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—— Abstract

Random Edge is the most natural randomized pivot rule for the simplex algorithm. Considerable
progress has been made recently towards fully understanding its behavior. Back in 2001, Welzl
introduced the concepts of reachmaps and niceness of Unique Sink Orientations (USO), in an
effort to better understand the behavior of Random Edge. In this paper, we initiate the systematic
study of these concepts. We settle the questions that were asked by Welzl about the niceness of
(acyclic) USO. Niceness implies natural upper bounds for Random Edge and we provide evidence
that these are tight or almost tight in many interesting cases. Moreover, we show that Random
Edge is polynomial on at least n*?") many (possibly cyclic) USO. As a bonus, we describe
a derandomization of Random Edge which achieves the same asymptotic upper bounds with
respect to niceness.
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1 Introduction

One of the most prominent open questions in the theory of optimization is whether linear
programs can be solved in strongly polynomial time. In particular, it is open whether there
exists a pivot rule for the simplex method whose number of steps can be bounded by a
polynomial function of the number of variables and constraints. For most deterministic pivot
rules discussed in the literature, exponential lower bounds are known. The first such bound
was established for Dantzig’s rule by Klee and Minty in their seminal 1972 paper [20]; this
triggered a number of similar results for many other rules; only in 2011, Friedmann solved a
longstanding open problem by giving a superpolynomial lower bound for Zadeh’s rule [8].

On the other hand, there exists a randomized pivot rule, called Random Facet, with
an expected suberponential number of steps in the worst case. This bound was found
independently by Kalai [18] as well as Matousek, Sharir and Welzl [23] in 1992. Interestingly,
the proofs employ only a small number of combinatorial properties of linear programs. As a
consequence, the subexponential upper bound for the Random Facet pivot rule holds in a
much more general abstract setting that encompasses many other (geometric) optimization
problems for which strongly polynomial algorithms are still missing [23].

This result sparked a lot of interest in abstract optimization frameworks that generalize
linear programming. The most studied such framework, over the last 15 years, is that of
unique sink orientations (USO). First described by Stickney and Watson already in 1978
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as abstract models for P-matrix linear complementarity problems (PLCPs) [28], USO were
revived by Szabé and Welzl in 2001 [29]. Subsequently, their structural and algorithmic
properties were studied extensively ([26],[27],[22],[12],[7],[2],[16],[13],[19],[17]). In a nutshell,
a USO is an orientation of the n-dimensional hypercube graph, with the property that there
is a unique sink in every subgraph induced by a nonempty face. The algorithmic problem
associated to a USO is that of finding the unique global sink, in an oracle model that allows
us to query any given vertex for the orientations of its incident edges.

In recent years, USO have in particular been looked at in connection with another
randomized pivot rule, namely Random FEdge (RE for short). This is arguably the most
natural randomized pivot rule for the simplex method, and it has an obvious interpretation
also on USO: at every vertex pick an edge uniformly at random from the set of outgoing
edges and let the other endpoint of this edge be the next vertex. The path formed constitutes
a random walk. Ever since the subexponential bound for Random Facet was proved in 1992,
researchers have tried to understand the performance of Random Edge. This turned out to
be very difficult, though. Unlike Random Facet, the Random Edge algorithm is non-recursive,
and tools for a successful analysis were simply missing. A superexponential lower bound on
cyclic USO was shown by Morris in 2002 [25], but there was still hope that Random Edge
might be much faster on acyclic USO (AUSO).

Only in 2006, a superpolynomial and subexponential lower bound for Random Edge
on AUSO was found by Matousek and Szabé [24] and, very recently, pushed further by
Hansen and Zwick [17]. While these are not lower bounds for actual linear programs, the
results demonstrate the usefulness of the USO framework: it is now clear that the known
combinatorial properties of linear programming are not enough to show that Random Edge
is fast. Note that, in 2011, Friedmann, Hansen and Zwick proved a subexponential lower
bound for Random Edge on actual linear programs, “killing” yet another candidate for a
polynomial-time pivot rule [9].

Still, the question remains open whether Random Edge also has a subexponential upper
bound. As there already is a subexponential algorithm, a positive answer would not be an
algorithmic breakthrough; however, as Random Edge is notoriously difficult to analyze, it
might be a breakthrough in terms of novel techniques for analyzing this and other randomized
algorithms. The currently best upper bound on AUSO is an exponential improvement over
the previous (almost trivial) upper bounds, but the bound is still exponential, 1.8™ [16].

