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Abstract
According to physics predictions, the free energy of random factor graph models that satisfy a
certain “static replica symmetry” condition can be calculated via the Belief Propagation message
passing scheme [20]. Here we prove this conjecture for a wide class of random factor graph models.
Specifically, we show that the messages constructed just as in the case of acyclic factor graphs
asymptotically satisfy the Belief Propagation equations and that the free energy density is given
by the Bethe free energy formula.
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1 Introduction and results

1.1 Factor graphs
It is well known that viewing combinatorial optimization problems through the lens of Gibbs
measures reveals important information about both structural and algorithmic aspects. For
example, suppose that Φ = Φ1 ∧ · · · ∧Φm is a k-SAT instance with m clauses over n Boolean
variables. We identify the set of all possible truth assignments with the Hamming cube
{0, 1}n, and given a parameter β ≥ 0 we define functions ψi : {0, 1}n → (0,∞) by letting

ψβ,i(σ) = exp(−β 1{σ violates clause Φi}). (1.1)

These functions induce a probability measure on {0, 1}n by letting

µΦ,β : σ ∈ {0, 1}n 7→ 1
ZΦ,β

m∏
i=1

ψβ,i(σ), where ZΦ,β =
∑

τ∈{0,1}n

m∏
i=1

ψβ,i(σ)

ensures normalization. The measure µΦ,β is known as the Gibbs measure of Φ at inverse
temperature β and ZΦ,β is called the partition function. Writing out the definition of µΦ,β ,
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we find

µΦ,β(σ) = 1
ZΦ,β

exp(−β ·# clauses violated under the truth assignment σ).

Hence, while µΦ,0 is just the uniform distribution over all assignments, as we increase β the
probability mass shifts to “more satisfying” assignments. Ultimately, in the limit β → ∞
the Gibbs measure concentrates on maximally satisfying assignments. Thus, by tuning β we
can scan through the landscape on the Hamming cube defined by the function that maps
each truth assignment to the number of clauses it leaves unsatisfied. This landscape has, of
course, a very substantial impact on the performance of algorithms. For instance, local search
algorithms such as Simulated Annealing are apt to get stuck in local minima. Moreover, the
partition function, or equivalently the scaled free energy n−1 lnZΦ,β , encompasses important
combinatorial characteristics of the optimization problem. For example, the maximum
number of clauses that can be satisfied simultaneously equals m+ limβ→∞

∂
∂β lnZΦ,β .

Factor graph models provide a general framework for the study of Gibbs measures
associated with combinatorial problems [21, 23]. Formally, a factor graph,
G = (V (G), F (G), ∂G, (ψa)a∈F (G)), consists of a finite set V (G) of variable nodes, a set F (G)
of constraint nodes and a function ∂G : F (G) →

⋃
l≥0 V (G)l that assigns each constraint

node a ∈ F (G) a finite sequence ∂a = ∂Ga of variable nodes, whose length is denoted by
d(a) = dG(a). Additionally, there is a finite set Ω of spins and each constraint node a ∈ F
comes with a weight function ψa : Ωd(a) → (0,∞). The factor graph gives rise to the Gibbs
measure µG on ΩV (G). Indeed, letting σ(x1, . . . , xk) = (σ(x1), . . . , σ(xk)) for σ ∈ ΩV (G) and
x1, . . . , xk ∈ V (G), we define

µG : σ ∈ ΩV (G) 7→ 1
ZG

∏
a∈F (G)

ψa(σ(∂a)), where ZG =
∑

τ∈ΩV (G)

∏
a∈F (G)

ψa(σ(∂a))

(1.2)

is the partition function. Moreover, G induces a bipartite graph on V (G) ∪ F (G) in which
the constraint node a is adjacent to the variable nodes that appear in the sequence ∂a.
By (slight) abuse of notation we just write ∂a = ∂Ga for the set of such variable nodes.
Conversely, for x ∈ V (G) we let ∂x = ∂Gx be the set of all a ∈ F (G) such that x ∈ ∂a and
we let d(x) = dG(x) = |∂x|. The bipartite graph gives rise to a metric on the set of variable
and constraint nodes, namely the length of a shortest path.

As we saw above, a k-SAT instance Φ induces a factor graph naturally. Indeed, the
variable nodes are just the Boolean variables x1, . . . , xn of the formula Φ and the constraint
nodes are the clauses Φ1, . . . ,Φm. Moreover, ∂Φi is the set of Boolean variables that occur
in clause Φi, Ω = {0, 1} and the weight functions are given by (1.1).

1.2 Belief Propagation
A fundamental algorithmic task is to calculate the free energy, lnZG, of a factor graph G.
While this is #P -hard in general, in the case that G, viz. the associated bipartite graph, is
acyclic the problem can be solved exactly by means of a message passing algorithm called
Belief Propagation [23].

