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Abstract
Let P be a probability distribution over a finite alphabet Ω` with all ` marginals equal. Let
X(1), . . . , X(`), X(j) = (X(j)

1 , . . . , X
(j)
n ) be random vectors such that for every coordinate i ∈ [n]

the tuples (X(1)
i , . . . , X

(`)
i ) are i.i.d. according to P.

The question we address is: does there exist a function cP() independent of n such that for
every f : Ωn → [0, 1] with E[f(X(1))] = µ > 0:

E

[∏̀
j=1

f(X(j))

]
≥ cP(µ) > 0 ?

We settle the question for ` = 2 and when ` > 2 and P has bounded correlation ρ(P) < 1.
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1 Introduction

1.1 Basic example
To introduce the problem we are studying, consider the following example. Let S ⊆ {0, 1, 2}n
be a non-empty set of density µ = |S|

3n . We pick a random vector X = (X1, . . . , Xn) uniformly
from {0, 1, 2}n, and then sample another vector Y = (Y1, . . . , Yn) such that for each i

independently, coordinate Yi is picked uniformly in {Xi, Xi + 1 mod 3}. Our goal is to show
that:

Pr[X ∈ S ∧ Y ∈ S] ≥ c(µ) > 0 .

In other words, we want to bound away the probability from 0 by an expression which only
depends on µ and not on n.
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Tuples Xi are
i.i.d. according to P. Each
of the ` marginals of P is π.

Vectors X(j) are
distributed
(dependently)
according to
π := πn.

Distributed
according to
P := Pn.

α(P) := min
x∈Ω
P(x, x, . . . , x)

ρ(P) : See Definition 10

X
(j)
i ∈ Ω

X(j) ∈ Ω := Ωn

Xi ∈ Ω := Ω`

X ∈ Ω := Ωn·`

S ⊆ Ω

Figure 1 Naming of the random variables in the general case. The columns Xi are distributed
i.i.d according to P. Each X

(j)
i is distributed according to π. The overall distribution of X is P.

1.2 Our results
More generally, let Ω be a finite alphabet and assume we are given a probability distribution
P over Ω` for some ` ≥ 2 – we will call it an `-step probability distribution over Ω.

Furthermore, assume we are given n ∈ N. We consider ` vectors X(1), . . . , X(`), X(j) =
(X(j)

1 , . . . , X
(j)
n ) such that for every i ∈ [n], the `-tuple (X(1)

i , . . . , X
(`)
i ) is sampled according

to P, independently of the other coordinates i′ 6= i (see Figure 1 for an overview of the
notation).

I Definition 1. Let µ, δ ∈ (0, 1]. We say that a distribution P is (µ, δ)-same-set hitting, if,
whenever a function f : Ωn → [0, 1] satisfies E[f(X(j))] ≥ µ for every j ∈ [`] := {1, . . . , `},
we have

E

∏̀
j=1

f(X(j))

 ≥ δ .
We call P same-set hitting if for every µ ∈ (0, 1] there exists δ ∈ (0, 1] such that P is

(µ, δ)-same-set hitting.

In this paper we address the question: which distributions P are same-set hitting? We
achieve full characterisation for ` = 2 and answer the question affirmatively for a large class
of distributions with ` > 2.
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To explain related work and our results, we introduce a stronger notion:

I Definition 2. Let µ, δ ∈ (0, 1]. We say that a distribution P is (µ, δ)-set hitting, if,
whenever functions f (1), . . . , f (`) : Ωn → [0, 1] satisfy E[f (j)(X(j))] ≥ µ for every j ∈ [`], we
have

E

∏̀
j=1

f (j)(X(j))

 ≥ δ . (1)

We call P set hitting if for every µ ∈ (0, 1] there exists δ ∈ (0, 1] such that P is (µ, δ)-set
hitting.

The full classification of set hitting distributions can be deduced from a paper on reverse
hypercontractivity1 by Mossel, Oleszkiewicz and Sen [10]:

I Theorem 3 (follows from [10]). A probability space P is set hitting if and only if:

min
x(1)∈supp(X(1)

i
),

...,

x(`)∈supp(X(`)
i

)

P(x(1), . . . , x(`)) > 0 . (2)

To state our results, we need to introduce the following properties of P:

I Definition 4. We say that P has equal marginals if for every j ∈ [`] and every x ∈ Ω:

Pr[X(1)
i = x] = . . . = Pr[X(j)

i = x] = . . . = Pr[X(`)
i = x] .