In this paper, we initiate the systematic study of concepts that are tailored to Random
Edge on USO (not necessarily only AUSO). These concepts — reachmaps and niceness of USO
— were introduced by Welzl [30], in a 2001 workshop as an interesting research direction. At
that time, it seemed more promising to work on algorithms other than Random Edge; hence,
this research direction remained unexplored and the problems posed by Welzl remained open.
Now that the understanding of Random Edge on USO has advanced a lot we hope that these
“old” concepts will finally prove useful, probably in connection with other techniques.

The reachmap of a vertex is the set of all the coordinates it can reach with a directed
path, and a USO is ¢-nice if for every vertex there is a directed path of length at most ¢
to another vertex with smaller reachmap. Welzl pointed out that the concept of niceness
provides a natural upper bound for the Random Edge algorithm. Furthermore, he asks the
following question: “Clearly every unique sink orientation of dimension n is n-nice. Can we
do better? In particular what is the general niceness of acyclic unique sink orientations?”

We settle these questions, in Section 4, by proving that for AUSO (n — 2)-nice is tight,
meaning that (n — 2) is an upper bound on the niceness of all AUSO and there are AUSO
that are not (n — 3)-nice. For cyclic USO we argue that n-nice is tight. In Section 2, we
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give the relevant definitions and in Section 3 we show an upper bound of O(n‘*!) for the
number of steps RE takes on an i-nice USO. In addition, we describe a derandomization of

RE which also takes at most O(n*!) on an i-nice USO, thus matching the behavior of RE.

Finally, we include two brief notes in Section 3. The first argues that RE needs at most a
quadratic number of steps in at least n®(") many, possibly cyclic, USO. The second that RE
can solve the AUSO instances that have been designed as lower bounds for other algorithms
(e.g. Random Facet [21],[10] or Bottom Antipodal [27]) in polynomial time. All the necessary
details for these two notes will be provided in the full version [14].

2 Preliminaries

We use the notation [n] = {1,...n}. Let Q" = 2["! be the set of vertices of the n-dimensional

hypercube. A vertex of the hypercube v € Q™ is denoted by the set of coordinates it contains.

The symmetric difference of two vertices, denoted as v @ wu is the set of coordinates in which
they differ. Now, let J € 2" and v € Q™. A face of the hypercube, Fj., is defined as the

set of vertices that are reached from v over the coordinates defined by any subset of J, i.e.

Fro,={u € Q" lv&u C J}. The dimension of the face is |J|. We call edges the faces of
dimension 1, e.g. Fy;y ., and vertices the faces of dimension 0. The faces of dimension n — 1
are called facets. For k£ < n we call a face of dimension k£ a k-face.

Let v,u € Q™. By |v@®u| we denote the Hamming distance (size of the symmetric difference)

of v and u. Given v € Q", we define the neighborhood of v as N'(v) = {u € Q"| |[v B u| = 1}.
Now, let ¥ be an orientation of the edges of the n-dimensional hypercube. Let v,u € Q.

The notation v 2 u (w.r.t ¢) means that Fy;y , = {v,u} and that the corresponding edge is

oriented from v to w in ¥. Sometimes we write v — u, when when the coordinate is irrelevant.

An edge v & u is forward if j € u and otherwise we say it is backward.

We say that 9 is a Unique Sink Orientation (USO) if every non-empty face has a unique
sink. In the rest we write n-USO to mean a USO over Q™. Here n is always used to mean
the dimension of the corresponding USO. Consider a USO v; we define its outmap sy, in
the spirit of Szabé and Welzl [29]. The outmap is a function sy : Q" — 2[71 " defined by

sp(v) = {j € [n]]jv L v @ {j}} for every v € Q™. A sink of a face Fj,, is a vertex u € FJ,,,
such that sy (u) NJ = 0. We mention the following lemma w.r.t. the outmap function.

» Lemma 1 ([29]). For every USO v, sy is a bijection.

The algorithmic problem for a USO 1 is to find the global sink, i.e. find ¢t € @™ such that
sy(t) = 0. The computations take place in the vertez oracle model: We have an oracle that
given a vertex v € Q", returns s, (v) (vertex evaluation). This is the standard computational
model in the USO literature and all the upper and lower bounds refer to it.

Reachmap and niceness. We are now ready to define the central concepts of this paper.
Given vertices v,u € Q™ we write v ~ u if there exists a directed path from v to u (in v).