For a variable node x and an adjacent constraint node a let µG,x→a be the marginal of
the spin value of x in the factor graph G− a obtained deleting a. Formally, µG,x→a(ω) is the
probability that x is assigned the spin ω ∈ Ω in a random configuration σ ∈ ΩV (G) drawn
from the Gibbs measure µG−a. Similarly, let µG,a→x be the marginal of x in the factor graph
obtained from G by deleting all constraint nodes b ∈ ∂x, b 6= a. We call µG,x→a the message
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from x to a and conversely µG,a→x the message from a to x. If G is acyclic, then for all
x ∈ V (G), a ∈ ∂x, σ ∈ Ω we have

µG,x→a(σ) =
∏
b∈∂x µG,b→x(σ)∑

τ∈Ω
∏
b∈∂x µG,b→x(τ) , (1.3)

µG,a→x(σ) =
∑
τ∈Ω∂a 1{τ(x) = σ}ψa(τ)

∏
y∈∂a\x µG,y→a(τ(y))∑

τ∈Ω∂a ψa(τ)
∏
y∈∂a\x µG,y→a(τ(y)) .

In fact, the messages µG,x→a, µG,a→x defined above are the unique solution to (1.3). Moreover,
these messages can be computed via a fixed point iteration and the number of iterations
steps required is bounded by the diameter of G. Furthermore, the Bethe free energy, defined
as

BG =
∑

x∈V (G)

ln
[∑
τ∈Ω

∏
b∈∂x

µG,b→x(τ)
]

+
∑

a∈F (G)

ln

 ∑
τ∈Ω∂a

ψa(τ)
∏
x∈∂a

µG,x→a(τ(x))

 (1.4)

−
∑

a∈F (G)
x∈∂a

ln
[∑
σ∈Ω

µG,a→x(σ)µG,x→a(σ)
]
,

is equal to lnZG. The denominators in (1.3) and the arguments of the logarithms above are
positive because of our assumption that the weight functions ψa take strictly positive values.

1.3 Random factor graph models
Over the past few years there has been a great deal of interest in the Gibbs measures of
random factor graph models. Concrete examples of random factor graph models occur in
discrete mathematics and computer science as well as other related areas such as information
theory [1, 31]. The following class is already reasonably comprehensive. Let Ω be a finite set
of ‘spins’, let k ≥ 2 be an integer, let Ψ 6= ∅ be a finite set of functions ψ : Ωk → (0,∞) and let
ρ = (ρψ)ψ∈Ψ be a probability distribution on Ψ. Then for an integer n > 0 and a real d > 0
we define the random factor graph Gn = Gn(d,Ω, k,Ψ, ρ) as follows. The set of variable
nodes is V (Gn) = {x1, . . . , xn} and the set of constraint nodes is F (Gn) = {a1, . . . , am},
where m is a Poisson random variable with mean dn/k. Furthermore, independently for
each i = 1, . . . ,m a weight function ψai ∈ Ψ is chosen from the distribution ρ. Finally,
∂ai ∈ {x1, . . . , xn}k is a uniformly random k-tuple of variables, chosen independently for each
i. For fixed d,Ω, k,Ψ, ρ, we say the random factor graph Gn has a property A asymptotically
almost surely (‘a.a.s.’) if limn→∞ P [Gn ∈ A] = 1.

Much of the recent work on random factor graph models has been guided by ideas from
statistical physics. In fact, physicists have developed an analytic but non-rigorous approach
to calculating the free energy in random factor graph models, the “cavity method” [23, 24].
The cavity method comes in several installments. The simplest but perhaps most practically
important version is called the replica symmetric ansatz. It holds that random factor graphs
can basically be treated as though they were acyclic: the “messages” defined exactly as in
the acyclic case satisfy the Belief Propagation equations (1.3) (at least approximately) and
the free energy is given by (1.4) (at least asymptotically).

According to an important physics conjecture the replica symmetric ansatz applies if the
random factor graph model enjoys a certain pairwise decorrelation property [20]. Specifically,
for a variable node x ∈ V (G) of a factor graph G we let µG,x denote the Gibbs marginal of
x. Similarly, we let µG,x,y be the joint distribution of the spins assigned to the two variable

APPROX/RANDOM’16
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nodes x, y; thus, µG,x,y is the distribution of the pair (σ(x),σ(y)) ∈ Ω2 for σ ∈ ΩV (G) chosen
from the Gibbs measure. Further, let ‖ · ‖TV denote the total variation norm. Then the
replica symmetric solution is conjectured to be correct if

lim
n→∞

1
n2

n∑
i,j=1

E
∥∥µGn,xi,xj

− µGn,xi
⊗ µGn,xj

∥∥
TV = 0. (1.5)

In words, a.a.s. the spins assigned to two randomly chosen variable nodes of the random
factor graph G are asymptotically independent.

Observe that the distance between two randomly chosen variable nodes xi, xj in the
random factor graph is Ω(lnn) a.a.s. Thus, (1.5) could be interpreted as a (very weak) spatial
mixing property.

The main result of this paper proves the conjecture that (1.5) is sufficient to make the
“replica symmetric ansatz” work. Following (1.3), for a given factor graph G we call the
family of messages µG, ·→ · = (µG,x→a, µG,a→x)x∈V (G),a∈F (G),x∈∂a an ε-Belief Propagation
fixed point on G if

1
n

∑
x∈V (G)
a∈∂x
σ∈Ω

∣∣∣∣∣µG,x→a(σ)−
∏
b∈∂x\a µG,b→x(σ)∑

τ∈Ω
∏
b∈∂x\a µG,b→x(τ)

∣∣∣∣∣
+

∣∣∣∣∣µG,a→x(σ)−
∑
τ∈Ω∂a 1{τ(x) = σ}ψa(τ)

∏
y∈∂a\x µG,y→a(τ(y))∑

τ∈Ω∂a ψa(τ)
∏
y∈∂a\x µG,y→a(τ(y))

∣∣∣∣∣ < ε.