As explained in Section 3.4.2, the same-set hitting is interesting only for distributions
with equal marginals. Whenever we discuss such distributions, we assume w.l.o.g that Ω is
equal to the support of the marginal.

I Definition 5. We define:

α(P) := min
x∈Ω
P(x, . . . , x) ,

β(P) := min
x(1),...,x(`)∈Ω

P(x(1), . . . , x(`)) .

1.2.1 The case of two steps
In case of ` = 2 we establish the following theorem:

I Theorem 6 (cf. Theorem 12). A two-step probability distribution with equal marginals P
is same-set hitting if and only if α(P) > 0.

Of course, if β(P) > 0, then Theorem 6 follows from Theorem 3. However, we are not
aware of any previous work in case β(P) = 0, i.e., when the distribution is same-set hitting
but not set hitting, in particular for the probability space from Section 1.1.

1 That P is set hitting if (2) holds is a consequence of Lemma 8.3 in [10]. If (2) does not hold, an
appropriate combination of dictators establishes a counterexample.

APPROX/RANDOM’16
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1.2.2 More than two steps
In a general case of an `-step distribution with equal marginals, it is still clear that α(P) > 0
is necessary. However, it remains open if it is sufficient.

We provide the following partial results. Firstly, by a simple inductive argument based
on Theorem 12, we show that multi-step probability spaces induced by Markov chains are
same-set hitting.

Secondly, we show that P is same-set hitting if α(P) > 0 and its correlation ρ(P) is
smaller than 1. The opposite condition ρ(P) = 1 is equivalent to the following: There exist
j ∈ [`], S ⊆ Ω, T ⊆ Ω`−1 such that 0 < |S| < |Ω| and:

X
(j)
i ∈ S ⇐⇒

(
X

(1)
i , . . . , X

(j−1)
i , X

(j+1)
i , . . . , X

(`)
i

)
∈ T .

For the full definition of ρ(P), cf. Definition 10.

I Theorem 7 (cf. Theorem 13). Let P be a probability distribution with equal marginals. If
α(P) > 0 and ρ(P) < 1, then P is same-set hitting.

We are not aware of any general results in case ρ(P) = 1. In particular, let P be
a three-step distribution over Ω = {0, 1, 2} such that X(1)

i , X
(2)
i , X

(3)
i is uniform over

{000, 111, 222, 012, 120, 201}. To the best of our knowledge, it is an open question whether
this distribution P is same-set hitting.

1.2.3 Set hitting for functions with no large Fourier coefficients
The methods developed here also allow to obtain lower bounds on the probability of hitting
multiple sets. In fact, we show that if ρ(P) < 1, then such lower bounds exist in terms of ρ,
the measures of the sets and the largest non-empty Fourier coefficient.

I Theorem 8 (Informal, cf. Theorem 14). Let P be a probability distribution with ρ(P) < 1.
Then, P is set-hitting for functions f (1), . . . , f (`) : Ω→ [0, 1] that have both:

Noticeable expectations, i.e., E[f (j)(X(j))] ≥ Ω(1).
No large Fourier coefficients, i.e., maxσ

∣∣∣f̂ (j)(σ)
∣∣∣ ≤ o(1).

1.3 Background and related work
The question of understanding which sets are hit often by dynamical systems is central to
ergodic theory and additive combinatorics.

The Poincaré recurrence theorem states that measure preserving maps satisfy the property
that for each set U of positive measure, and for almost every point x of U , the dynamical
system started at x will hit U infinitely often, see, e.g., [12].

Much of the ergodic theory deals with quantifying this phenomena of repeatedly hitting
the set U . The ergodic theorem, for example, implies that ergodic measure preserving
dynamical systems satisfy that for almost all starting points x, the set U will be hit in
limiting frequency which is equal to its measure.

Understanding set hitting by a number of consecutive steps of a process has been of
intense study in additive combinatorics (where almost always ρ = 1).