We use d(v,u) to denote the length of the shortest directed path from v to w; if there is no
such path then we have d(v,u) = co and otherwise we have d(v,u) > |v @ u|. The following
lemma is well-known and easy to prove by induction on |v @ u.

» Lemma 2. For every USO 9, let F C Q™ be a face and u the sink of this face. Then, for
every vertex v € F' we have d(v,u) = |v ® ul.

Subsequently, we define the reachmap ry : Q™ — 2" for every v € Q" as:

ry(v) = sy (v) U{j € [n]|Fu € Q" s.t. v~ uand j € sy(u)}.
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Figure 1 Examples of 3-dimensional USO: (a) Klee-Minty, which is 1-nice. (b) The only 2-nice
3-dimensional AUSO which is not 1-nice. (¢) The only cyclic USO in 3 dimensions, which is 3-nice.

Intuitively, the reachmap of a vertex contains all the coordinates that the vertex can reach
with a directed path. We say that vertex v € Q™ is i-covered by vertex u € Q™, if d(v,u) <1
and ry(u) C 7y (v) (proper inclusion). Then, we say that a USO v is i-nice if every vertex
v € Q™ (except the global sink) is i-covered by some vertex u € Q™. Of course, every n-USO
1 is n-nice since every vertex v is n-covered by the sink ¢. Moreover, ry(v) 2 v @t, for every
vertex v € Q™.

It is not difficult to observe that every USO in 1 or 2 dimensions is 1-nice, but the
situation changes in 3 dimensions. Consider the illustration in Figure 1.

Let us note that the AUSO in Figure 1(b) is the largest AUSO which is not (n — 2)-nice.
As we prove in Theorem 8, every n-AUSO with n > 4 is (n — 2)-nice.

Algorithmic properties of the reachmap. Our focus lies mostly on the concept of niceness.
Nevertheless, we briefly discuss some of the algorithmic properties of the reachmap here.

It was proved by the authors, in [13], that when given an AUSO ¢ described succinctly
by a Boolean circuit, and two vertices s and t, deciding if s ~» t is PSPAC E-complete.
More recently, Fearnley and Savani [6] proved that deciding whether the Bottom Antipodal
algorithm (this is the algorithm that from a vertex v jumps to vertex v @ s, (v)), started
at vertex v will ever encounter a vertex v’ such that j € s,(v’), for a given coordinate j,
is PSPACE-complete. This line of work was initiated in [1] and further developed in [4]
and [5] and aims at understanding the computational power of pivot algorithms [6]. Below,
we provide a related theorem: it is PSPAC E-complete to decide if a coordinate is in the
reachmap of a given vertex in an AUSO. It is, thus, computationally hard to discover the
reachmap of a vertex.

» Theorem 3. Let ¢ be an n-AUSO (described succinctly by a Boolean circuit), v € Q™ and
j € [n]. It is PSPACE-complete to decide whether j € ry(v).

The theorem follows from the results of [13] that we mention above. A proof is included in
the full version [14]. Finally, we want to note that it is natural to upper bound algorithms
on AUSO by the reachmap of the starting vertex. Any reasonable path-following algorithm
that solves an AUSO ¢ in ¢” steps, for some constant ¢, can be bounded by ¢/ () where s
is the starting vertex. The reason is that the algorithm will be contained in the cube F,. s s
of dimension |ry(s)|. Moreover, we claim that this is also possible for algorithms that are
not path-following. As an example we give in the full version of this paper [14] a variant of
the Fibonacci Seesaw algorithm of [29] that runs in time /™) for some ¢ < ¢ (the golden
ratio).

3 Random Edge on i-nice USO

In this section we describe how RE behaves on i-nice USO. We give a natural upper bound
and argue that it is tight or almost tight in many situations. In addition, we give a simple
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derandomization of RE, which asymptotically achieves the same upper bound. Firstly, we
consider the following natural upper bound.

» Theorem 4. Started at any vertexr of an i-nice USO, Random Edge will perform an
expected number of at most O(n'*1) steps.

