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Abstract
For a k-ary predicate P , a random instance of CSP(P ) with n variables and m constraints is
unsatisfiable with high probability when m ≥ O(n). The natural algorithmic task in this regime
is refutation: finding a proof that a given random instance is unsatisfiable. Recent work of
Allen et al. suggests that the difficulty of refuting CSP(P ) using an SDP is determined by a
parameter cmplx(P ), the smallest t for which there does not exist a t-wise uniform distribution
over satisfying assignments to P . In particular they show that random instances of CSP(P ) with
m� ncmplx(P)/2 can be refuted efficiently using an SDP.

In this work, we give evidence that ncmplx(P )/2 constraints are also necessary for refutation
using SDPs. Specifically, we show that if P supports a (t − 1)-wise uniform distribution over
satisfying assignments, then the Sherali-Adams+ and Lovász-Schrijver+ SDP hierarchies cannot
refute a random instance of CSP(P ) in polynomial time for any m ≤ nt/2−ε.
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1 Introduction

The average-case complexity of constraint satisfaction problems (CSPs) has been studied
in computer science, mathematics, and statistical physics. Despite the vast amount of
research that has been done, the hardness of natural algorithmic tasks for random CSPs
remains poorly understood. We consider random CSPs with n variables and m constraints
chosen independently and uniformly at random. Whether or not a random CSP is satisfiable
depends on its clause density m

n . It is conjectured that for any nontrivial CSP there is a
satisfiability threshold α(P ) depending on the choice of predicate P : For m < α(P ) · n, an
instance is satisfiable with high probability, and m > α(P ), an instance is unsatisfiable with
high probability. This conjecture has been proven in the case of k-SAT for large enough k
[16]. For an arbitrary predicate P , it is only known that there exist constants αlb(P ) and
αub(P ) such that random instances with m < αlb(P ) · n are satisfiable with high probability
and random instances with m > αub(P ) · n are unsatisfiable with high probability. In the
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41:2 Lower Bounds for CSP Refutation by SDP Hierarchies

low density, satisfiable regime, the major research goal is to develop algorithms that find
satisfying assignments. In the high density, unsatisfiable regime, the goal is to refute an
instance, i.e., find a short certificate that there is no solution.

In this paper, we study refutation. A refutation algorithm takes a random instance I of
CSP(P ) and returns either “unsatisfiable" or "don’t know". It must satisfy two conditions:
(1) it is never wrong, i.e., if I is satisfiable, it must return “don’t know" and (2) it returns
“unsatisfiable" with high probability over the choice of the instance. Asm increases, refutation
becomes easier. The objective, then, is to refute instances with m as small as possible. This
problem has been studied extensively and is related to hardness of approximation [17], proof
complexity [8], statistical physics [13], cryptography [2], and learning theory [14]. As m
increases, refutation becomes easier. The objective, then, is to refute instances with m as
small as possible. Much research has focused on finding algorithms for refutation, especially
in the special case of SAT; see [1] for references.

Most known refutation algorithms are based on semidefinite programming (SDP). For
now, we think of an SDP relaxation of an instance I of CSP(P ) as a black box that returns
a number SDPOpt ∈ [0, 1] that approximates the maximum fraction of constraints that can
be simultaneously satisfied. An SDP-based refutation algorithm takes a random instance
I of CSP(P ), solves some SDP relaxation of I, and return “Unsatisfiable" if and only if
SDPOpt < 1. The majority of known polynomial-time algorithms for refutation fit into this
framework (e.g., [1, 7, 20, 12, 18]). It is then natural to ask the following question.

What is the minimum number of constraints needed by an efficient SDP-based
refutation algorithm for CSP(P )?

Allen et al. give an upper bound on the number of constraints required to refute an instance
of CSP(P ) in terms of a parameter cmplx(P ) [1]. They define cmplx(P ) to be the minimum
t such that there is no t-wise uniform distribution over satisfying assignments to P . Clearly
1 ≤ cmplx(P ) ≤ k for nontrivial predicates and cmplx(P ) = k when P is k-XOR or k-SAT.
They give the following upper bound.

I Theorem 1 ([1]). There is an efficient SDP-based algorithm that refutes a random instance
I of CSP(P ) with high probability when m� ncmplx(P )/2.

For special classes of predicates, we know that ncmplx(P )/2 constraints are also necessary for
refutation by SDP-based algorithms. Schoenebeck considered arity-k predicates P whose
satisfying assignments are a superset of k-XOR’s; these include k-SAT and k-XOR. For
such predicates, he showed that polynomial-size sum of squares (SOS) SDP relaxations
cannot refute random instances with m ≤ nk/2−ε [28] using a proof previously discovered
by Grigoriev [21]. Based on work of Lee, Raghavendra, and Steurer [24], this implies that
no polynomial-size SDP can be used to refute random instances of k-XOR or k-SAT when
m ≤ nk/2−ε. This leads us to make the following conjecture.

I Conjecture 2. Let ε be a constant greater than 0. Given a random instance I of CSP(P )
with m ≤ ncmplx(P )/2−ε, with high probability any polynomial-size SDP relaxation of I has
optimal value 1 and can therefore not be used to refute I.

Proving this conjecture would essentially complete our understanding of the power of SDP-
based refutation algorithms. To do this, it suffices to prove it for SOS SDP relaxations,
as the SOS relaxation of CSP(P ) is at least as powerful as an arbitrary SDP relaxation of
comparable size [24]. Prior to this work, this SOS version Conjecture 2 appeared in [1]; we
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know of no other mention of this conjecture in the literature.1

Some partial progress has been made toward proving this conjecture. Building on
results of Benabbas et al. [9] and Tulsiani and Worah [30], O’Donnell and Witmer proved
lower bounds for the Sherali-Adams (SA) linear programming (LP) hierarchy and the
Sherali-Adams+ (SA+) and Lovász-Schrijver+ (LS+) SDP hierarchies. All three of these
hierarchies are weaker than SOS. The SA+ hierarchy gives an optimal approximation for
any CSP in the worst case assuming the Unique Games Conjecture [27]. They showed that
Sherali-Adams linear programming (LP) relaxations cannot refute random instances with
m ≤ ncmplx(P )/2−ε [26]; this implies that no polynomial-size LP can refute random instances
with with m ≤ ncmplx(P )/2−ε by work of Chan et al. [11]. They showed that SA+ cannot
refute random instances with m ≤ ncmplx(P )/2−ε when a set of o(m) constraints has been
removed [26]. Also, they proved that SA+ and LS+ cannot refute fully random instances with
m ≤ Ω(ncmplx(P )/2−1/3−ε). Much less is known for SOS. For predicates P that support a
pairwise uniform distribution over satisfying assignments, Barak, Chan, and Kothari showed
that polynomial-size SOS relaxations cannot refute random instances with m = Ω(n) in
which o(m) constraints have been removed [5].