For example, a well-studied case are random arithmetic progressions. Let Z be a finite
additive group and ` ∈ N. Then, we can define a distribution PZ,` of random `-step arithmetic
progressions in Z. Specifically, for every x, r ∈ Z we set:

PZ,`(x, x+ r, x+ 2r, . . . , x+ (`− 1)r) := 1/|Z|2 .
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Some of the distributions PZ,` can be shown to be same-set hitting using the hypergraph
regularity lemma:

I Theorem 9 ([14], [15], [6], cf. Theorem 11.27, Proposition 11.28 and Exercise 11.6.3 in [17]).
If |Z| is coprime to (`− 1)!, then PZ,` is same-set hitting.

This follows a long line of work, starting by Szemerédi lemma [16], its proof by Furstenberg
using the ergodic theorem [3] as well as the finite group and multi-dimensional versions, see,
e.g., [13, 4, 5].

One might conjecture that α(P) > 0 is the sole sufficient condition for same-set hitting.
Unfortunately, the techniques used to prove Theorem 9 do not seem to extend easily to less
symmetric spaces. This suggests that proving the conjecture fully in ρ = 1 case might be a
difficult undertaking.

The case of ρ < 1 has also been studied in the context of extremal combinatorics and
hardness of approximation. In particular, Mossel [9] uses the invariance principle to prove
that if ρ(P) < 1, then P is set hitting for low-influence functions. We use this result to
establish Theorem 7. Additionally, Theorem 8 can be seen as a strengthening of [9].

Furthermore, Austrin and Mossel [1] establish the result equivalent to Theorem 8 assuming
in addition to ρ(P) < 1 also that P is pairwise independent (they also prove results for the
case ρ(P) = 1 with pairwise independence but these involve only bounded degree functions).

Finally we note that another relevant paper in the case of ` = 2 and symmetric P is by
Dinur, Friedgut and Regev [2], who give a characterization of non-hitting sets. However, due
to a different framework, their results are not directly comparable to ours.

We hope that our work might turn out to be useful in inapproximability. For example,
our theorem is related to the proof of hardness for rainbow colorings of hypergraphs by
Guruswami and Lee [7]. In particular, it is connected to their Theorem 4.3 and partially
answers their Questions C.4 and C.6.

1.4 Outline of the paper
The rest of the paper is organised as follows: the notation is introduced in Section 2, Section 3
contains full statements of our theorems and Section 4 sketches the proof of our main theorem.

The full proofs along with he modified proof of the low-influence theorem from [9] can be
found in the Arxiv version of the paper [8].

2 Notation and Preliminaries

2.1 Notation
We will now introduce our setting and notation. We refer the reader to Figure 1 for an
overview.

We always assume that we have n independent coordinates. In each coordinate i we pick `
values X(j)

i for j ∈ [`] = {1, . . . , `} at random using some distribution. Each value X(j)
i is

chosen from the same fixed set Ω, and the distribution of the tuple Xi = (X(1)
i , . . . , X

(`)
i ) of

values from Ω` is given by a distribution P.
This gives us values X(j)

i for i ∈ {1, . . . , n} and j ∈ {1, . . . , `}. Thus, we have ` vectors
X(1), . . . , X(`), where X(j) = (X(j)

1 , . . . , X
(j)
n ) represents the j-th step of the random process.

In case ` = 2, we might call our two vectors X and Y instead.
For reasons outlined in Section 3.4.2 we assume that all of X(1)

i , . . . , X
(`)
i have the same

marginal distribution, which we call π. We assume that Ω is the support of π.

APPROX/RANDOM’16
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Even though it is not necessary, for clarity of the presentation we assume that each
coordinate Xi = (X(1)

i , . . . , X
(j)
i , . . . , X

(`)
i ) has the same distribution P.

We consistently use index i to index over the coordinates (from [n]) and j to index over
the steps (from [`]).

As visible in Figure 1, we denote the aggregation across the coordinates by the underline
and the aggregation across the steps by the overline. For example, we write Ω = Ωn, Ω = Ω`,
P = Pn and X = (X1, . . . , Xn) = (X(1), . . . , X(`)).

We sometimes call P a tensorized, multi-step probability distribution as opposed to a
tensorized, single-step distribution π and single-coordinate, multi-step distribution P.

Furthermore, we extend the index notation to subsets of indices or steps. For example,
for S ⊆ [`] we define X(S) to be the collection of random variables

{
X(j) : j ∈ S

}
.