Proof. For every vertex v, there is a directed path of length at most i to a target t(v),
some fixed vertex of smaller reachmap. At every step, we either reduce the distance to the
current target (if we happen to choose the right edge), or we start over with a new vertex
and a new target. The expected time it takes to reach some target vertex can be bounded
by the expected time to reach state 0 in the following Markov chain with states 0,1,...,1¢
(representing distance to the current target): at state k > 0, advance to state k — 1 with
probability 1/n, and fall back to state ¢ with probability (n — 1)/n. A simple inductive proof
shows that state O is reached after an expected number of ZZ=1 n¥ = O(n?) steps. Hence,
after this expected number of steps, we reduce the reachmap size, and as we have to do this
at most n times, the bound follows. <

Already, we can give some first evidence on the usefulness of niceness for analyzing RE:
Decomposable orientations have been studied extensively in literature. The fact that RE
terminates in O(n?) steps on them has been known at least since the work of Williamson-
Hoke [31]. Let a coordinate be combed if all edges on this coordinate are directed the
same way. Then, a cube orientation is decomposable if in every face of the cube there is a
combed coordinate. The class of decomposable orientations, known to be AUSO, contains
the Klee-Minty cube [20] (defined combinatorially in [27]). It is straightforward to argue that
such orientations are 1-nice and, thus, our upper bound from Theorem 4 is also quadratic.
Moreover, quadratic lower bounds have been proved for the behavior of RE on Klee-Minty
cubes [3]. We conclude that, for 1-nice USO, the upper bound in Theorem 4 is optimal.

Counting 1-nice. We have mentioned that the class of decomposable USO are 1-nice. This
class is the previously known largest class of USO, where Random Edge is polynomial. The
number of decomposable USO is 2°(") (a proof for this is included in the full version [14]).
We can now argue that the class of 1-nice USO is much larger than the class of decomposable
ones, and also contains cyclic USO. To achieve the lower bound we use the same technique
that Matousek [22] used to give a lower bound on the number of all USO. The upper bound
is proved also in [22]. Thus, we have the number of 1-nice USO is asymptotically (in the
exponent) the same as of all USO.

» Theorem 5. The number of 1-nice n-dimensional USO is n®2").
Proof of Theorem 5. Consider the following inductive construction. Let A; be any 1-
dimensional USO. Then, we construct A by taking any 1-dimensional USO A and directing
all edges on coordinate 2 towards A;. In general, to construct Agyi: we take Ay and put
antipodally any k-dimensional USO Aj. Then, we direct all edges on coordinate (k + 1)
towards Ay. This is safe by the Product Lemma (this is one of the two main USO constructing
lemmas from [26]). This construction satisfies the following property: for every vertex, the
minimal face that contains this vertex and the global sink has a combed coordinate. We
call such a USO “target-combed”. It constitutes a generalization of decomposable USO. An
illustration appears in Figure 2.

The construction is 1-nice since for every vertex (except the sink) there is an outgoing
coordinate that can never be reached again. At every iteration step from k to k + 1 we can
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Figure 2 A target-combed n-USO. The two larger ellipsoids represent the two antipodal facets
A,—1 and A],_; and, similarly, for the smaller ones. The combed coordinates are highlighted. The
gray subcubes can be oriented by any USO.

embed, in one of the two antipodal k-faces, any USO. Thus, we can use the lower bounds of

[22], that give us a (5)2 (assuming k > 2) lower bound for a k-face. Summing up, we get:

2n—2

n—1
n—1
. N T
usolnice(n) > Zuso(k}) > uso(n — 1) < c >
k=1
where usolnice(n) and uso(n) is the number of n-dimensional 1-nice USO and general USO
respectively. Thus, usolnice(n) = n2") . The upper bound in the statement of the theorem
is from the upper bound on the number of all USO, by Matousek [22]. |

The niceness of known lower bound constructions

As further motivation for the study of niceness of USO, we want to mention that RE can solve
the AUSO instances that were designed as lower bounds for other algorithms in polynomial
time. This is because of provable upper bounds on the niceness of those constructions. With
similar arguments, upper bounds on the niceness of the AUSO that serve as subexponential
lower bounds for RE can be shown; thus, RE has upper bounds on these constructions that
are almost matching to the lower bounds. The upper bound for RE on the cyclic USO
of Morris [25] is asymptotically matching the lower bound. We summarize the relevant
information in the following table and describe the details on how to obtain it in the full
version [14].

Algorithm Reference | Lower bound | Niceness | RE Upper bound
Random Facet [21],[10] 20(/n) 1 O(n?)
Bottom Antipodal [27] Q2" 2 O(n?)