In addition, there is a long history of related work on lower bounds for refutation in proof
complexity (e.g., [21, 23, 10, 30]). Specifically, SA, SA+, LS+, and SOS have corresponding
static semialgebraic proof systems and proving integrality gaps for these LP and SDP
relaxations in equivalent to proving rank lower bounds for refutations in these proof systems.

Results

Our contribution is two-fold: First, we remove the assumption that a small number of
constraints are deleted to show that fully-random CSP instances have integrality gaps in
SA+ for m ≤ Ω(nt/2−ε).

I Theorem 3. Let P : [q]k → {0, 1} be (t − 1)-wise uniform-supporting and let I be a
random instance of CSP(P ) with n variables and m ≤ Ω

(
nt/2−ε) constraints. Then with

high probability the SA+ relaxation for I has value 1, even after Ω(n
ε
t−2 ) rounds.

Second, we use this result to show that fully random instances have LS+ integrality gaps
for m ≤ Ω(nt/2−ε). Recall that LS+ gives relaxations of 0/1-valued integer programs, so we
restrict our attention here to Boolean CSPs with P : {0, 1}k → {0, 1}.

I Theorem 4. Let P : {0, 1}k → {0, 1} be (t − 1)-wise uniform-supporting and let I be a
random instance of CSP(P ) with n variables and m ≤ Ω

(
nt/2−ε) constraints. Then with

high probability the LS+ relaxation for I has value 1, even after Ω(n
ε
t−2 ) rounds.

In their strongest form, our results hold for a static variant of the LS+ SDP hierarchy
that is at least as strong as both SA+ and LS+. We define this static LS+ hierarchy in
Section 2.

I Theorem 5. Let P : {0, 1}k → {0, 1} be (t − 1)-wise uniform-supporting and let I be a
random instance of CSP(P ) with n variables and m ≤ Ω

(
nt/2−ε) constraints. Then with

high probability the static LS+ relaxation for I has value 1, even after Ω(n
ε
t−2 ) rounds.

1 Barak, Kindler, and Steurer [6] made a related but different conjecture that the basic SDP relaxation is
optimal for random CSPs.

APPROX/RANDOM’16
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Tulsiani and Worah proved this theorem in the special case of pairwise independence and
O(n) constraints [30, Theorem 3.27].2

These results provide further evidence for Conjecture 2 and, in particular, give the first
examples of SDP hierarchies that are unable to refute CSPs with (t − 1)-wise uniform-
supporting predicates when m ≤ Ω

(
nt/2−ε).

From a dual point of view, we can think of SA+, LS+, and static LS+ as semialgebraic
proof systems and our results can be equivalently stated as rank lower bounds for these proof
systems.

I Theorem 6. Let P : {0, 1}k → {0, 1} be (t − 1)-wise uniform-supporting and let I be a
random instance of CSP(P ) with n variables and m ≤ Ω

(
nt/2−ε) constraints. Then with

high probability any SA+, LS+, or static LS+ refutation of I requires rank Ω(n
ε
t−2 ).

In another line of work, Feldman, Perkins, and Vempala [19] showed that if a predicate
P is (t − 1)-wise uniform supporting, then any statistical algorithm based on an oracle
taking L values requires m ≥ Õ

(
nr

L

)
to refute. They further show that the dimension of

any convex program refuting such a CSP must be at least Õ(nt/2). These lower bounds are
incomparable to the integrality gap results stated above: While statistical algorithms and
arbitrary convex relaxations are more general models, standard SDP hierarchy relaxations
for k-CSPs, including the SA+ and LS+ relaxations we study, have dimension Θ(nk) and are
therefore not ruled out by this work.

Techniques

For simplicity we consider our CSP to have ±1-values variables and P : {−1, 1}k → {0, 1}.
To solve CSP(P ) exactly, it suffices to optimize over distributions on assignments {0, 1}n.
This, of course, is hard, so relaxations like SA, SA+, LS+, and SOS instead optimize over
“pseudodistributions" on assignments [4], which are objects that look like distributions to
simple enough functions. We can also define “pseudoexpectations" Ẽ[·] over these pseudodis-
tributions. As the rank or degree of the relaxation increases, these pseudodistributions look
more like actual distributions over {0, 1}n. However, the rank-r relaxations have size nO(r).
The r-round SA+ relaxation requires that Ẽ[f(x)] ≥ 0 for f(x) : {0, 1}n → R such that either
(1) f depends on at most r variables or (2) f is the square of some affine function. We know
that when m ≤ ncmplx(P )/2−ε, there exist pseudodistributions satisfying (1) [9, 26]. Condition
(2) is equivalent to positive semidefiniteness of the matrix of second pseudomoments Ẽ[xixj ] of
the pseudodistribution. Recalling that we are now considering ±1-valued variables, previous
work had constructed pseudodistributions and proved that their second moment matrix was
positive semidefinite (PSD) by showing that it was diagonal and had nonnegative entries.
The second moment matrix is diagonal when there are no correlations between assignments
to pairs of variables under the pseudodistribution and the marginals of pseudodistribution
for each variable is unbiased. This condition holds for instances with low densities, but
correlations between variables arise as the density increases.

We show positive semidefiniteness in the presence of these correlations by showing
that they must remain local. Our argument extends a technique of Tulsiani and Worah
[30]. We prove that the graph induced by correlations between variables must have small
connected components, each of which corresponds to a small block of off-diagonal nonzero

2 Actually, [30] prove a rank lower bound for the dual static LS+ proof system, but this is equivalent to a
rank lower bound for the static LS+ SDP hierarchy we consider here.
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entries in the second pseudomoment matrix. Since each of these off-diagonal blocks is small,
condition (1) guarantees that functions supported on these variables will have nonnegative
pseudoexpectation. This means that each of these off-diagonal blocks is a PSD matrix. The
pseudomoment matrix must then be PSD: It can be written as a sum of a diagonal matrix
with nonnegative elements and PSD “correction matrices", each of which corresponds to a
small connected component in the correlation graph.

2 Preliminaries

2.1 Constraint satisfaction problems
Given a predicate P : [q]k → {0, 1}, an instance I of the CSP(P ) problem with variables
x1, . . . , xn is a multiset of P -constraints. Each P -constraint is a tuple (c, S), where c ∈ [q]k is
the negation pattern and S ∈ [n]k is the scope. The corresponding constraint is P (xS+c) = 1,
where xS = (xi)i∈S and + is component-wise addition mod q.

In the decision version of CSP(P ), we wish to determine whether there exists an assignment
satisfying all constraints of a given instance I. In the optimization version, the objective
is to maximize the fraction of simultaneously satisfied constraints. That is, we define
ValI(x) := 1

m

∑
(c,S)∈I P (c + xS) and wish to find x ∈ [q]n maximizing ValI(x). We will

write maxx ValI(x) as Opt(I).
Next, we define our random model. We consider instances in which m constraints are

drawn independently and uniformly at random from among all qknk possible constraints
with replacement. We distinguish between different orderings of the scope, as P may not
be symmetric. The specific details of this definition are not important; our results hold for
any similar model. For example, see [1, Appendix D]. A random instance is likely to be
highly unsatisfiable: It is easy to show that Opt(I) = |P−1(1)|

qk
+ o(1) for m ≥ O(n) with

high probability.
Given an instance I, we can consider the associated k-uniform hypergraph HI . This is

the hypergraph on V = [n] that has a hyperedge S if and only if S is the scope of some
constraint of I.