Thus, the equations (1.3) hold approximately for almost all pairs x ∈ V (G), a ∈ ∂x.

I Theorem 1. If (1.5) holds, then there is a sequence (εn)n → 0 such that µGn, ·→ · is an
εn-Belief Propagation fixed point a.a.s.

I Theorem 2. If (1.5) holds and 1
nBGn converges to a real number B in probability, then

lim
n→∞

1
n

E[lnZGn
] = B.

Since Belief Propagation equations and the Bethe free energy are conjectured to be
incorrect if (1.5) is violated1 [20], we expect that Theorems 1 and 2 are best possible. While
we have phrased the above results for factor graph models of Erdős-Rényi type, they generalize
to, e.g., regular factor graph models. The details of this are omitted from this extended
abstract but they can be found in the full version [9].

1.4 Non-reconstruction
In physics jargon factor graph models that satisfy (1.5) are called statically replica symmetric.
An obvious question is how (1.5) can be established in practice. One simple sufficient
condition is the notion of non-reconstruction, also known as dynamic replica symmetry in
physics.

For a factor graph G, a variable node x, an integer ` ≥ 1 and a configuration σ ∈ ΩV (G)

we let ∇`(G, x, σ) be the set of all τ ∈ ΩV (G) such that τ(y) = σ(y) for all y ∈ V (G)

1 Except in the presence of a “global symmetry” like in the Ising model, which could be destroyed by an
external field.
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whose distance from x exceeds `. The random factor graph Gn = Gn(d,Ω, k,Ψ, ρ) has the
non-reconstruction property if

lim
`→∞

lim sup
n→∞

1
n

n∑
i=1

∑
σ∈Ωn

E
[
µGn

(σ) ‖µGn,xi
− µGn,xi

[ · |∇`(Gn, xi, σ)]‖TV
]

= 0. (1.6)

In words, for large enough ` and n the random factor graph has the following property a.a.s.
If we pick a variable node xi uniformly at random and if we pick σ randomly from the Gibbs
distribution, then the expected difference between the “pure” marginal µGn,xi

of xi and the
marginal of xi in the conditional distribution given the event ∇`(Gn, xi,σ) diminishes.

I Lemma 3. If (1.6) holds, then so does (1.5).

Non-reconstruction is a sufficient but not a necessary condition for (1.5). For instance, in
the random graph coloring problem, (1.5) is satisfied in a much wider regime of parameters
than (1.6) [8, 20, 25].

2 Discussion and related work

The main results of this paper facilitate the “practical” use of Belief Propagation to analyze
the free energy in random factor graph models, particularly in combination with Lemma 3.
A first example of this kind of approach is the work on the condensation phase transition in
the regular k-SAT model [4]. Basically, the recipe is to establish the condition (1.5), e.g.,
by way of non-reconstruction, and to study Belief Propagation and its fixed points on the
random factor graph. Since the random factor graph generally has several Belief Propagation
fixed points (unlike in the acyclic case), an extra argument such as an a priori bound will be
necessary to select the one that yields the actual free energy, cf. [4].

The Belief Propagation fixed point iteration has been used algorithmically on random
factor graphs with considerable empirical success (e.g., [19]). Theorem 1 may go as far
as one can hope for in terms of a generic explanation of the algorithmic success of Belief
Propagation. In fact, the theorem shows that the “true” messages are an asymptotic Belief
Propagation fixed point, and the missing piece is to analyze the rate of convergence towards
the correct fixed point and its basin of attraction. However, both of these tasks must depend
on the specific model.

We always assume that the weight functions ψa associated with the constraint nodes are
strictly positive: this rules out “hard” constraints. But we impose this condition at least
partly out of convenience, namely to ensure that all the quantities that we work with are
well-defined, no questions asked. For instance, it is straightforward to extend the present
arguments extend to the hard-core model on independent sets.

In an important paper, Dembo and Montanari [12] made progress towards putting the
physics predictions on factor graphs, random or not, on a rigorous basis. They proved, inter
alia, that a certain “long-range correlation decay” property reminiscent of non-reconstruction
is sufficient for the Belief Propagation equations to hold on a certain class of factor graphs
whose local neighborhoods converge to trees [12, Theorem 3.14]. Following this, Dembo,
Montanari, and Sun [14] verified the Bethe free energy formula for locally tree-like factor
graphs under the assumption of Gibbs uniqueness along an interpolating path in parameter
space. We contrast non-reconstruction (1.6) to this much stronger uniqueness property
which states that the influence of the worst-case boundary condition on the marginal spin
distribution of xi decreases in the limit of large ` and n.

APPROX/RANDOM’16



27:6 Belief Propagation on Replica Symmetric Random Factor Graph Models

The present paper builds upon the “regularity lemma” for measures on discrete cubes
from [3]. In combinatorics, the “regularity method”, which developed out of Szemerédi’s
regularity lemma for graphs [32], has become an indispensable tool. Bapst and Coja-Oghlan [3]
adapted Szemerédi’s proof to measures on a discrete cube, such as the Gibbs measure of a
(random) factor graph, and showed that this result can be combined with the second moment
method to calculate the free energy under certain assumptions. These assumptions are more
restrictive than our condition (1.5).