RE acyclic [24] 90(n'/?) nt/3 90(n'/%logn)
RE acyclic [17] 2fHy/nlogn) Vvn 20(Vnlogn)
RE cyclic [25] n-l) n nOm

A derandomization of Random Edge

Consider the join operation. Given two vertices u,v, join(u,v) is a vertex w such that
u ~ w and v ~ w. We can compute join(u,v) as follows: by Lemma 1, there must be a
coordinate, say j, such that j € sy (u) ® sy (v). Assume, w.l.o.g., that j € sy (u). Consider

the neighbor u’ of u such that u % /. Recursively compute join(u’,v). It can be seen by
induction on |u @ v| that the join operation takes O(n) time. Similarly, we talk about a join
of a set S of vertices. A join(S) is a vertex w such that ever vertex in S has a path to it.
We can compute join(S) by iteratively joining all the vertices in S.



B. Gartner and A. Thomas
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Figure 3 We have u,w € AV, 1l € AC, ¢ sy(u) and {I} # (v @ u). Thus, the edge Fj ., has to
be outgoing for w. Hence, w ~~ u and the algorithm removes w from AV and [ from AC.

Furthermore, let N (v) = {u € N(v)|v — u} denote the set of out-neighbors of a vertex
v. In the subsequent lemma, we argue that the vertices in Nt (v) can be joined with linearly
many vertex evaluations.

» Lemma 6. Let ¢ be an n-USO and v € Q™ a vertex. There is an algorithm that joins the
vertices in N (v) with |sy(v)| many vertex evaluations.

Proof. First, we evaluate all the vertices in N’ (v). We maintain a set of active vertices AV
and a set of active coordinates AC'. Initialize AV = Nt (v) and AC = sy (v). The algorithm
keeps the following invariants: every vertex that gets removed from AV has a path to some
vertex in AV'; also for every vertex u s.t. v AN u, uw € AV if and only if [ € AC.

Then, for each u € AV for each | € AC: if [ ¢ sy(u) and {I} # (u @ v) then we update
AC + AC\ {l} and AV <~ AV \ (v @ {i}). See Figure 3.

If in the above loop the vertex u is the sink of the face Fac,, then terminate and return
v’ = u. Of course, in this case every vertex in AV has a path to u. Otherwise the loop will
terminate when there is no coordinate in AC' that satisfies the conditions above. In this
case we have that Vu € AV, u is the source of the face Fyc\ (ugov),u- That is, it is the source
of the face spanned by the vertex and all the active coordinates AC except the one that
connects it to v. In this case, we return the vertex v’ = (v @& AC). We have that every vertex
in AV has a path to v’: this is because in any USO the source has a path to every vertex
(this can be proved similarly to Lemma 2). |

Using Lemma 6, we can now argue that there exists a derandomization of Random Edge
that asymptotically matches the upper bound of Theorem 4.

» Theorem 7. There is a deterministic algorithm that finds the sink of an i-nice n-USO 1)
with O(n'™1) vertex evaluations.

Proof. Let v be the current vertex. Consider the set R; C 2I" of vertices that are reachable
along directed paths of length at most ¢ from v. Since 1 is i-nice, we know that at least
one of them has strictly smaller reachmap. In particular, any vertex reachable from all the
vertices in R; has a smaller reachmap. Thus, we compute a join of all the vertices in R;.

Consider the set R;_1. The size of R;_; is bounded by |R;_1| < Z;C;lo (Z) < 22;10 nk
and, thus, |R;_1| = O(n‘~!). Every vertex in R; can be reached in one step from some vertex
in R;_;. Assume that none of the vertices in R;_; is the sink; otherwise, the algorithm is
finished. Then, for every vertex v € R;_; we join Nt (v) with the algorithm from Lemma 6,
with O(n) vertex evaluations. Therefore, with O(n?) vertex evaluations we have a set S of
O(n*~1) many vertices and each v’ € S is a join of N'*(v) for some vertex v € R;_1.

The next step is to join all the vertices in set S, using the algorithm at the beginning of
the current section, which takes O(n) for each pair of vertices. Hence, the whole procedure
will take an additional O(n?) vertex evaluations. The result is a vertex u that joins all the
vertices in R; and thus i-covers v. Because the size of the reachmap decreases by at least
one in each round, we conclude that this algorithm will take at most O(n‘*!) steps.

30:7
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Finally, note that to achieve this upper bound we do not need to know that the input
USO is i-nice. Instead, we can iterate through the different values of 1 = 1,2, ... without
changing the asymptotic behavior of the algorithm. |

4 Bounds on niceness

In this section we answer the questions originally posed in [30] by providing matching upper
and lower bounds on the niceness of USO and AUSO.

