . . . , αc,j) ∀j ∈ [m]]

= E
x1,...,x`

∏
i,j

1
pki+1

pki+1−1∑
λi,j=0

e(λi,j(Pi(Lj(x1, . . . , x`))− αi,j))


=
(∏

i

p−(ki+1)

)m ∑
(λi,j)

∈
∏

i,j
[0,pki+1−1]

e

−∑
i,j

λi,jαi,j

E

e
∑

i,j

λi,jPi(Lj(x1, . . . , x`))



= p−m
∑c

i=1
(ki+1) ·

(
c∏
i=1
|Λi| ± εpm

∑c

i=1
(ki+1)

)
The last line is due to the observation that from Lemma 35,∑c

i=1
∑m
j=1 λi,jPi(Lj(x1, . . . , x`)) ≡ 0 if and only if for every i ∈ [c], (λi,1, . . . , λi,m) ∈ Λi

(mod pki+1). So,
∑
i,j λi,jPi(Lj(·)) is identically 0 for

∏
i |Λi| many tuples (λi,j) and for

those tupes,
∑
i,j λi,jαi,j = 0 also. J
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Note that in Theorem 36, if ε is a constant, m needs to be bounded for the claim to be
non-trivial, which in turn requires that the affine forms in L be of bounded weight.

4.3 Preservation of Locally Characterized Properties
4.3.1 Local Characterization
As described in the introduction, by a locally characterized property, we informally mean a
property for which non-membership can be certified by a finite sized witness. Specifically for
affine-invariant properties, we define:

I Definition 37 (Locally characterized properties).
An induced affine constraint of size m on ` variables is a pair (A, σ) where A is an affine
constraint of size m on ` variables and σ ∈ [R]m.
Given such an induced affine constraint (A, σ), a function f : Kn → [R] is said to be (A, σ)-
free if there exist no x1, . . . , x` ∈ Kn such that (f(L1(x1, . . . , x`)), . . . , f(Lm(x1, . . . , x`))) =
σ. On the other hand, if such x1, . . . , x` exist, we say that f induces (A, σ) at x1, . . . , x`.
Given a (possibly infinite) collection A = {(A1, σ1), (A2, σ2), . . . , (Ai, σi), . . . } of induced
affine constraints, a function f : Kn → [R] is said to be A-free if it is (Ai, σi)-free for
every i > 1. The size of A is the size of the largest induced affine constraint in A.
Additionally, A = {(A1, σ1), (A2, σ2), . . . , (AK , σK)} is a W -light affine system if there
exists a basis α = (α1, . . . , αr) such that wtα(Ai) 6W for all i ∈ [K].
A property P ⊆ {Kn → [R]} is said to be K,W -lightly locally characterized if it is
equivalent to A-freeness for some W -light affine system A whose size is 6 K.

We recall that Kaufman and Ron [38] show that:

I Theorem 38 ([38]). The property Pd = {P : Kn → K : deg(P ) 6 d} is qd(d+1)/(q−q/p)e,

pr d(d+ 1)/(q − q/p)e-lightly locally characterized.

4.3.2 Main Result on Property Preservation
I Theorem 39. Let P ⊂ {Kn → K} be a K,W -lightly locally characterized property. For
an integer d, suppose P1, . . . , Pc : Kn → T are polynomials of additive degree 6 d, forming a
factor of rank > r39(d,K), and Γ : Tc → K is a function such that F : Kn → K defined by
F (x) = Γ(P1(x), . . . , Pc(x)) satisfies P.

For every collection of additive polynomials Q1, . . . , Qc : Kn → T with deg(Qi) 6
deg(Pi) and depth(Qi) 6 depth(Pi) for all i ∈ [c], if G : Kn → K is defined by G(x) =
Γ(Q1(x), . . . , Qc(x)), then G ∈ P too.

Proof. For the sake of contradiction, suppose G /∈ P. Then, for a weight-closed affine con-
straint consisting of K ′ linear forms L1, . . . , LK′ , there exist x1, . . . , x` such that
(G(L1(x1, . . . , x`)), . . . , G(LK′(x1, . . . , x`))) which form a witness to G 6∈ P . Note thatK ′ is a
function of only K andW because the affine forms characterizing P can be made weight 6W

by a choice of basis for K over F and then completed into a weight-closed constraint. So, there
exists x1, . . . , x` ∈ Kn such that the tuple B = (Qi(Lj(x1, . . . , x`)) : j ∈ [K ′], i ∈ [c]) ∈ TcK′

is a proof of the fact that G 6∈ P.
Now we argue that there exist x′1, . . . , x′` such that (Pi(Lj(x′1, . . . , x′`)) : i ∈ [c], j ∈ [K])

equals B, thus showing that F 6∈ P , a contradiction. Notice that B satisfies the conditions
required of α in Theorem 36. So by Theorem 36,

Prx′1,...,x′` [(Pi(Lj(x′1, . . . , x′`) : i ∈ [c], j ∈ [K]) = B] > 0
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if the rank of the factor formed by P1, . . . , Pc is more than r(33)
(
d, 1

2‖B‖K

)
, where ‖B‖ =

p
∑c

i=1
(depth(Pi)+1). J

In our applications, we will use Theorem 39 for the property of having bounded degree,
which is lightly locally characterized by Theorem 38.