Next, we define the main condition on predicates that we will study.

I Definition 7. A predicate P : [q]k → {0, 1} is t-wise uniform supporting if there exists a
distribution µ over [q]k supported on P ’s satisfying assignments such that Prz∼µ[zT = α] =
q−|T | for all α ∈ [q]|T | and for all T ⊆ [k] with 1 ≤ |T | ≤ t.

2.2 LP and SDP hierarchies
We can define LP and SDP relaxations of both the decision and optimization versions of
CSPs. All of our results will apply to both.

2.2.1 Representing CSP(P )with polynomial inequalities
All of the hierarchies we look at start with an initial set of polynomial inequalities representing
an instance of a CSP and then iteratively tighten this relaxation. In this section, we will
describe standard ways of constructing these initial relaxations.

To write down LP and SDP relaxations of CSP decision problems, we will need to
represent the constraints of an instance I of CSP(P ) as a set of polynomial inequalities. We
will do this in two ways.

APPROX/RANDOM’16
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In SA, SA+, and LS+, we will represent each constraint as a degree-k polynomial inequality.
Let P ′(x) be the unique degree-k polynomial such that P ′(z) = P (z) for all z ∈ {0, 1}k.
Also, given a ∈ [0, 1]k and b ∈ {0, 1}, use a(b) to denote a if b = 0 and 1 − a if b = 1. For
z ∈ [0, 1]k and c ∈ {0, 1}k, let z(c) ∈ [0, 1]k be such that (z(c))i = z

(ci)
i . Then we define the

base degree-k relaxation of I to be the set

RI := {x ∈ [0, 1]n | P ′(x(c)
S ) = 1 ∀(c, S) ∈ I}. (2.1)

It will be most natural to construct SA, SA+, and static LS+ relaxations starting from this
polytope. In addition, this formulation immediately generalizes to larger alphabets.

For LS+, on the other hand, we will have to start with a linear relaxation. Recall that
any nontrivial arity-k predicate P can be represented as a conjunction of at most 2k − 1
disjunctions of arity k. In particular, letting F = {z ∈ {0, 1}k | P (z) = 0}, we see that

P (z) =
∧
f∈F

k∨
i=1

fi ⊕ zi. (2.2)

Using (2.2), we can represent I as a k-SAT instance with at most (2k−1) ·m constraints. The
linear relaxation we will consider is the standard linear relaxation for this k-SAT instance.
For each clause

∨k
i=1 ci ⊕ zi, we will add the inequality

∑k
i=1 z

(ci)
i ≥ 1. We then obtain the

following linear relaxation for I.

LI :=
{
x ∈ [0, 1]n

∣∣∣∣∣
k∑
i=1

x
(ci⊕fi)
Si

≥ 1 ∀(c, S) ∈ I, f ∈ F
}
. (2.3)

To get a maximization version of the LS+ relaxation, we will need a base relaxation with
linear constraints and a linear objective function. To do this, we will start with LI and add
variables zc,S for all constraints (c, S) ∈ I and consider the following polytope in Rn+m.

L′I :=
{

(x, z) ∈ [0, 1]n+m

∣∣∣∣∣
k∑
i=1

x
(ci⊕fi)
Si

≥ zc,S ∀(c, S) ∈ I, f ∈ F
}
. (2.4)

We can then write the following standard LP relaxation of CSP(P ).

max 1
m

∑
(c,S)∈I

zc,S

s.t. (x, z) ∈ L′I

2.2.2 Sherali-Adams
The Sherali-Adams (SA) linear programming hierarchy gives a family of locally consistent
distributions on assignments to sets of variables. As the size of these sets increases, the
relaxation becomes tighter.

I Definition 8. Let {DS} be a family of distributions DS over [q]S for all S ⊆ [n] with
|S| ≤ r. We say that {DS} is r-locally consistent if for all T ⊆ S ⊆ [n] with |S| ≤ r, the
marginal of DS on T is equal to DT . That is,

DT (α) =
∑
β∈[q]S
βT=α

DS(β).
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Given polynomial inequalities a1(x) ≥ 0, a2(x) ≥ 0, . . . , am(x) ≥ 0 called axioms such
that each aj depends on at most r variables, we consider the set

A := {x ∈ Rn | a1(x) ≥ 0, a2(x) ≥ 0, . . . , am(x) ≥ 0}.

For a polynomial q, let supp(q) be the set of all variables on which a depends. We then define
the rank-r SA relaxation for A as the set of all families of distributions {DS}S⊆[n], |S|≤r over
[q]S satisfying following two properties.
1. {DS}S⊆[n], |S|≤r is r-locally consistent.
2. Eα∼Dsupp(aj) [aj(α)] = 1 for all j ∈ [m].
We denote this set of families of distributions as SAr(A); note that SAr(A) is a polytope.

In the case of an instance I of CSP(P ), we can write r-round SA relaxations in both
feasibility and optimization forms. In the feasibility formulation, we check whether or not
the polytope SAr(RI) is feasible; this is a relaxation of the problem of checking whether or
not all constraints can be simultaneously satisfied.

In the rank-r SA optimization formulation, we solve the following LP.

max 1
m

∑
(c,S)∈I

Eα∼DS [P (α+ c)] (2.5)

s.t. {DS}S⊆[n], |S|≤r ∈ SAr(∅).

This is an LP of size nO(r) that is a relaxation of the problem of maximizing the number
of satisfied constraints. As r increases, the number of variables and constraints in this LP
increases and the relaxation tightens until r = n, when SA has Θ(qn) variables and gives the
exact solution.

2.2.3 Sherali-Adams+

The Sherali-Adams+ (SA+) SDP hierarchy additionally requires the second moment matrix
of these distributions to be PSD. Given a family of local distributions {DS}, define M(D) ∈
R(nq+1)×(nq+1) to be the symmetric matrix indexed by (0, [n]× [q]) such that

M(D)0,0 = 1
M(D)0,(i,a) = D{i}(xi = a)

M(D)(i,a),(j,b) = D{i,j}(xi = a ∧ xj = b).

Note that the ((i, a), (i, b))-element of B is D{i}(xi = a) if a = b and is 0 if a 6= b. Given
an initial set A of axioms as above, we define SAr

+(A) as we did SAr(A) with the following
additional condition.
3. M(D) is PSD.
We define the optimization version of the rank-r SA+ relaxation analogously to the optimiza-
tion version of SA in (2.5); this is an SDP with size nO(r).