For cyclic USO, the cubes designed by Morris as a lower bound for the behavior of RE
[25] are n-nice but not (n — 1)-nice and, hence, match the trivial upper bound. Here, we
sketch a construction that is n-nice (but not (n — 1)-nice) and we give an explicit description
in the full version [14].

The idea for such a construction is quite simple, intuitively. Let ¢ be a cyclic n-USO
over Q™ that contains a directed cycle such that the edges that participate span all the
coordinates. Then, every vertex v on the cycle has ry(v) = [n]. Now consider the sink ¢
and assume the n vertices in N (t) participate in the cycle. By Lemma 2, every vertex has
a path to ¢. This path has to go through one of the vertices in N (t). It follows that every
v € Q" \ {t} has ry(v) = [n]. Therefore, the vertex antipodal from ¢ is only n-covered (by ¢).

The Morris cyclic USO satisfies the properties described above and, thus, it cannot be
(n—1)-nice. An example in 3 dimensions appears in Figure 1; this USO satisfies the properties
we explain above. The construction we describe in the full version [14] is much simpler than
the Morris cube; it is an n-USO that contains a simple cycle over 2n vertices, n of which are
the vertices in N (¢). Half of the edges that participate on the cycle are backward and every
other edge in the USO is forward. For the rest of this section, we will turn our attention to
AUSO.

4.1 An upper bound for AUSO

We prove an upper bound on the niceness of AUSO which, as we will see in the next section,
is tight. We utilize the concept of Completely Unimodal Numberings (CUN), which was
studied by Williamson-Hoke [31] and Hammer et al. [15]. To the best of our knowledge, this
is the first time CUN is used to prove structural results for AUSO. A CUN on the hypercube
Q™ means that there is a bijective function ¢ : Q™ — {0,...,2™ — 1} such that in every face
F there is exactly one vertex v such that ¢(v) < ¢(u), for every v € N(v) N F. It is known,
e.g. from [31], that for every AUSO there is a corresponding CUN, which can be constructed
by topologically sorting the AUSO.

In the proof of the theorem below we will use the following notation: w” is the vertex
that has ¢(w”) = k, w.r.t. some fixed CUN ¢. An easy, but crucial observation concerns
the three lowest-numbered vertices w?, w!, w?. Of course, w* — w® (where w® is the global
sink); otherwise, w! would have been a second global minimum. Moreover, w? — w’ for
exactly one j € {0,1}. It follows, that both w! and w? are facet sinks. We are ready to state
and prove the following theorem.

» Theorem 8. Any n-AUSO, with n > 4, is (n — 2)-nice.

Consider the vertices w® and w! and let e be the edge that connects them. Let w € e be
the unique out-neighbor of w? and w’ the other vertex in e. W.l.o.g. assume w = 0, w’ = {1}
and w? = {2}. The situation can be depicted as:
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w? = {2} w' = {1}

These three vertices have no outgoing edges to other vertices. Their outmaps and
reachmaps are summarized in the table below.

vertex ‘ outmap ‘ reachmap ‘ is sink of the facet
w=0 c{1y | {1} Fiapn1y,0
w={1} | C{1} | {1} Flangiy,er

w? ={2} | ={2} c{1,2} Flnap\ g2, w2
More precisely, the reachmap of w? is {2} if w = w°, and it is {1,2} if w = w'.

» Lemma 9. With w,w' as above, let v € Q™ \ {w®, [n]}. Then v is (n — 2)-covered by some
vertex in {w,w’, w?}.

1 1

Proof. Vertex w
vertex.

If v neither contains 1 nor 2, then v is in the facet Fiu)\ 13,4 Hence, d(v, w) = |v @ w| <
n — 2. This is because Fj,,}\{1},» is (n — 1)-dimensional and 2 ¢ v. Any coordinate that is
part of the corresponding path is in the reachmap of v but not of w (whose reachmap is a
subset of {1}). Hence, v is (n — 2)-covered by w.

If v contains 1, then v is in the facet Fj,j\ (13,07, and [v @ w’| <n — 2 since v # [n]. As
before, this implies that v is (n — 2)-covered by the sink w’ of the facet in question.

is covered by w® and w? by w® or w', so assume that v is some other

Finally, if v contains 2 but not 1, then v is in the face Fj,)\(1,2},w2, and d(v,w?) <n—2.