Furthermore, inspired by the theory of graph limits [22], Coja-Oghlan, Perkins and
Skubch [10] put forward a “limiting theory” for discrete probability measures to go with the
regularity concept from [3]. They applied this concept to random factor graphs under the
assumption that (1.5) holds and that the Gibbs measures converge in probability (in the
topology constructed in [10]). These assumptions are stronger and more complicated to state
than (1.5).

Additionally, the present paper builds upon ideas from Panchenko’s work [28, 29, 30]. In
particular, we follow [28, 29, 30] in using the Aizenman-Sims-Starr scheme [2] to calculate
the free energy. Moreover, [29] provides a promising approach towards a general formula for
the free energy in Poisson random factor graph models. Specifically, [29] yields a variational
formula for the free energy under the assumption that the Gibbs measures satisfies a “finite
replica symmetry breaking” condition, which is more general than (1.5). Another assumption
of [29] is that the weight functions of the factor graph model must satisfy certain “convexity
conditions” to facilitate the use of the interpolation method, which is needed to upper-bound
the free energy. By comparison to [29] the main point of the present paper is to justify
the Belief Propagation equations, which are at very core of the physicists’ “cavity method”
in factor graph models, and to obtain a formula for the free energy in terms of the Belief
Propagation messages rather than in terms of an abstract variational problem. Practically,
the upshot is that by studying the Belief Propagation equations directly on the factor graph
we can use geometric clues provided by the graphical structure, as illustrated in [4].

Finally, the proof of Lemma 3 is a fairly straightforward extension of the proof of [10,
Proposition 3.4]. That proof, in turn, is a generalization of an argument from [27]. For more
on non-reconstruction thresholds in random factor graph models see [7, 11, 16, 25].

3 Proofs of the main results

Here we give an overview of the proofs of the main results. Complete proofs and proofs of
the results for random regular factor graphs can be found in the full version of the paper [9].
Throughout this section we fix parameters d,Ω, k,Ψ, ρ of the factor graph model such that
(1.5) holds.

3.1 The “cavity trick”
The basic idea behind the physicists’ cavity method is to heuristically track the effect of
removing a single variable or constraint node from the factor graph, a strategy that is vaguely
reminiscent of turning a sampling algorithm into a counting algorithm [18]. The main point
of this paper is that we make this heuristic approach rigorous by using the regularity lemma
from [3]. Other applications of the cavity method to computing the free energy of Gibbs
distributions on lattices include [15].

But before we start let us illustrate the power of this “cavity trick” with an excellent
example, the so-called “Aizenman-Simms-Starr scheme” [2], which we are going to use to
prove Theorem 2. This is nothing but the following observation. In order to prove that
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limn→∞ n−1E[lnZGn
] = B it suffices construct a coupling of the two random factor graphs

Gn−1,Gn such that

lim
n→∞

E
[
ln ZGn

ZGn−1

]
= B. (3.1)

Indeed, since E[ln(ZGn/ZGn−1)] = E[lnZGn ]−E[lnZGn−1 ] and lnZGn = O(n) with certainty,
summing up (3.1) yields limn→∞ n−1E[lnZGn

] = B. Moreover, as we shall explore in
Section 3.3 in detail, we can couple Gn,Gn−1 by means of a common random super-graph
Ĝ such that Gn is obtained from Ĝ by removing a few random constraint nodes, while Gn−1
results from Ĝ by removing a random variable node along with the adjacent constraint nodes.
With this coupling we obtain

E
[
ln ZGn

ZGn−1

]
= E

[
ln ZGn

ZĜ

]
− E

[
ln
ZGn−1

ZĜ

]
.

Thus, computing the free energy comes down to investigating the impact of removing a few
constraint nodes from Ĝ.

To control the effect of such an operation we use two main tools. Both require the
following definition. Let ε > 0, let l ≥ 2 be an integer and let µ be a probability measure
on ΩV for some finite set V . For x1, . . . , xl ∈ V we write µx1,...,xl

for the joint distribution
of random the l-tuple (σ(x1), . . . ,σ(xl)) ∈ Ωl with σ chosen from µ. Thus, µx1,...,xl

is the
joint distribution of the coordinates x1, . . . , xl. Now, we say that µ is (ε, l)-symmetric if∑

x1,...,xl∈V
‖µx1,...,xl

− µx1 ⊗ · · · ⊗ µxl
‖TV < ε|V |l.

In words, if we choose coordinates x1, . . . , xl from V randomly, then the expected total
variation distance between the joint distribution µx1,...,xl

and the product of the marginals
µx1 , . . . , µxl

is less than ε. Hence, (1.5) entails that µGn
is (ε, 2)-symmetric a.a.s. for any

fixed ε > 0. Our first tool is

I Lemma 4. For any ε > 0, l ≥ 3 there exists δ > 0 such that for all n > 1/δ and all
µ ∈ P(Ωn) the following is true:

If µ is (δ, 2)-symmetric, then µ is (ε, l)-symmetric.

Hence, (1.5) actually implies that µGn
is (ε, l)-symmetric a.a.s. for any fixed ε > 0 and any

fixed l ≥ 2. Lemma 4 follows from [3, Corollary 2.3 and 2.4]. (Note that (ε, l)-symmetry
is not the same as (approximate) l-wise independence, and so Lemma 4 is not saying that
pairwise independence implies l-wise independence).