We can equivalently define SA+ by requiring the covariance matrix of the locally consistent
{DS} distributions to be positive semidefinite (PSD).

I Definition 9. The covariance matrix Σ for r-locally consistent distributions {DS} for
r ≥ 2 is defined as

Σ(i,a),(j,b) = D{i,j}(xi = a ∧ xj = b)−D{i}(xi = a) ·D{j}(xj = b).

These two representations are equivalent [31].

APPROX/RANDOM’16
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I Lemma 10. M is PSD if and only if Σ is PSD.

We include the proof in Appendix B.
The covariance matrix condition will be more convenient for us to work with. A valid

global distribution has a PSD covariance matrix, so SA+ is a relaxation of CSP(P ) and is
exact for r = n.

2.2.4 Lovász-Schrijver+

We now define the Lovász-Schrijver+ (LS+) SDP relaxation for binary CSPs whose variables
are 0/1-valued. Given an initial polytope K ∈ Rn, we would like to generate a sequence of
progressively tighter relaxations. To define one LS+ lift-and-project step, we will use the
cone

K̃ = {(λ, λx1, . . . , λxn) | λ > 0, x1, . . . , xn ∈ K}.

K can be recovered by taking the intersection with x0 = 1.

I Definition 11. Let K̃ be a convex cone in Rn+1. Then the lifted LS+ cone N+(K̃) is the
cone of all y ∈ Rn+1 for which there exists an (n + 1) × (n + 1) matrix Y satisfying the
following:
1. Y is symmetric and positive semidefinite.
2. For all i, Yii = Yi0 = yi.
3. For all i, Yi ∈ K̃ and Y0 − Yi ∈ K̃
where Yi is the ith column of Y . Then we define N+(K) to be N+(K̃) ∩ {x0 = 1}. The
r-round LS+ relaxation of a polytope K results from applying the N+ operator r times.
That is, we define Nr

+(K) = N+(Nr−1
+ (K)). Y is called a protection matrix for y.

A solution to the r-round LS+ relaxation for a polytope K ∈ Rn defined by nO(1) linear
constraints can be computed in time nO(r) using an SDP.

We can write an LS+ relaxation for CSP(P ) in two ways. The maximization version of
the LS+ CSP relaxation is

max 1
m

∑
(c,S)∈I

zc,S

s.t. (x, z) ∈ Nr
+(L′I).

Alternatively, we can check feasibility of Nr
+(LI).

We note here that though it is more natural to apply SA, SA+, and static LS+ to (2.1),
applying SA, SA+, and static LS+ to (2.3) yields a relaxation that is at least as strong.

I Lemma 12. Let r ≥ k. Then the following statements hold.
1. SAr(RI) = SAr(LI).
2. SAr

+(RI) = SAr
+(LI).

3. StaticLSr+(RI) = StaticLSr+(LI)

We include the proof in Appendix D. The StaticLSr+ operator is defined in the next section.
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2.2.5 Static LS+

The static LS+ relaxation strengthens both SA+ and LS+. As in the case of SA+, we start
with a family of r-locally consistent distributions and then further require that they satisfy
certain positive semidefiniteness constraints. In particular, for all X ⊆ [n] with |X| ≤ r − 2
and all α ∈ [q]X , define the matrices MX,α(D) ∈ R(nq+1)×(nq+1) as follows.

MX,α(D)0,0 = 1
MX,α(D)0,(i,a) = D{i}∪X(xi = a ∧X = α)

MX,α(D)(i,a),(j,b) = D{i,j}∪X(xi = a ∧ xj = b ∧X = α).

In addition to the SA constraints, the r-round static LS+ relaxation StaticLSr+(A) satisfies
the following constraint.
3’. MX,α(D) is PSD for all X ⊆ [n] with |X| ≤ r − 2 and all α ∈ [q]X .
Observe that these positive semidefiniteness constraints can be formulated as a positive
semidefiniteness constraint for a single matrix. In particular, let Mtotal be the block diagonal
matrix with the MX,α’s on the diagonal. Then Mtotal has size at most (qn)O(r) and Mtotal
is PSD if and only if all of the MX,α’s are PSD. The maximization version is again defined
exactly as it was for SA and SA+. Unlike LS+, this hierarchy immediately generalizes to
non-binary alphabets.

For intuition, one can think of this hierarchy as requiring positive semidefiniteness of the
covariance matrices of the conditional distributions formed by conditioning on the events that
X is assigned α for all X with |X| ≤ r−2 and all α ∈ [q]X . We prefer the definition presented
here because it more easily handles the case of X getting assigned α with probability 0 in
which the corresponding conditional distribution is not defined.

We note that we have not seen this hierarchy defined in this form in previous work, but
it is dual to the static LS+ proof system defined in [22] and described below in Section 2.3
(see Appendix E).

2.2.6 Pseudodistributions: An alternate point of view
We can equivalently define SA, SA+, and static LS+ in terms of pseudodistributions [4, 3].
A pseudodistribution is a map σ : {0, 1}n → R that “looks like" a valid distribution over
{0, 1}n to simple enough functions. Define the corresponding pseudoexpectation Ẽx∼σ[·] as
Ẽx∼σ[f(x)] =

∑
x∈{0,1}n σ(x)f(x).

Sherali-Adams

A rank-r SA pseudodistribution satisfies that following two conditions.
1.
∑
x∈{0,1}n σ(x) = 1.

2. Ẽx∼σ[f(x)] ≥ 0 for all nonnegative functions f : {0, 1}n → R that depend on at most r
variables.

Sherali-Adams+

A rank-r SA+ pseudodistribution satisfies Condition 1 and a stronger version of Condition 2:
2’. Ẽx∼σ[f(x)] ≥ 0 for all nonnegative functions f : {0, 1}n → R satisfying one of the

following.
1. f depends on at most r variables.
2. f = `2 for some function ` with degree at most 1.

APPROX/RANDOM’16
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Static LS+

A rank-r static LS+ pseudodistribution satisfies Condition 1 and a version of Condition 2
that is stronger still:
2”. Ẽx∼σ[f(x)] ≥ 0 for all nonnegative functions f : {0, 1}n → R satisfying one of the

following.
1. f depends on at most r variables.
2. There exists a set X of r − 2 variables such that for any assignment α to X, the

function fX,α : [q][n]\X → R resulting from setting X to α is equal to `2 for some
function ` with degree at most 1 possibly depending on X and α.

All three relaxations maximize the objective function
1
m

∑
(c,S)∈I

Ẽx∼σ[P (xS + c)]

over their corresponding pseudodistributions σ.

2.3 The dual point of view: Static semialgebraic proof systems
We consider refutation of CSPs via semialgebraic proof systems. Starting from a set of axioms
{ai(x) ≥ 0} that capture the constraints of the CSP as polynomial inequalities, semialgebraic
proof systems derive new inequalities the are implied by the axioms and integrality of the
variables. To prove that an instance is unsatisfiable, we wish to derive the contradiction
−1 ≥ 0. We consider the SA, SA+, LS+, and static LS+ proof systems. Here, we will only
deal with {0, 1}-valued variables.