Again, any coordinate on a directed path from v to w? within this face proves that v is
(n — 2)-covered by the sink w? of the face. <

It remains to (n — 2)-cover the vertex v = [n]. Let m > 2 be the smallest index such
that w™ is not a neighbor of w, and assume w.l.o.g. that w* = {k},3 < k < m. We have
wk — w for all these k by the vertex ordering. Furthermore, all other edges incident to w*
are incoming. We conclude that each w",3 < k < m has outmap equal to {k} and, hence, is
a facet sink. The reachmap of each such w” is C {1,k}. The situation is depicted as:

w =10

wnt={m -1} ... w?={2} W ={1}

w2 {k, j}

Since w™ has at least one out-neighbor in {w’,w?,... ,w™ 1}, we know that w™ = {k,j}
for some k < j € [n]. Moreover, the vertex ordering again implies that the outgoing edges
of w™ are exactly the ones to its (at most two) neighbors among w’, w?, ..., w™ ™. Taking
their reachmaps into account, we conclude that the reachmap of w™ is C {k, j, 1}.

» Lemma 10. With w™ as above and n > 4, v = [n] is (n — 2)-covered by w™.

Proof. We first observe that w™ is the sink of the face F,\(x,j},wm, since its outmap is
C {k,j}. Vertex v = [n] is contained in this (n — 2)-face, hence there exists a directed path
of length d(v,w™) =n — 2 from v to w™ in this face. Since n > 4, the path spans at least
two coordinates and thus at least one of them is different from 1. This coordinate proves
that v is (n — 2)-covered by w™. <
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m]\ {2} ]\ {4} n]\ {5}
. = .

A el A
[n]\ {2,4} [n]\ {4,5} e[\ {n—=1,n}

Figure 4 An illustration of the path starting at v’. The dashed edges are flipped backwards.

To sum up, we have now proved that every n-AUSO, with n > 4, is (n — 2)-nice. All AUSO
in one or two dimensions are 1-nice and the AUSO in three dimensions can be up to 2-nice
(Figure 1b). This concludes the upper bounds on the niceness of AUSO.

4.2 A matching lower bound for AUSO

We prove a lower bound on the niceness of acyclic USO that matches the upper bound of
Theorem 8. It follows (Corollary 6, [26]) from the Hypersink Reorientation Lemma [26]
that in a USO we can flip any edge if the outmaps of the two vertices incident to it are the
same (except the connecting coordinate). This gives rise to a particular family of USO, the
Flip-Matching Orientations (FMO): those arise when we start with a uniform orientation,
e.g. all edges are forward, and we flip the edges of an arbitrary matching. FMO have been
studied in [26] and [24].

» Theorem 11. There exists an n-AUSO 1 which is not i-nice, for i <n — 2.

Proof. Let ¢y be the forward uniform orientation, i.e. the orientation where all edges are
forward. We explain how to construct 1), our target orientation starting from v¢y. With Q}
we denote the set of vertices that contain k coordinates, i.e. |Q}| = (7). We assume n > 4.
The idea here is to construct an AUSO that has its source at () and has the property that
every vertex in U?;O?’ Q7 has a full-dimensional reachmap.

Pick v € Q_5 and assume w.l.o.g. that v = [n]\{1,2,3}. Consider the 2-dimensional face
Fy1 2y, and direct the edges in this face backwards. This is the first step of the construction
and it results in s, (v) = {3}.

For the second step, consider the vertex v' = [n]\ {2}. We will flip n — 3 edges in order to
create a path starting at v’. First, we flip edge Fray g2y Then, for all k € {4,...,n — 1}
we flip the edge Fiy1y,n)\{x}- This creates the path depicted in Figure 4.

Let Us be the set of vertices Us = {u € QI'_4|3 € u}. That is all the vertices of QI _4
that contain the 3rd coordinate. For every u € Us we flip the edge Fysy,, (that is the edge
incident to u on the 3rd coordinate). This is the third and last step of the construction of .

» Claim 12. ¢ is a USO.

The first step of the construction is to flip the four edges in Fy 2; ,,. This is safe by considering
that we first flip the two edges on coordinate 1; then, it is also safe to flip the two edges on
coordinate 2. All the edges reversed at the second step of the construction (Figure 4) are
between vertices in Q:_; and @;_,, and, in addition those vertices are not neighbors to
each other. Furthermore, all the edges reversed at the third step of the construction are on
coordinate 3 and between vertices in Q) _5 and @ _,. Thus, all these edge flips are safe.
Note however that edge flips do not neccassarily maintain acyclicity (e.g. the cyclic USO in
Figure 1c is an FMO); we have to verify acyclicity in a different way.