The second, far more crucial tool is a lemma that allows us to control the effect of
adding a few constraints to a factor graph. Specifically, if we make a bounded number of
modifications to a factor graph with an (ε, 2)-symmetric Gibbs measure, then the Gibbs
measure of the modified graph measure is still (α, 2)-symmetric, provided ε = ε(α) is small
enough. Moreover, the Gibbs marginals remain approximately the same.

I Lemma 5. For any integer L > 0 and any α > 0 there exist ε = ε(α,L) > 0, n0 = n0(ε, L)
such that the following is true. Suppose that G is a factor graph with n > n0 variable
nodes such that ψa ∈ Ψ for all a ∈ F (G). Moreover, assume that µG is (ε, 2)-symmetric.
If G+ is obtained from G by adding L constraint nodes b1, . . . , bL with weight functions
ψb1 , . . . , ψbL

∈ Ψ arbitrarily, then µG+ is (α, 2)-symmetric and∑
x∈V (G)

∥∥µG,x − µG+,x

∥∥
TV < αn. (3.2)

APPROX/RANDOM’16
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Let us postpone the proof of Lemma 5 to Section 3.4 and instead proceed to derive our main
results from Lemma s 4 and 5.

To this end, we need some more notation. We write P(Ω) for the set of all probability
measures on the finite set Ω, which we identify with the set of all maps p : Ω→ [0, 1] such that∑
ω∈Ω p(ω) = 1. If µ ∈ P(ΩS) for some finite set S 6= ∅, then we write τµ,σµ,σµ1 ,σ

µ
2 , . . . for

independent samples from µ. We usually omit the superscript. Furthermore, if X : (ΩS)l → R
is a random variable, then we write

〈X〉µ = 〈X(σµ1 , . . . ,σ
µ
l )〉

µ
=

∑
σ1,...,σl∈ΩS

X(σ1, . . . , σl)
l∏
i=1

µ(σi)

for the expectation of X with respect to µ⊗l. The standard symbols E[ · ], P[ · ] refer to
the choice of a random factor graph. Moreover, by default the O( · )-notation refers to the
asymptotics as n→∞.

3.2 The Belief Propagation equations: proof of Theorem 1
The high-level summary of the proof is as follows. Our aim is to verify that typically the
Belief Propagation equations (1.3) are approximately satisfied for the message from a random
variable node to a random adjacent constraint node and vice versa. Because our factor graph
Gn is random, we can prove this claim by way of the “cavity paradigm” as follows. We take
a random factor graph G′ on n − 1 variable nodes and add a single variable node and a
random set of constraint nodes joining it to the rest of the graph to form the factor graph
G′′. Because the set of variable nodes from G′ that are attached to the new constraint nodes
are chosen uniformly at random, our assumption (1.5) and Lemma 5 will imply that their
messages in G′′ are approximately the same as their marginals in G′, and Lemma 4 will
imply that asymptotically the joint distribution of the “attachment points” factorizes a.a.s.
Doing the math yields the equations (1.3) plus an o(1)-error term.

Let us look now at the details. Given ε > 0 choose L = L(ε) > 0 and γ = γ(ε, L) > η =
η(γ) > δ = δ(η) > 0 small enough and assume that n > n0(δ) is sufficiently large. Because
the distribution of the random factor graph Gn is symmetric under permutations of the
variable nodes, it suffices to prove that with probability at least 1− ε we have

∑
a∈∂xn,σ∈Ω

∣∣∣∣∣µGn,xn→a(σ)−
∏
b∈∂x\a µGn,b→xn

(σ)∑
τ∈Ω

∏
b∈∂xn\a µGn,b→xn(τ)

∣∣∣∣∣ < ε (3.3)

and

∑
a∈∂xn,σ∈Ω

∣∣∣∣∣µGn,a→xn
(σ)−

∑
τ∈Ω∂a 1{τ(xn) = σ}ψa(τ)

∏
y∈∂a\xn

µGn,y→a(τ(y))∑
τ∈Ω∂a ψa(τ)

∏
y∈∂a\xn

µGn,y→a(τ(y))

∣∣∣∣∣ < ε. (3.4)

To prove (3.3)–(3.4) let G′ be the random factor graph with variable nodes x1, . . . , xn
comprising of m′ = Po(dn(1 − 1/n)k/k) random constraint nodes a1, . . . , am′ that do not
contain xn. Moreover, let ∆ = Po(dn(1− (1− 1/n)k)/k) be independent of m′ and obtain
G′′ from G′ by adding independent random constraint nodes b1, . . . , b∆ with xn ∈ ∂bi for all
i ∈ [∆]. Since G′′ has precisely the same distribution as Gn, it suffices to verify (3.3)–(3.4)
with Gn replaced by G′′.

Since dn(1− (1− 1/n)k)/k = d+ o(1), we can choose L = L(ε) so large that

P [∆ > L] < ε/3. (3.5)
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U

xn

b1

b2 b3 b4

Figure 1 Stitching xn on to G′.