The SA proof system

A SA refutation has the form∑
`

γ`a`(x)φI`,J`(x) = −1,

where γ` ≥ 0, a` is an axiom, and φI`,J` =
∏
i∈I` xi

∏
j∈J`(1 − xj). This is a proof of

unsatisfiability because under the assumption that the all xi variables are in {0, 1}, every
term of the above sum most be nonnegative and it is therefore a contradiction. The rank of
this proof (often called the degree) is the maximum degree of any of the terms. The size
of the proof is the number of terms in the sum; this follows from Farkas’ Lemma. Static
SA proofs is automatizable: A rank r SA proof may be found in time nO(r) if it exists by
solving an LP. The SA proof system first appeared in [22] with the name static LS∞; the
dual hierarchy of LP relaxations was introduced by [29]. A rank-r SA refutation exists if
and only if the corresponding rank-r SA relaxation is infeasible.

The SA+ proof system

In SA+, a proof has the form∑
`

γ`a`(x)φI`,J`(x) +
∑
s

νsλs(x)2 = −1,

where γ`, νs ≥ 0 and the λs’s are affine functions. The rank of the proof is its degree. The
dual SA+ hierarchy of SDP relaxation first appeared in [27]. Again, a rank-r SA+ refutation
exists if and only if the corresponding rank-r SA+ relaxation is infeasible. SA+ proofs of
rank r can be found in time nO(r) if they exist.
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The LS+ proof system

The LS+ proof system [25] is dynamic, meaning that a proof is built up over a series of
steps. A proof in LS+ is a sequence of expressions of the form P (x) ≥ 0. A new inequality is
derived from the inequalities already in the proof using inference rules. When deg(P (x)) ≤ 1,
we allow the following:

P (x) ≥ 0
xi · P (x) ≥ 0

P (x) ≥ 0
(1− xi) · P (x) ≥ 0 P (x)2 ≥ 0.

We also allow nonnegative linear combinations:

P (x) ≥ 0 Q(x) ≥ 0
α · P (x) + β ·Q(x) ≥ 0

for α, β ≥ 0. An LS+ proof is therefore a sequence of “lifting" steps in which we multiply by
some xi or (1 − xi) to get a degree-2 polynomial and “projection" steps in which we take
nonnegative linear combinations to reduce the degree back to 1. We can view an LS+ proof
as a DAG with inequalities at each vertex and −1 ≥ 0 at the root. The rank of an LS+ proof
is the maximum number of lifting steps in any path to the root. The LS+ proof system is
not known to be automatizable; see Section 8 of [10] for details. An rank-r LS+ refutation
exists if and only if the corresponding rank-r LS+ relaxation is infeasible [15].

The static LS+ proof system

A static LS+ proof [22] has the following form.∑
`

γ`b`(x)φI`,J`(x) = −1,

where γ` ≥ 0, b` is an axiom or the square of an affine function, and φI`,J` is as above. Note
that this proof system as at least as powerful as the SA+ proof system: Terms in the sum
may be products of a φI,J term and the square of an affine function instead of just the
square of an affine function or just an axiom multiplied by a φI,J term. We do not know
of any results on the automatizability of static LS+. Once again, there exists a static LS+
refutation if and only if the corresponding static LS+ relaxation is infeasible. We do not
know of any proof of this statement in the literature, so we include one in Appendix E.

2.4 Expansion
Given a set of constraints T , we define its neighbor set Γ(T ) as Γ(T ) := {v ∈ [n] | v ∈
supp(C) for some C ∈ T}. We can then define expansion.

I Definition 13. An instance I of CSP(P ) is (s, e)-expanding if for every set of constraints
T with |T | ≤ s, |Γ(T )| ≥ e|T |.

We can also define T ’s boundary neighbors as ∂T := {v ∈ [n] | v ∈ supp(C) for exactly
one C ∈ T} and give a corresponding notion of boundary expansion.

I Definition 14. An instance I of CSP(P ) is (s, e)-boundary expanding if for every set of
constraints T with |T | ≤ s, |∂T | ≥ e|T |.

We state a well-known connection between expansion and boundary expansion stated in,
e.g., [30].

APPROX/RANDOM’16
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I Fact 15. (s, k − d)-expansion implies (s, k − 2d)-boundary expansion.

It is also well-known that randomly-chosen sets of constraints have high expansion [9, 26]:

I Lemma 16. Fix δ > 0. With high probability, a set of m ≤ Ω(nt/2−δ) constraints chosen
uniformly at random is both

(
n

δ
t−2 , k − t

2 + δ
2

)
-expanding and

(
n

δ
t−2 , k − t+ δ

)
-boundary

expanding.

We give proofs of both of these statements in Appendix A.

2.5 Constructing consistent local distributions
Here, we recall a construction of consistent local distributions supported on satisfying
assignments. This construction was first given in [9] and has been used in many subsequent
works (e.g, [30, 26, 5]). In Appendix C, we give proofs of all results mentioned in this section.

We first need to define the notion of a closure of a set of variables. For S ⊆ [n], let
HI − S denote the hypergraph HI with the vertices of S and all hyperedges contained in
S removed. Intuitively, the closure of a set S ⊆ [n] is a superset of S that is not too much
larger than S isn’t very well-connected to the rest of the instance in the sense that HI − S
has high expansion.

I Lemma 17 ([9, 30]). If HI is (s1, e1)-expanding and S is a set of variables such that
|S| < (e1−e2)s1 for some e2 ∈ (0, e1), then there exists a set Cl(S) ⊆ [n] such that S ⊆ Cl(S)
and HI − Cl(S) is (s2, e2)-expanding with s2 ≥ s1 − |S|

e1−e2
and Cl(S) ≤ k+2e1−e2

2(e1−e2) |S|.

We now use the closure to define consistent local distributions supporting on satisfying
assignments. We assume that there exists a (t − 1)-wise independent distribution µ over
satisfying assignments to P . For a constraint C = (c, S), let µC be the distribution defined
by µC(z) = µ(z1 + c1, . . . , zk + ck) and let C(S) be the set of constraints whose support is
entirely contained within S. For a set of variables S ⊆ [n] and an assignment α ∈ [q]S ,
we use the notation S = α to indicate the the variables of S are labeled according to the
assignment α. For a constraint C = (c, S) and an assignment α to a superset of S, let
µC(α) = µC(αS).

For S ⊆ [n], we can then define the distribution D′S over [q]S as

D′S(S = α) = 1
ZS

∑
β∈[q]S
βS=α

∏
C∈C(S)

µC(β), where ZS =
∑
β∈[q]S

∏
C∈C(S)

µC(β).

Using D′, we can then define consistent local distributions DS for |S| ≤ r so that DS(S =
α) = D′Cl(S)(S = α). [9, 26] proved that these distributions are r-locally consistent for
r = n

ε
t−2 .