We also use the set difference symbol to mark vectors with one element missing, e.g.,
X
\j := (X(1), . . . , X(j−1), X(j+1), . . . , X(`)).

One should think of ` and |Ω| as constants and of n as large. We aim to get bounds
which are independent of n.

2.2 Correlation
In case ` > 2, the bound we obtain will depend on the correlation of the distribution P . This
concept was used before in [9].

I Definition 10. Let P be a single-coordinate distribution and let S, T ⊆ [`]. We define the
correlation:

ρ(P, S, T ) := sup
{

Cov[f(X(S)), g(X(T ))]
∣∣∣ f : Ω(S) → R, g : Ω(T ) → R,

Var[f(X(S))] = Var[g(X(T ))] = 1
}
.

The correlation of P is ρ(P) := maxj∈[`] ρ (P, {j}, [`] \ {j}).

2.3 Influence
A crucial notion in the proof of Theorem 7 is the influence of a function. It expresses the
average variance of a function, given that all but one of its n inputs have been fixed to
random values:

I Definition 11. Let X be a random vector over alphabet Ω and f : Ω→ R be a function
and i ∈ [n]. The influence of f on the i-th coordinate is:

Infi(f(X)) := E
[
Var

[
f(X) | X\i

]]
.

The (total) influence of f is Inf(f(X)) :=
∑n
i=1 Infi(f(X)).

Note that the influence depends both on the function f and the distribution of the vector X.

3 Our Results

Here we give precise statements of our results presented in the introduction.
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3.1 The case of ` = 2
I Theorem 12. Let Ω be a finite set and P a probability distribution over Ω2 with equal
marginals π. Let pairs (Xi, Yi) be i.i.d. according to P for i ∈ {1, . . . , n}.

Then, for every f : Ωn → [0, 1] with E[f(X)] = µ > 0:

E[f(X)f(Y )] ≥ c (α(P), µ) , (3)

where the function c() is positive whenever α(P) > 0.

We remark that Theorem 12 does not depend on ρ(P) in any way. This is in contrast to the
case ` > 2. It is possible to obtain a polynomially large explicit bound c() for symmetric
two-step spaces.

To prove Theorem 12 we make a convex decomposition argument and then apply the
multi-step Theorem 13. For completeness, we provide a proof of Theorem 6 assuming
Theorem 12.

Proof of Theorem 6. The “if” part follows from Theorem 12. The “only if” can be seen by
taking f to be an appropriate dictator. J

3.2 The general case
I Theorem 13. Let Ω be a finite set and P a distribution over Ω` in which all marginals
are equal. Let tuples Xi = (X(1)

i , . . . , X
(`)
i ) be i.i.d. according to P for i ∈ {1, . . . , n}.

Then, for every function f : Ωn → [0, 1] with E[f(X(j))] = µ > 0:

E

∏̀
j=1

f(X(j))

 ≥ c (α(P), ρ(P), `, µ) , (4)

where the function c() is positive whenever α(P) > 0 and ρ(P) < 1.
Furthermore, there exists some D(P) > 0 (more precisely, D depends on α, ρ and `)

such that if µ ∈ (0, 0.99], one can take:

c(α, ρ, `, µ) := 1/ exp
(

exp
(

exp
(

(1/µ)D
)))

. (5)

Note that this bound does depend on ρ(P). We also obtain a bound that does not depend
on ρ(P) for multi-step probability spaces generated by Markov chains.

3.3 Hitting of different sets by uniform functions
Finally, we state the generalization of low-influence theorem from [9]. We assume that the
reader is familiar with Fourier coefficients f̂(σ) and the basics of discrete function analysis,
for details see, e.g., Chapter 8 of [11]. For the proof see the full version of the paper [8].

I Theorem 14. Let X be a random vector distributed according to an `-step distribution P
with ρ(P) ≤ ρ < 1 and let µ(1), . . . , µ(`) ∈ (0, 1].