Furthermore, G′ is distributed precisely as the random factor graph Gn given that ∂xn = ∅.
Therefore, Bayes’ rule and our assumption (1.5) imply

P
[
G′ fails to be (δ, 2)-symmetric

]
≤ P [Gn fails to be (δ, 2)-symmetric] /P [∂Gn

xn = ∅]
≤ exp(d+ o(1))P [Gn fails to be (δ, 2)-symmetric] < δ,

(3.6)

provided that n0 is large enough. Combining (3.6) and Lemma 4, we see that

P
[
G′ is (η, 2 + (k − 1)L)-symmetric|∆ ≤ L

]
> 1− δ, (3.7)

provided δ is sufficiently small.
Due to (3.5) and (3.7) and the symmetry amongst b1, . . . , b∆ we just need to prove the

following: given that G′ is (η, 2 + (k − 1)L)-symmetric and 0 < ∆ ≤ L, with probability at
least 1− ε/L we have ∑

σ∈Ω

∣∣∣∣∣µG′′,xn→b1(σ)−
∏∆
i=2 µG′′,bi→xn

(σ)∑
τ∈Ω

∏∆
i=2 µG′′,bi→xn

(τ)

∣∣∣∣∣ < ε/L

(3.8)

and

∑
σ∈Ω

∣∣∣∣∣µG′′,b1→xn
(σ)−

∑
τ∈Ω∂b1 1{τ(xn) = σ}ψb1(τ)

∏
y∈∂b1\xn

µGn,y→b1(τ(y))∑
τ∈Ω∂b1 ψa(τ)

∏
y∈∂b1\xn

µGn,y→b1(τ(y))

∣∣∣∣∣ < ε/L.

(3.9)

To this end, let U =
⋃
j≥2 ∂bj be the set of all variable nodes that occur in the constraint

nodes b2, . . . , b∆, cf. Figure 1. Because µG′′,xn→b1 is the marginal of xn in the factor graph
G′′ − b1, the definition (1.2) of the Gibbs measure entails that for any σ ∈ Ω,

µG′′,xn→b1(σ)

=
∑
τ∈ΩV (G′′) 1{τ(xn) = σ}

∏
a∈F (G′) ψa(τ(∂a))

∏∆
j=2 ψbj

(τ(∂bj))∑
τ∈ΩV (G′′)

∏
a∈F (G′) ψa(τ(∂a))

∏∆
j=2 ψbj

(τ(∂bj))
(3.10)

=
∑
τ∈ΩU 1{τ(xn) = σ} 〈1{∀y ∈ U \ {xn} : σ(y) = τ(y)〉µG′

∏∆
j=2 ψbj

(τ(∂bj))∑
τ∈ΩU 〈1{∀y ∈ U \ {xn} : σ(y) = τ(y)〉µG′

∏∆
j=2 ψbj

(τ(∂bj))
. (3.11)

Similarly, because µG′′,bi→xn
is the marginal of xn in G′ + bi, we have

µG′′,bi→xn
(σ) =

∑
τ∈Ω∂bi 1{τ(xn) = σ} 〈1{∀y ∈ ∂bi \ {xn} : σ(y) = τ(y)〉µG′

ψbi(τ)∑
τ∈Ω∂bi 〈1{∀y ∈ ∂bi \ {xn} : σ(y) = τ(y)〉µG′

ψbi(τ) .

(3.12)
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To prove (3.8), recall that the variable nodes ∂bj \ xn are chosen uniformly and inde-
pendently for each j ≥ 2. Therefore, if G′ is (η, 2 + (k − 1)L)-symmetric and 0 < ∆ ≤ L,
then∑

τ∈ΩU

E
[∣∣∣〈1{∀y ∈ U \ {xn} : σ(y) = τ(y)〉µG′

−
∏
y∈U µG′,y(τ(y))

∣∣∣ ∣∣G′] ≤ 2η.

Hence, by Markov’s inequality, with probability at least 1− η1/3 we have∑
τ∈ΩU

∣∣∣〈1{∀y ∈ U \ {xn} : σ(y) = τ(y)〉µG′
−
∏
y∈U µG′,y(τ(y))

∣∣∣ < η1/3. (3.13)

Set

νi(σ) =
∑

τ∈Ω∂bi

1{τ(xn) = σ}ψbi
(τ)

∏
y∈∂bi\xn

µG′,y(τ(y)). (3.14)

A.a.s. for any 1 ≤ i < j ≤ ∆ we have ∂bi ∩ ∂bj = {xn}. Hence, assuming that η = η(γ) > 0
is chosen small enough, we obtain from (3.11), (3.12), (3.13) that with probability at least
1− γ,∣∣∣∣∣µG′′,xn→b1(σ)−

∏∆
i=2 νi(σ)∑

τ∈Ω
∏∆
i=2 νi(τ)

∣∣∣∣∣ < γ and
∣∣∣∣µG′′,bi→xn

(σ)− νi(σ)∑
τ∈Ω νi(τ)

∣∣∣∣ < γ

(3.15)

for i ∈ [∆]. Hence, (3.8) follows from (3.15), provided that γ is chosen small enough.
Finally, to prove (3.9) we use Lemma 5. Let G′′′ = G′′ − b1 be the graph obtained from

G′ by merely adding b2, . . . , b∆. Given that G′ is (η, 2)-symmetric, Lemma 5 and Lemma 4
imply that G′′′ is (γ3, k− 1)-symmetric. As ∂b1 \ xn is a random subset of size at most k− 1
chosen independently of b2, . . . , b∆, we conclude that with probability at least 1− γ over the
choice of G′′,