I Theorem 18. For a random instance I with m ≤ Ω(nt/2−ε), the family of distributions
{DS}|S|≤r is r-locally consistent for r = n

ε
t−2 and is supported on satisfying assignments.

This theorem shows that the SA cannot efficiently refute random (t− 1)-wise uniforming
supporting instances: the r-round SA LP still has value 1 for some r = Ω(n

ε
t−2 ) when

m ≤ Ω(nt/2−ε). In this paper, we show that even when we add the SA+ requirement that
the covariance matrix is PSD, we still cannot refute when m ≤ Ω(nt/2−ε).

As in [30], we can also construct r-locally consistent conditional distributions. We will
only need these distributions in the proof of our LS+ result, so we describe them only in
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the binary alphabet case. Let S ⊆ [n], let X ⊆ [n] be a subset of the variables such that
X∩S = ∅, and let α ∈ {0, 1}X be an assignment to X such that µC(α) > 0 for all constraints
in C(X). Define DS|X=α to be the distribution DS conditioned on the event that X is
assigned α under the distribution DX . That is, DS|X=α(S = β) = DS∪X(S=β∧X=α)

DS∪X(X=α) .

I Lemma 19 ([30, Lemma 3.13]). Let X ⊆ [n] and let {DS} be a family of r-locally consistent
distributions for sets S ⊆ [n] such that S ∩ X = ∅ and |S ∪ X| ≤ r. Then the family of
conditional distributions {DS|X=α} is (r − |X|)-locally consistent for any α ∈ {0, 1}X such
that µC(α) > 0 for all constraints C in C(X).

The following is a simple corollary that we will use in Section 7:

I Corollary 20. Let I be a random instance of CSP(P ) with n variables and let X ⊆ [n] such
that |X| ≤ Ω(n

ε
t−2 ) and let α ∈ {0, 1}X be any assignment to Xsuch that µC(α) > 0 for all

constraints in C ∈ C(X). Then the family of conditional distributions {DS|X=α}|S|≤r,S∩X=∅
is r-locally consistent for some r = Ω(n

ε
t−2 ).

3 Overview of the proof

Previous work [9, 30] only considers instances with a linear number of constraints and relies
on the fact that most pairs of variables are uncorrelated in this regime. For m� n, however,
correlations between pairs of vertices do arise because the underlying hypergraph becomes
more dense. The major technical contribution of this work is to deal with these correlations by
proving that they remain local. More precisely, we consider the graph induced by correlations
between variables: Two variables are connected if they have non-zero correlation. We prove
that this graph must have connected components of at most constant size. Each of these
connected components can then be covered by a local distribution of constant size and this
suffices to ensure PSDness of the covariance matrix.

Showing that a set of local distributions is a valid SA+ solution requires proving that
these distributions are consistent and proving that their covariance matrix is PSD. Local
consistency was proven in previous work [9, 26]. To prove Theorem 3, it remains to argue
that the covariance matrix is PSD. The proof of this statement has three steps: First, we
show in Section 4 that if the correlation graph has small connected components, then the
covariance matrix is PSD. Second, we show any non-zero correlation must have been caused
by a relatively dense subset of constraints in Section 5. In Section 6, we show that connected
components in the correlation graph must be small or they would induce large dense subsets
of constraints that would violate expansion properties.

In Section 7, we show that positive semidefiniteness of the covariance matrix implies
Theorem 4.

4 The correlation graph

In this section, we define the correlation graph, and show that if the correlation graph only
has small connected components, then the covariance matrix is PSD.

I Definition 21. The correlation graph Gc associated with r-locally consistent distributions
{pS} is the graph on [n] with an edge between every pair of variables for which there is a
non-zero entry in the covariance matrix for {pS}. More formally,

E(Gc) = {(u, v) ∈ [n]× [n] | u 6= v,∃(a, b) ∈ [q]× [q] s.t. Σ(u,a),(v,b) 6= 0}.

APPROX/RANDOM’16
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I Lemma 22. Let {pS} be a family of r-locally consistent distributions. If all connected
components in the correlation graph associated with {pS} have size at most r, then the
covariance matrix for {pS} is PSD.

Proof. Consider the partition V1, V2, . . . , V` of [n] such that u and v are in the same set if
and only if they are connected in the correlation graph. We then have nonzero entries in
the covariance matrix only for pairs ((u, a), (v, b)) such that u, v ∈ Vi for some i. Ordering
the rows and columns of the covariance matrix according to the partition, we see that the
covariance matrix is block diagonal with a nonzero block on the diagonal for each connected
component of the correlation graph. Each of these blocks is PSD since each is the covariance
matrix of the Sherali-Adams distribution pVi for the corresponding set Vi of the partition
with size at most r and the covariance matrix of valid distribution is always PSD. Since each
block is PSD, the entire matrix is PSD. J

We already know that {DS} defined in Section 2.5 is r-locally consistent with high probability
when m ≤ Ω(nt/2−ε). In the following sections, we will show that connected components
in the correlation graph associated with {DS} is small. Hence, from Lemma 22, {DS} is
feasible solution for SA+ SDP while it gives the trivial objective value 1.

5 Correlations are induced by small, dense structures

In this section, we show that pairwise correlations in {DS} are only generated by small,
dense subhypergraphs that we will call “bad structures". Given a set of hyperedges W , call a
variable v an W -boundary variable if it is contained in exactly one constraint in W .

I Definition 23. For variables u and v, a bad structure for u and v is a set of constraints
W satisfying the following properties:
1. u, v ∈ Γ(W ).
2. The hypergraph induced by W is connected.
3. Every constraint contains at most k − t W -boundary variables except for u and v.
We also say W is a bad structure if W is a bad structure for some u and v.

A bad structure for u and v generates correlation between u and v with respect to {DS}.

I Lemma 24. If there is no bad structure for u and v of size at most |C(Cl({u, v}))|, then u
and v are not correlated with respect to D{u,v}.

We need the following technical claim, which states that the distribution D′S isn’t affected
removing a constraint with many boundary variables.

I Claim 25. Let T ⊆ S ⊆ [n] be sets of variables. Let C∗ ∈ C(S) be some constraint covered
by S. If |(∂C(S) ∩ C∗) \ T | ≥ k − t+ 1, then for any α ∈ {0, 1}T ,

D′S(α) = 1
q|T∩(∂C(S)∩C∗)| ·D

′
S\(∂C(S)∩C∗)(αT\(∂C(S)∩C∗)),

Proof. Let B = ∂C(S) ∩ C∗ be the boundary variables of C(S) contributed by C∗, i.e., the
variables contained in C∗ that don’t appear in any other constraint of C(S). First, note that∑

β∈{0,1}S
βT=α

∏
C∈C(S)

µC(β) =
∑

β∈{0,1}S\B
βT\B=αT\B

∏
c∈C(S)\{C∗}

µC(β)
∑

γ∈{0,1}B
γB∩T=αB∩T

µC∗(β, γ)

= 1
qk−|B\T |

∑
β∈{0,1}S\B
βT\B=αT\B

∏
C∈C(S)\{C∗}

µC(β). (5.6)
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The last line holds because |B \ T | ≥ k − t+ 1 and µ is (t− 1)-wise independent.
Similarly,

ZS =
∑

β∈{0,1}S

∏
C∈C(S)

µC(β) = 1
qk−|B|

∑
β∈{0,1}S\B

∏
C∈C(S)\{C∗}

µC(β). (5.7)

Dividing (5.6) by (5.7), we see that D′S(α) = 1
q|B∩T |

·D′S\B(αT\B). J

Using Claim 25, we prove Lemma 24.