There exist k ∈ N and γ > 0 (both depending only on P and µ(1), . . . , µ(`)) such that for
all functions f (1), . . . , f (`) : Ω→ [0, 1], if E[f (j)(X(j))] = µ(j) and maxσ:0<|σ|≤k |f̂ (j)(σ)| ≤ γ,
then

E

∏̀
j=1

f (j)(X(j))

 ≥ c(P, µ(1), . . . , µ(`)) > 0 . (6)

APPROX/RANDOM’16
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3.4 Assumptions of the theorems

3.4.1 Equal distributions: unnecessary
In Theorems 12, 13 and 14 we assumed that the tuples (X(1)

i , . . . , X
(`)
i ) are distributed

identically for each i. It is natural to ask if it is indeed necessary.
This is not the case. Instead, we made this assumption for simplicity of notation

and presentation. If one is interested in statements which are valid where coordinate i is
distributed according to Pi, one simply needs to assume that there are α > 0 and ρ < 1 such
that α(Pi) ≥ α and ρ(Pi) ≤ ρ.

3.4.2 Equal marginals: necessary
We quickly discuss the case when P does not have equal marginals. Recall that β(P) =
minx(1),...,x(`)∈Ω P(x(1), . . . , x(`)). If β(P) > 0, then, by Theorem 3, P is set hitting, and
therefore also same-set hitting.

In case β(P) = 0, we demonstrate an example which shows that E
[∏`

j=1 f(X(j))
]
can

be exponentially small in n. For concreteness, we set ` := 2 and Ω := {0, 1} and consider P
which picks uniformly among {00, 01, 11}. We then set

S1 := {(x1, . . . , xn) | x1 = 1 ∧ |wt(x)− n/3| ≤ 0.01n} (7)
S2 := {(x1, . . . , xn) | x1 = 0 ∧ |wt(x)− 2n/3| ≤ 0.01n} (8)

where wt(x) is the Hamming-weight of x, i.e., the number of ones in x.
For large enough n, a concentration bound implies that Pr[X(1) ∈ S1] > 1

3 − 0.01 and
Pr[X(2) ∈ S2] > 1

3 − 0.01. Hence, if we set f to be the indicator function of S := S1 ∪ S2,
the assumption of Theorem 13 holds. However, because of the first coordinate we have
Pr[X(1) ∈ S ∧X(2) ∈ S] ≤ Pr[X(1) ∈ S2 ∨X(2) ∈ S1], and the right hand side is easily seen
to be exponentially small.

It is not difficult to extend this example to any distribution with β(P) = 0 that does not
have equal marginals.

4 Proof Sketch

In this section we briefly outline the proof of Theorem 13. For simplicity, we assume that
the probability space is the one from Section 1.1, i.e., (Xi, Yi) are distributed uniformly in
{00, 11, 22, 01, 12, 20}. Additionally, we assume that we are given a set S ⊆ {0, 1, 2}n with
µ(S) = |S|/3n > 0, so that we want a bound of the form

Pr [X ∈ S ∧ Y ∈ S] ≥ c(µ) > 0 .

The proof consists of three steps. Intuitively, in the first step we deal with dictator sets,
e.g., Sdict = {x : x1 = 0}, in the second step with linear sets, e.g., Slin = {x :

∑n
i=1 xi

(mod 3) = 0} and in the third step with threshold sets, e.g., Sthr = {x : |{i : xi = 0}| ≥ n/3}.

4.1 Step 1 – making a set resilient
We call a set resilient if Pr[X ∈ S] does not change by more than a (small) multiplicative
constant factor whenever conditioned on (Xi1 = xi1 , . . . , Xis = xis) on a constant number s
of coordinates.
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In particular, Sdict is not resilient (because conditioning on x1 = 0 increases the measure
of the set to 1), while Slin and Sthr are.

If a set is not resilient, using P(x, x) = 1/6 for every x ∈ Ω, one can find an event
E :≡ Xi1 = Yi1 = xi1 ∧ . . . ∧ Xis = Yis = xis such that for some constant ε > 0 we have
Pr[E ] ≥ ε and, at the same time, Pr[X ∈ S | E ] ≥ (1 + ε) Pr[X ∈ S].

Since each such conditioning increases the measure of the set S by a constant factor, S must
become resilient after a constant number of its iterations. Furthermore, each conditioning
induces only a constant factor loss in Pr[X ∈ S ∧ Y ∈ S].

4.2 Step 2 – eliminating high influences
In this step, assuming that S is resilient, we condition on a constant number of coordinates
to transform it into two sets S′ and T ′ such that:

Both of them have low influences on all coordinates.
Both of them are supersets of S (after the conditioning).