5 List decoding of RM codes

We state the following corollary which we need in the proof to follow. We only state a special
case of it which is enough.

I Corollary 40 (Corollary 3.3 of [14]). Let g : K → K, ε > 0. Then there exist c 6 1/ε2

functions h1, h2, . . . , hc ∈ RMK(n, d) such that for every f ∈ RMK(n, d), there is a function
Γf : Kc → K such that

Prx[Γf (h1(x), . . . , hc(x)) = f(x)] > Prx[g(x) = f(x)]− ε.

I Theorem 2 (restated). Let K = Fq be an arbitrary finite field. Let ε > 0 and d, n ∈ N.
Then,

`K(d, n, δK(d)− ε) 6 cq,d,ε.

Proof. We follow the proof structure in [14]. Let g : Kn → K be a received word. Apply
Corollary 40 with approximation parameter ε/2 gives H0 = {h1, . . . , hc} ⊆ RMK(n, d),
c 6 4/ε2 such that, for every f ∈ RMK(n, d), there is a function Γf : Kc → K satisfying

Pr[Γf (h1(x), h2(x), . . . , hc(x)) = f(x)] > Pr[g(x) = f(x)]− ε/2.

B

Pr[Γ′f (Tr(αihj(x)) : 1 6 i 6 r, 1 6 j 6 c) = F (Tr(αif(x)) : 1 6 i 6 r)] > d/q + ε/2,

where Γ′f : F → K and F : Fr → K. From here onwards, we identify F with U1. Let
H = {Tr(αihj(x)) : 1 6 i 6 r, 1 6 j 6 c} and HF = {Tr(αif(x)) : 1 6 i 6 r)}.

Let r1, r2 : N→ N be two non decreasing functions to be specified later, and let C(32)
r,d be

as given in Lemma 32. We will require that for all m > 1,

r1(m) > r2(C(32)
r2,d

(m+ 1)) + C
(32)
r2,d

(m+ 1) + 1. (6)

As a first step, we r1-regularize H by Lemma 32. This gives an r1-regular factor B′
of degree at most d, defined by polynomials H1, . . . ,Hc : Kn → T, c′ 6 C

(32)
r1,d

(cr) and
rank(B′) > r1(c′). We denote H′ = {H1, . . . ,Hc′}. Let depth(Hi) = ki for i ∈ [c′]. Let
Gf : ⊗c′i=1Uki+1 → U1 be defined such that

Γf (h1(x), . . . , hc(x)) = Gf (h′1(x), . . . , h′c′(x)).

Next, given any polynomial f : Kn → K of degree at most d, we will show that if
Pr[f(x) 6= g(x)] 6 δ(d)− ε, then f is measurable with respect to H′ and this would upper
bound the number of such polynomials by c′(q, d, ε) independent on n.

Fix such a polynomial f . Call Fi = Tr(αif). Appealing again to Lemma 32, we r2-
regularize Bf := B′

⋃
HF . We get an r2-regular factor B′′ �syn B′ defined by the collection
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H′′ = {H1, . . . ,Hc′ , H
′
1, . . . ,H

′
c′′}. Note that it is a syntactic refinement of B′ as by our

choice of r1,

rank(B′) > r1(c′) > r2(C(32)
r2,d

(c′ + 1)) + C
(32)
r2,d

(c′ + 1) + 1 > r2(|B′′|) + |B′′|+ 1.

We will choose r2 such that for all m > 1,

r2(m) = max

r(34)
d

 ε/4(
pb

d−1
p−1 c+1

)m
 , r

(39)
d (m)

 . (7)

Since each Fi is measurable with respect to B′′, there exists F ′ : S → U1 such that

f(x) = F ′(H1(x), . . . ,Hc′(x), H ′1(x), . . . ,H ′c′′(x)).

Summing up, we have

Pr[G(H1(x), H2(x), . . . ,Hc′(x)) = F ′(H1(x), . . . ,Hc′(x), H ′1(x), . . . ,H ′c′′(x))] > d/q+ε/2.

We next show that we can have each polynomial in the factor have a disjoint set of inputs.
This would simplify the analysis considerably.