Proof of Lemma 24. Let S0 = C(Cl({u, v})). Say there exists a constraint C1 such that
|(∂C(S0) ∩ C1) \ {u, v}| ≥ k − t + 1. Let S1 = S0 \ (∂C(S0) ∩ C1). If there exists a
constraint C2 such that |(∂C(S1) ∩ C2) \ {u, v}| ≥ k − t+ 1, remove its boundary variables
in the same manner to get S2. Continue in this way until we obtain a set S` such that
|(∂C(S`) ∩ C) \ {u, v}| ≤ k − t for every constraint C ∈ C(S`) (C(S`) could be empty). Since
|(∂C(Si−1)∩Ci) \ {u, v}| ≥ k− t+ 1 for 1 ≤ i ≤ `, we can apply Claim 25 ` times to see that

D{u,v}(u = a ∧ v = b) =


1
q ·D

′
S`

(u = a) if u ∈ S`, v /∈ S`
1
q ·D

′
S`

(v = b) if v ∈ S`, u /∈ S`
1
q2 if u, v /∈ S`
D′S`(u = a ∧ v = b) if u, v ∈ S`.

In the first three cases, it is easy to see that the lemma holds. In the last case, since
C(S`) cannot be a bad structure, the hypergraph induced by S` must be disconnected. Say
U1, U2, . . . , Ut are the vertex sets of the connected components of S`. Remove all connected
components that contain neither u nor v to get S′`. Again, the hypergraph induced by S′`
cannot be connected; otherwise, C(S′`) would be a bad structure. This means that S′` must
be disconnected with u and v in different components. Say S′u and S′v are the vertex sets of
the connected components of S` containing u and v, respectively. Then

D{u,v}(u = a ∧ v = b) = D′S′
`
(u = a ∧ v = b) = D′S′u(u = a) ·D′S′v (v = b).

The result then follows. J

6 All connected components of the correlation graph are small

In this section, we show that all connected components in the correlation graph associated
with {DS} are small, which concludes the proof of Theorem 3.

I Theorem 26. Assume that the family of distributions {DS} is r-locally consistent and
that the hypergraph HI is (ω(1), k − t/2 + δ/2)-expander. Then all connected components in
the correlation graph associated with {DS} have size at most 2k

δ .

We will actually prove a slightly more general theorem that we will use to prove LS+ lower
bounds in Section 7. Given a hypergraph H, let Gbad(H) be the graph on [n] such that there
is an edge between i and j if and only if there exists a bad structure for i and j in H.

I Theorem 27. If the hypergraph H is (ω(1), k − t/2 + δ/2)-expander, then all connected
components in Gbad(H) have size at most 2k

δ .

Lemma 24 implies that Gbad(HI) contains the correlation graph associated with {DS} as a
subgraph, so Theorem 26 immediately implies Theorem 27.

APPROX/RANDOM’16
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Proof of Theorem 27. For any edge e of Gbad(H), we can find a corresponding bad structure
We. We will say that We induces e. Any such bad structure We in a (ω(1), k − t/2 + δ/2)-
expanding hypergraph satisfies

Γ(We) ≤ (k − t)|We|+ 2 + k|We| − ((k − t)|We|+ 2)
2 =

(
k − t

2

)
|We|+ 1. (6.8)

The first term upper bounds the number of boundary vertices, the second term counts the
endpoints of e, and the last term upper bounds the number of non-boundary vertices. For a
connected component in the correlation graph associated with {DS}, let e1, e2, . . . , e` be an
ordering of edges in the connected component such that (

⋃i
j=1 ej) ∩ ei+1 is not empty for

i = 1, . . . , `. That is, e1, e2, . . . , e` is an ordering of the edges in the connected component
such that every edge except for the first one is adjacent to some edge preceding it. Let
We1 , . . . ,We` be corresponding bad structures inducing these edges. Let Ti =

⋃i
j=1 Wej

for i = 1, . . . , `. While Ti itself is not necessarily a bad structure, we will show that the
inequality (6.8) still holds for Ti, i.e.,

Γ(Ti) ≤
(
k − t

2

)
|Ti|+ 1 (6.9)

for any i = 1, . . . , `. If (6.9) holds, the number of constraints in T` is at most 2
δ ; otherwise,

expansion is violated. Hence, at most 2k
δ vertices are included in the connected component

of the correlation graph associated with {DS}.
In the following, we prove (6.9). First, note that |Γ(T1)| ≤

(
k − t

2
)
|T1|+ 1 by (6.8). Let

W ′i = Wei \ Ti−1 be the new constraints added at step i. Call any vertex in Γ(Ti) \ Γ(Ti−1)
a new vertex. We will prove that at most

(
k − t

2
)
|W ′i | new vertices are added and this will

imply (6.9).
Let ni be the number of new W ′i -boundary vertices. Then the total number of new

vertices is at most

ni + (k|W ′i | − 1− ni)/2.

The second term upper bounds the number of non-boundary vertices. The −1 comes from
the fact that Γ(W ′i ) must intersect Γ(Ti−1) since ei must be adjacent to some preceding edge.
If Γ(W ′i ) and Γ(Ti−1) intersect in a boundary vertex, the resulting bound is stronger.

Hence, we would like to upper bound the number ni of new W ′i -boundary vertices.
The number ni of new W ′i -boundary vertices is at most (k − t)|W ′i | + 1 since any new
W ′i -boundary vertex must be a new Wei-boundary vertex and since all but one constraint
in W ′i have at most k − t new Wei-boundary vertices and one constraint in W ′i has at
most k − t+ 1 new Wei-boundary vertices. Hence, the number of new vertices is at most
(k − t)|W ′i |+ 1 + (k|W ′i | − 1− ((k − t)|W ′i |+ 1))/2 = (k − t/2)|W ′i |. J

From Lemmas 16 and 22 and Theorems 18 and 26, we obtain Theorem 3.