The first property allows us to apply low-influence set hitting from [9] to S′ and T ′. The
second one, together with the resilience of S, ensures that µ(S′), µ(T ′) ≥ (1− ε)µ(S).

In fact, it is more convenient to assume that we are initially given two resilient sets S
and T .

Assume w.l.o.g. that Infi(T ) ≥ τ for some i ∈ [n]. Given z ∈ {0, 1, 2}, let Tz := {x : x ∈
T ∧ xi = z}. Furthermore, let T ∗z := Tz ∪ Tz+1 (mod 3).

Since Infi(T ) ≥ τ , we can show that there exists z ∈ {0, 1, 2} such that, after conditioning
on Xi = Yi = z, the sum µ(Sz) + µ(T ∗z ) is strictly greater than the sum µ(S) + µ(T ):

Pr[X ∈ Sz | Xi = z] + Pr[Y ∈ T ∗z | Yi = z] ≥ Pr[X ∈ S] + Pr[Y ∈ T ] + c(τ) . (9)

We choose to delete the coordinate i and replace S with S′ := Sz and T with T ′ := T ∗z .
Equation (9) implies that after a constant number of such operations, neither S nor T has
any remaining high-influence coordinates.

Crucially, with respect to same-set hitting our set replacement is essentially equivalent to
conditioning on Xi = z and Yi = z ∨ Yi = z + 1 (mod 3). Therefore, each operation induces
only a constant factor loss in Pr[X ∈ S ∧ Y ∈ T ].

4.3 Step 3 – applying low-influence theorem from [9]
Once we are left with two low-influence, somewhat-large sets S and T , we obtain Pr[X ∈
S ∧ Y ∈ T ] ≥ c(µ) > 0 by a straightforward application of a slightly modified version of
Theorem 1.14 from [9]. The theorem gives that ρ(P) < 1 implies that the distribution P is
set hitting for low-influence functions:

I Theorem 15. Let X be a random vector distributed according to (Ω,P) such that P has
equal marginals, ρ(P) ≤ ρ < 1 and minx∈Ω π(x) ≥ α > 0.

Then, for all ε > 0, there exists τ := τ(ε, ρ, α, `) > 0 such that if functions f (1), . . . , f (`) :
Ω→ [0, 1] satisfy

max
i∈[n],j∈[`]

Infi(f (j)(X(j))) ≤ τ , (10)

then, for µ(j) := E[f (j)(X(j))]:

E

∏̀
j=1

f (j)(X(j))

 ≥
∏̀
j=1

µ(j)

`/(1−ρ2)

− ε . (11)
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Furthermore, there exists an absolute constant C ≥ 0 such that for ε ∈ (0, 1/2] one can
take

τ :=
(

(1− ρ2)ε
`5/2

)C ` ln(`/ε) ln(1/α)
(1−ρ)ε

. (12)

The proof of Theorem 15 can be found in the Arxiv version of the paper [8].

4.4 The case ρ = 1: open question
Theorem 13 requires that ρ < 1 in order to give a meaningful bound. It is unclear whether
this is an artifact of our proof or if it is necessary. In particular, consider the three step
distribution P which picks a uniform triple from {000, 111, 222, 012, 120, 201}. One easily
checks that ρ(P) = 1 and that all marginals are uniform. We do not know if this distribution
is same-set hitting.

However, the method of our proof breaks down. We illustrate the reason in the following
lemma.

I Lemma 16. For every n > n0 there exist three sets S(1), S(2), and S(3) such that for the
distribution P as described above we have
∀j : Pr[X(j) ∈ S(j)] ≥ 0.49.
Pr[∀j : X(j) ∈ S(j)] = 0.
The characteristic functions 1S(j) of the three sets all satisfy

max
i∈[n]

Infi(1S(j)(X(j)))→ 0 as n→∞ .

While the lemma does not give information about whether P is same-set hitting, it shows
that our proof fails (since the analogue of Theorem 15 fails).

Proof. We let

S(1) := {x(1) : x(1) has less than n/3 twos} ,

S(2) := {x(2) : x(2) has less than n/3 ones} ,

S(3) := {x(3) : x(3) has less than n/3 zeros} .

Whenever we pick X(1), X(2), X(3), the number of twos in X(1) plus the number of ones in
X(2) plus the number of zeros in X(3) always equals n (there is a contribution of one from
each coordinate). All three properties are now easy to check. J
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