2γ >
∑

τ∈Ω∂b1

∣∣∣∣∣∣〈1{∀y ∈ ∂b1 \ xn : σ(y) = τ(y)}〉µG′′′
−

∏
y∈∂b1\xn

µG′′′,y(τ(y))

∣∣∣∣∣∣
=

∑
τ∈Ω∂b1

∣∣∣∣∣∣〈1{∀y ∈ ∂b1 \ xn : σ(y) = τ(y)}〉µG′′′
−

∏
y∈∂b1\xn

µG′′,y→b1(τ(y))

∣∣∣∣∣∣ . (3.16)

Moreover, (3.2) implies that with probability at least 1− γ,

2γ >
∑

τ∈Ω∂b1

∣∣∣∣∣∣〈1{∀y ∈ ∂b1 \ xn : σ(y) = τ(y)}〉µG′′′
−

∏
y∈∂b1\xn

µG′,y(τ(y))

∣∣∣∣∣∣ . (3.17)

Finally, (3.9) follows from (3.14)–(3.17), provided γ is chosen small enough. J

3.3 Proof of Theorem 2
To prove (3.1) we will couple the random variables ZGn−1 , ZGn

by way of a third random
factor graph Ĝ (a similar coupling was used in [10]). Specifically, let Ĝ be the random
factor graph with variable nodes V (Ĝ) = {x1, . . . , xn} obtained by including m̂ = Po(nd̂/k)
independent random constraint nodes, where d̂ = d(n/(n− 1))k−1. For each constraint node
a of Ĝ the weight function ψa is chosen from the distribution ρ independently.
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x

∂ x 

G''

Figure 2 Attaching x.

I Lemma 6. The two factor graph distributions Ĝ,Gn have total variation distance O(1/n).

Proof. The distributions Po(dn/k), Po(d̂n/k) have total variation distance O(1/n). J

Further, set p = ((n − 1)/n)k−1 and let G′ be a random graph obtained from Ĝ by
deleting each constraint node with probability 1− p independently. Let A be the (random)
set of constraints removed from Ĝ to obtain G′. In addition, obtain G′′ from Ĝ by selecting
a variable node x uniformly at random and removing all constraints a ∈ ∂Ĝx along with x
itself. Then G′ is distributed as Gn and G′′ is distributed as Gn−1 plus an isolated variable.
Thus,

ZGn

d=ZG′ , ZGn−1
d=ZG′′ . (3.18)

Hence, we are left to calculate E[ln ZĜ

ZG′
] and E[ln ZĜ

ZG′′
]. Much as in the previous proof we

will use Lemmas 4 and 5 to trace the effect of tinkering with a small number of constraint
nodes. For x ∈ V (Ĝ), b ∈ F (Ĝ) we define

S1(x) = ln

∑
σ∈Ω

∏
a∈∂Ĝx

µĜ,a→x(σ)

 , (3.19)

S2(x) =
∑
a∈∂Ĝx

ln

 ∑
τ∈Ω∂a

ψa(τ)
∏
y∈∂a

µĜ,y→a(τ(y))

 , (3.20)

S3(x) = −
∑
a∈∂Ĝx

ln
[∑
τ∈Ω

µĜ,x→a(τ)µĜ,a→x(τ)
]
, (3.21)

S4(b) = ln

 ∑
σ∈Ω∂b

ψb(σ)
∏
y∈∂b

µĜ,y→b(σ(y))

 . (3.22)

I Lemma 7. Let U =
⋃
a∈∂Ĝx ∂a. Then a.a.s. we have

ln
ZĜ

ZG′′
= o(1) + ln

∑
τ∈ΩU

∏
a∈∂Ĝx

ψa(τ(∂a))
∏

y∈∂a\x

µĜ,y→a(τ(y))

 . (3.23)

Proof. Given ε > 0 let L = L(ε) > 0 be a large enough, let γ = γ(ε, L) > δ = δ(γ) > 0 be
small enough and assume that n is sufficiently large. Letting X = |∂Ĝx|, we can pick L large
enough so that

P [X > L] < ε. (3.24)
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As in the previous section, we turn the tables: we think of Ĝ as being obtained from G′′ by
adding a new variable node x and X independent random constraint nodes a1, . . . , aX such
that x ∈ ∂ai for all i, cf. Figure 2. The assumption (1.5), Lemma 5 and Lemma 4 imply that

P

 ∑
τ∈ΩU\{x}

∣∣∣∣∣∣〈1{∀y ∈ U \ {x} : σ(y) = τ(y)}〉G′′ −
X∏
i=1

∏
y∈∂ai\x

µĜ,y→ai
(τ(y))

∣∣∣∣∣∣ ≥ δ
∣∣∣∣X ≤ L


= o(1). (3.25)

Furthermore, unfolding the definition (1.2) of the Gibbs measure, we obtain

ZĜ

ZG′′
=
∑
τ∈ΩU

〈1{∀y ∈ U \ {x} : σ(y) = τ(y)}〉G′′
X∏
i=1

ψai(τ(∂ai)).

Hence, (3.24) and (3.25) show that with probability at least 1− 2ε,∣∣∣∣∣∣ ZĜ

ZG′′
−
∑
τ∈ΩU

X∏
i=1

ψai
(τ(∂ai))

∏
y∈∂ai\x

µĜ,y→ai
(τ(y))

∣∣∣∣∣∣ < γ. (3.26)

The assertion follows by taking logarithms and sending ε→ 0 slowly as n→∞. J

Combining Lemma 7 with the approximate fixed point property from Theorem 1, we find
that (3.23) can be re-formulated as follows.