I Claim 41. Let xi, yj , i ∈ [c′], j ∈ [c′′] be pairwise disjoint sets of n ∈ N variables each. Let
n′ = n(c′ + c′′). Let f̃ : Kn′ → K and g̃ : Kn′ → K be defined as

f̃(x) = F (H1(x1), . . . ,Hc′(xc
′
), H ′1(y1), . . . ,H ′c′′(yc

′′
))

and

g̃(x) = G(H ′1(x1), . . . ,Hc′(xc
′
)).

Then deg(f̃) 6 d and∣∣Prx∈Fn′ [f̃(x) = g̃(x)]−Prx∈Fn [f(x) = Gf (h′1(x), h′2(x), . . . , h′c(x))]
∣∣ 6 ε/4.

Proof. The bound deg(f̃) 6 deg(f) 6 d follows from Lemma 39. To establish the bound on
Pr[f̃ = g̃], for each s ∈ S let

p1(s) = Prx∈Fn [(h′1(x), . . . , h′c′(x), h′′1(x), . . . , h′′c′′(x)) = s].

Applying Lemma 34 and since our choice of r2 satisfies rank(H′′) > r
(34)
d (ε/4|S|), we have

that p1 is nearly uniform over S,

p1(s) = 1± ε/4
|S|

.

Similarly, let

p2(s) = Prx1,...,xc′ ,y1,...,yc′′∈Fn [(h′1(x1), . . . , h′c′(xc
′
), h′′1(y1), . . . , h′′c′′(yc

′′
)) = s].

Note that the rank of the collection of polynomials {h′1(x1), . . . , h′c′(xc
′), h′′1(y1), . . . , h′′c′′(yc

′′)}
defined over Fn′ cannot be lower than that of H′′. Applying Lemma 34 again gives

p2(s) = 1± ε/4
|S|

.
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For s ∈ S, let s′ ∈ ⊗c′i=1Uki+1 be the restriction of s to first c′ coordinates, that is,
s′ = (s1, . . . , sc′). Thus

Prx∈Fn′ [f̃(x) = g̃(x)] =
∑
s∈S

p2(s)1F (s)=Gf (s′)

=
∑
s∈S

p1(s)1F (s)=Gf (s′) ± ε/4

= Prx∈Fn [f(x) = Gf (h′1(x), h′2(x), . . . , h′c(x))]± ε/4.

J

So, we obtain that

Prx∈Fn′ [f̃(x) = g̃(x)] > Prx∈Fn [f(x) = Gf (h′1(x), . . . , h′c′(x))]− ε/4 > 1− δ(d) + ε/4.

Next, we need the following variant of the Schwartz-Zippel lemma from [14].

I Claim 42. Let d, n1, n2 ∈ N. Let f1 : Kn1+n2 → K and f2 : Kn1 → K be such that
deg(f1) 6 d and

Pr[f1(x1, . . . , xn1+n2) = f2(x1, . . . , xn1)] > 1− δ(d)

Then, f1 does not depend on xn1+1, . . . , xn1+n2 .

With Claim 42 applied to f1 = f̃ , f2 = g̃, n1 = nc′, n2 = nc′′. We obtain that f̃ does not
depend on y1, . . . , yc

′′ . Hence,

f̃(x1, . . . , xc
′
, y1, . . . , yc

′′
) = F (H ′1(x1), . . . ,H ′c′(xc

′
), C1, . . . , Cc′′)

where Cj = H ′′j (0) for j ∈ [c′′]. If we substitute x1 = . . . = xc
′ = x we get that

f(x) = F (H ′1(x), . . . ,H ′c′(x), H ′′1 (x), . . . ,H ′′c′′(x)) = F (H ′1(x), . . . ,H ′c′(x), C1, . . . , Cc′′),

which shows that f is measurable with respect to H′, as claimed. J

6 Polynomial decomposition

We first formally define the problem for which we claim a polynomial time algorithm.

I Definition 43. Given k ∈ N and ∆ = (∆1, . . . ,∆k) ∈ Nk and a function Γ : Kk → K, a
function P : Kn → K is (k,∆,Γ)-structured if there exist polynomials P1, . . . , Pk : Kn → K
with deg(Pi) 6 ∆i such that for x ∈ Kn, we have

P (x) = Γ(P1(x), . . . , Pk(x)).

The polynomials P1, . . . , Pk form a (k,∆,Γ)-decomposition.

The main result we prove is the following.

I Theorem 44. Let k ∈ N. For every ∆ = (∆1, . . . ,∆k) ∈ Nk and every function Γ : Kk → K,
there is a randomized algorithm A that on input P : Kn → K of degree d, runs in time
polyq,k,∆(nd+1) and outputs a (k,∆,Γ)-decomposition of P if one exists while otherwise
returning NO.