» Claim 13. There is no cycle in 1.



B. Gartner and A. Thomas

w
A

\ y2

-
-

v

Figure 5 An example construction in 5 dimensions. Only the backward edges are noted. Each
coordinate is labeled over a backward edge. The 5-dimensional cube is broken in 2-faces of coordinates
1,2. All the vertices in @Q;._3 are noted with dots. Also, v is explicitly noted.

Clearly, a cycle has at least one backward and one forward edge in every coordinate it
contains. Thus, there cannot be a cycle that involves coordinate 3 because no backward edge
on a different coordinate, has a path connecting it to a backward edge on coordinate 3.

Consider the facet F,)\(3},(n) and the USO ¢, resulting from restricting ¢ to the
aforementioned facet. We can notice that ¢’ is an FMO and the only backward edges are
the ones attached to the path illustrated in Figure 4. Thus, a cycle has to use a part of this
path. However, this path cannot be part of any cycles: a vertex on the higher level (vertices
in Q"_,) of the path has only two outgoing edges; one to the sink [n] and one to the next
vertex on the path. A vertex on the lower level Q))'_, has only one outgoing edge to the next
vertex on the path. Also, the last vertex of the path [n] \ {n — 1,n} has only one outgoing
edge to [n] \ {n} which has only one outgoing edge to the sink [n].

The fact that the facet Fj,)\(31,, has no cycle follows from the observation that there are
backwards edges only on two coordinates which is not enough for the creation of a cycle
(remember that in a USO a cycle needs to span at least three coordinates). This concludes
the proof of Claim 13, which, combined with Claim 12, results in 1) being an AUSO.

» Claim 14. FEvery vertex in U?;Og Q? has a full-dimensional reachmap.

Firstly, we argue that v has r,(v) = [n]. We have sy (v) = {3} C ry(v). Then, v S u=
[n]\ {1,2} and u has sy(u) = {1,2} C ry(v). Vertex u is such that u Lo = [n] \ {2}; v is
the beginning of the path described in Figure 4. The backwards edges on this path span
every coordinate in {4,...,n}. This implies that r,(v') = {2,4,...,n} and, since there is a
path from v to v/, ry(v") C ry(v). Combined with the above, we have that ry(v) = [n].

Secondly, we argue that Yu € Q_5, ry(u) = [n]. Vertex v is the sink of the facet
Fiupq3},0- It follows that every vertex in Q) 5 N Fl,)\ (3}, has a path to v and thus has full
dimensional reachmap. The vertices in Us (defined earlier), which are the rest of the vertices
in Q) _3, have backward edges on coordinate 3 and thus have paths to F,\y3},.- It follows
that vertices in Uz also have full dimensional reachmaps.

Any vertex in U?:_(;L Q7 has a path to a vertex in Q)]'_5 since there are outgoing forward
edges incident to any vertex in 1 (except the global sink at [n]). Thus, we have that
Yu e U= Qr, ry(u) = [n] which proves the claim.

Finally, we combine the three Claims to conclude that the lowest vertex () can only be
covered by a vertex in @)_,. Therefore, v is not i-nice for any ¢ < n — 2, which proves the
theorem. We include an example construction, for five dimensions, in Figure 5. <
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5 Conclusions

In this paper we study the reachmaps and niceness of USO, concepts introduced by Welzl
[30] in 2001. The questions that Welzl originally posed are now answered and the concepts
explored further. We believe that these tools, or related ones, will prove useful in finally
closing the gap between the lower and upper bounds known for RE. This will happen with
either exponential lower bounds or with subexponential upper bounds. It is worth mentioning
that these concepts are not only relevant for USO, but could also be defined on generalizations
of USO, such as Grid USO [11] or Unimodal Numberings [15].

The authors of [17] define the concept of a (k, ¢)-layered AUSO and use it to argue that
their lower bounds are optimal under the method they use. Their concept is a generalization
of niceness (on AUSO) but the exact relationship remains to be discovered. They pose the
following questions: Are there AUSO that are not (2°(V"1°8™) O(,/n/logn))-layered? Are
there small constants ¢, d such that all AUSO are (¢, dn/logn)-layered? We believe that
the techniques of our proofs from Theorems 8 and 11 may be fruitful for answering these
questions.

Acknowledgements. We would like to thank Thomas Dueholm Hansen and Uri Zwick for
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