I Corollary 8. A.a.s. we have ln ZĜ

ZG′′
= S1(x) + S2(x) + S3(x) + o(1).

A broadly similar argument yields the following.

I Lemma 9. A.a.s. we have ln ZĜ

ZG′
= o(1) +

∑
a∈A S4(a).

Combining Lemma 9 and Corollary 8, we see that a.a.s. Ĝ is such that

E
[
ln ZG′

ZG′′

∣∣∣∣Ĝ] = o(1) + 1
n

 ∑
x∈V (Ĝ)

(S1(x) + S3(x)) +
∑

a∈F (Ĝ)

S4(a)

 .
Moreover, by our assumption and Fact 6 the r.h.s. converges to B in probability. Thus,
Theorem 2 follows by taking the expectation over Ĝ.

3.4 Proof of Lemma 5
The proof of Lemma 5 is based on the “regularity lemma” for probability measures from [3].
Let us introduce the necessary notation. Suppose that ∅ 6= U ⊂ S are sets, let ω ∈ Ω and
consider σ ∈ ΩS . Then we let

σ[ω|U ] = 1
|U |

∑
u∈U

1{σ(u) = ω}.

Thus, σ[ · |U ] ∈ P(Ω) is the distribution of the spin σ(u) for a uniformly random u ∈ U .
Moreover, if V = (V1, . . . , Vl) is a partition of some set V , then we call #V = l the size of
V . Moreover, for ε > 0 we say that µ ∈ P(Ωn) is ε-regular on a set U ⊂ [n] if for every
subset S ⊂ U of size |S| ≥ ε|U | we have

〈‖σ[ · |S]− σ[ · |U ]‖TV〉µ < ε.
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Thus, the empirical distribution of the spins induced on a subset U of S that is “not too
small” is typically close to the empirical spin distribution on the entire set S.

Further, µ is ε-regular with respect to a partition V if there is a set J ⊂ [#V ] such that∑
i∈J |Vi| ≥ (1− ε)n and such that µ is ε-regular on Vi for all i ∈ J .
Finally, if V is a partition of [n] and S is a partition of Ωn, then µ is ε-homogeneous

w.r.t. (V ,S) if there is a subset I ⊂ [#S] such that the following is true:
HM1: We have µ(Si) > 0 for all i ∈ I and

∑
i∈I µ(Si) ≥ 1− ε.

HM2: For all i ∈ [#S] and j ∈ [#V ] we have maxσ,σ′∈Si
‖σ[ · |Vj ]− σ′[ · |Vj ]‖TV < ε.

HM3: For all i ∈ I the conditional distribution µ[ · |Si] is ε-regular with respect to V .
HM4: µ is ε-regular with respect to V .
Thus, S is a decomposition of the cube Ωn such that most of the probability mass belongs
to classes Si such that the conditional measure µ[ · |Si] is ε-regular w.r.t. V .

I Theorem 10 ([3, Theorem 2.1]). For any ε > 0 there is an N = N(ε) > 0 such that for
every n > N , every µ ∈ P(Ωn) admits partitions V of [n] and S of Ωn with #V + #S ≤ N
such that µ is ε-homogeneous with respect to (V ,S).

To prove Lemma 5 we look at a partition (V ,S) as promised by Theorem 10 with respect to
which µG+ is ε-homogeneous. Let K = #V and L = #S be such that K +L ≤ N and let J
be the set of all j ∈ [L] such that µG+(Sj) ≥ ε/N and µG+ [ · |Sj ] is ε-regular w.r.t. V . Then
HM1 and HM3 ensure that∑

j 6∈J

µG+(Sj) < 2ε. (3.27)

Because all functions ψ ∈ Ψ are strictly positive, we can work out that the original Gibbs
measure µG is ε′-homogeneous with respect to (V ,S) as well for some ε′ > 0 that depends
on ε such that ε′ → 0 as ε→ 0. We then oberve that the (ε, 2)-symmetry of µG implies that∑

x∈V
‖µG,x − µG,x[ · |Sj ]‖TV < ε′′n (3.28)

with ε′′ → 0 as ε′ → 0. In other words, the conditional marginals µG,x[ · |Sj ] induced on
the classes Sj are close to the overall marginals µG,x for most x. In fact, to derive (3.28)
from (1.5) assume that (3.28) were violated. Then µG would be a non-trivial mixture of
two substantially distinct conditional measures, and it is not difficult to check that this
would contradict the (ε, 2)-symmetry of µG; the details of this argument are based on results
from [3]. Further, HM2 and (3.28) imply that∑

x∈V

∥∥µG,x − µG+,x[ · |Sj ]
∥∥

TV < ε′′′n (3.29)

for j ∈ J . Putting the previous argument in reverse, we find that (3.27) and (3.29) imply
that µG+ is (α, 2)-symmetric, provided ε′′′ > 0 was small enough. Additionally, (3.28) and
(3.29) imply (3.2). The complete proof of Lemma 5 can be found in the full version of the
paper.

Acknowledgements. We thank Florent Krzakala and Lenka Zdeborová for helpful discus-
sions on this topic.
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