APPROX/RANDOM’16
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We first show that the notion of rank is robust to hyperplane restrictions over nonprime
fields. More precisely, we have the following.

I Lemma 45. Let P : Kn → T be a non-classical polynomial such that rank(P ) > r. Let H
be a hyperplane in Kn. Then the restriction of P to H has rank at least r − q.

Proof. Without loss of generality, let H be defined by x1 = 0. Let P ′ : Kn−1 → T
be the restriction of P defined by P ′(y) = P (0y). Let π : Kn → Kn−1 be the map
π(x1x2 . . . xn) = x2 . . . xn. Let P ′′ : Kn → T be defined by P ′′(x) = P (x) − P ′ ◦ π. Then
P ′′(x) = 0 for x ∈ H. For i ∈ K \ {0}, let hi = (i, 0, . . . , 0). Then, for y ∈ H, define
Rj : Kn → T by

Rj(y) = P ′′(y + hj) = (DhjP
′′)(y).

Note that deg(Rj) 6 d− 1. Now, since P (x) = P ′′(x) + P ′ ◦ π(x), we have

P (x) = Γ(P ′ ◦ π, x1, {Ry(x) : y ∈ F}).

Now, if rank(P ′) 6 r, then rank(P ′ ◦ π) 6 r and hence rank(P ) 6 r + q. This finishes the
proof. J

We now start with the proof of Theorem 44.

Proof. Let R1 : N→ N be defined as R1(m) = R2(c(R1,d)
32 (m+k)) + c

(R1,d)
32 (m+k) + q where

R2 : N→ N will be specified later.
We have that P (x) =

∑
i βiTr(αiP (x)) for the dual basis β1, . . . , βr. Set fi(x) =

Tr(αiP (x)). Identifying F with U1 we treat fi : Kn → T. Regularize {f1, . . . , fr} using the
algorithm of [12] to find R1-regular B = {g1, . . . , gC : Kn → T} where C 6 c

(R1,d)
32 (r). So,

fi(x) = Gi(g1(x), . . . , gC(x)) and P (x) =
∑
i αiGi(g1(x), . . . , gC(x)). Thus, if n 6 Cd, then

we are done by a brute force search.
Else, n > Cd. For each gi, pick a monomial mi with degree deg(Pi). Then there is i0 ∈ [n]

such that xi0 does not appear in any gi. Set g′i := gi|xi0 = 0. Let B′ be the factor defined by
the g′is. Note that deg(g′i) = deg(gi) and depth(g′i) = depth(gi). Also, by Lemma 45, B′ is
R1 − q-regular.

Now, using recursion, we solve the problem on n − 1 variables. That is, decide if for
P ′ := P |xi0 = 0 is (k,∆,Γ)-structured. If P ′ is not, then P is not either, so we are done.
Else, suppose the algorithm does not output NO.

Say

P ′(x) = Γ(S1(x), . . . , Sk(x)) = Γ′(Tr(αjSi(x)) : i ∈ [k], j ∈ [r]),

where

Γ′(aij : i ∈ [k], j ∈ [r]) = Γ(
∑
j

αiaij : i ∈ [k]).

Note that while Γ : Kk → K, we have Γ′ : Fkr → K. Let B1 be the factor formed by
{Tr(αjSi)}. Via the algorithm of [12], regularize B′ ∪ B1 using R2 : N → N and we get a
syntactic refinement B′ ∪ B′1 by the choice of R1. Let B′1 = {s′1, . . . , s′D}. where

Tr(αjSi) = Gij(g′i, s′j : i ∈ [C], j ∈ [D]).
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Choose R2 large enough such that the map induced by B′ ∪ B′1 is surjective. Now, fix any
` ∈ [r]. Then,

Tr(α`P ′) = G`(g′1, . . . , g′C) = F`(Gij(g′i, s′j)),

where F` = Tr(α`Γ′). Thus, for a1, . . . , aC , b1, . . . bD ∈ F,

G`(a1, . . . , aC) = F`(Gij(a1, . . . , bD) : i ∈ [C], j ∈ [D]).

Substituting, ai = gi(x) and bj = 0 we have

Tr(α`P ) = G`(g1, . . . , gC) = F`(Gij(gi, 0)).

Now,

Tr(α`P ) = Tr(α`Γ(Qi : i ∈ [k])),

where Qi(x) =
∑r
j=1 αjGij(g′i, . . . , 0).

Since, this is true for all ` ∈ [r], we have

P (x) = Γ(Q1(x), . . . , Qk(x)).

where Qi is defined as above. This finishes the proof. J
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