7 LS+ rank lower bounds

In this section, we use the techniques of the previous section to prove positive semidefiniteness
of the degree-2 moment matrix of the conditional local distributions {DS|X=α}. From here,
degree lower bounds for the static LS+ proof system andrank lower bounds for LS+ follow
easily.
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7.1 Positive semidefiniteness of conditional covariance matrices
We define YX,α to be the conditional covariance matrix of the {D{i}|X=α} distributions.
Formally, define y(X,α) ∈ Rn+1 so that (yX,α)0 = 1 and (yX,α)i = D{i}|X=α(i = 1) for
i ∈ [n]. Let BX,α ∈ Rn×n have entries BX,α(i, j) = D{i,j}|X=α(i = 1 ∧ j = 1). Then define
YX,α ∈ R(n+1)×(n+1) to be(

1 y>X,α
yX,α BX,α

)
.

To obtain LS+ rank lower bounds, we need to show that YX,α is PSD.

I Lemma 28. Let X ⊆ [n] such that |X| ≤ Ω(n
δ
t−2 ). For any α ∈ {0, 1}X such that

µC(α) > 0 for all C ∈ C(X), YX,α is positive semidefinite.

To prove this lemma, we first show that YX,α is PSD when H − X has high expansion.
Then we show that any YX,α can expressed as a nonnegative combination of YCl(X),β ’s for
β ∈ {0, 1}Cl(X); the first step implies that each of these terms is PSD.

We start by generalizing Lemma 24 to conditional distributions. Let ClX(S) be Cl(S) in
the hypergraph H −X.

I Lemma 29. Let X ⊆ [n] and α ∈ {0, 1}X such that µC(α) > 0 for all C ∈ C(X). If there
is no bad structure for u and v in H −X of size at most |C(ClX({u, v}))|, then u and v are
not correlated with respect to D{u,v}|X=α.

Proof. First, recall that

D{u,v}|X=α(u = a ∧ v = b) =
D{u,v}∪X(u = a ∧ v = b ∧X = α)

DX(X = α) .

We will show that D{u,v}∪X(u = a ∧ v = b ∧ X = α) is equal to the product of a term
depending on u and a but not v and b and a term depending on v and b but not u and a.
From there, the lemma immediately follows.

The proof is essentially the same as that of Lemma 24 above. Starting with S0 =
C(Cl({u, v})), we apply the same process except we require that each constraint Ci that we
remove satisfies |(∂C(Si−1) ∩ Ci) \ ({u, v} ∪X)| ≥ k − t+ 1. At the end of this process, we
are left with a set S` such that |(∂C(S`) ∩ C) \ ({u, v} ∪ X)| ≤ k − t for every constraint
C ∈ C(S`) (C(S`) could be empty). Let X` := X ∩ S` and let α` = αX∩S` . By applying
Lemma 25 repeatedly, we see that

D{u,v}∪X(u = a ∧ v = b ∧X = α) =



1
q|X\S`|+1D

′
S`

(u = a ∧X` = α`)
if u ∈ S`, v /∈ S`

1
q|X\S`|+1D

′
S`

(v = b ∧X` = α`)
if v ∈ S`, u /∈ S`

1
q|X\S`|+2D

′
S`

(X` = α`)
if u, v /∈ S`

1
q|X\S`|

D′S`(u = a ∧ v = b ∧X` = α`)
if u, v ∈ S`.

In all cases except for the last one, the result follows. In the last case, the assumption that
there is no bad structure in H −X implies that the hypergraph induced by S`−X in H −X
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must be disconnected with u and v in separate connected components with hyperedge sets
Eu and Ev just as in the proof of Lemma 24. Each connected component in H −X has a
corresponding connected component in H. Let E′u and E′v be the sets of hyperedges of the
connected components in G corresponding to Eu and Ev in H −X. Also, let Su = Γ(E′u)
and Sv = Γ(E′v); note that Su and Sv might intersect. Let Erest = C(S`) \ (E′u ∪ E′v).

The subhypergraph induced by S` then consists of the hyperedges in E′u, E′v, and Erest
together with the isolated vertices in Siso := S` \ Γ(C(S`)) not contained in any hyperedge
covered by S`. Define Srest := Γ(Erest)∪Siso to be the vertices in S` that are either contained
in some hyperedge of Erest or are isolated. Let Xu = X ∩ Su and αu = αX∩Su . Define Xv,
Xrest, αv, and αrest in the same way. We can then write D′S`(u = a ∧ v = b ∧X` = α`) as

D′Su(u = a ∧Xu = αu) ·D′Sv (v = b ∧Xv = αv) ·D′Srest
(Xrest = αrest).

Since D′Srest
(Xrest = αrest) depends only on α, the lemma follows. J

I Remark. When H does not have high expansion, Cl(S) is still defined for S ⊆ [n] and
Lemma 29 still holds. In this case, it is possible that |Cl(S)| can no longer be bounded in
terms of |X|.

Using this lemma, we can prove that YX,α is PSD when H−X has high enough expansion.

I Lemma 30. Let X ⊆ [n] such that H − X is (ω(1), k − t/2 + ε)-expanding for some
constant ε > 0. Then for any α ∈ {0, 1}X with µX(α) > 0, YX,α is positive semidefinite.

Proof. By Lemma 33, YX,α is PSD if and only if QX,α = BX,α − yX,αy>X,α is. Note that
QX,α is a principle submatrix of the covariance matrix ΣX,α of the {DS|X=α} distributions,
so it suffices to show that ΣX,α is PSD. The conditional distributions {DS|X=α} are r-locally
consistent for r = Ω(n

δ
t−2 ) by Corollary 20. Then Lemma 22 implies that ΣX,α is PSD if the

correlation graph of the {DS|X=α} distributions has connected components of size at most r.
Lemma 29 implies that correlations under {DS|X=α} induce bad structures in H −X, and
we can apply Theorem 27 to Gbad(H −X) to complete the proof. J

Finally, we show that any YX,α can be expressed as a nonnegative combination of YCl(X),β ’s
for β ∈ {0, 1}Cl(X).

I Claim 31.

YX,α =
∑

β∈{0,1}Cl(X)

βX=α

DCl(X)(Cl(X) = β)
DX(X = α) · YCl(X),β .

Proof. We will prove that

YX,α(i, j) =
∑

β∈{0,1}Cl(X)

βX=α

DCl(X)(Cl(X) = β)
DX(X = α) · YCl(X),β(i, j).

for all 0 ≤ i, j,≤ n.
Let i, j ≥ 1. By applying definitions, we see that

YX,α(i, j) = D{i,j}|X=α(i = 1 ∧ j = 1)

=
DX∪{i,j}(i = 1 ∧ j = 1 ∧X = α)

DX(X = α) .
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Then, by local consistency, this expression is equal to
1

DX(X = α)
∑

β∈{0,1}Cl(X)

βX=α

DCl(X)∪{i,j}(i = 1 ∧ j = 1 ∧ Cl(X) = β).

We can rewrite this as∑
β∈{0,1}Cl(X)

βX=α

DCl(X)(Cl(X) = β)
DX(X = α) ·

DCl(X)∪{i,j}(i = 1 ∧ j = 1 ∧ Cl(X) = β)
DCl(X)(Cl(X) = β) .

Using the definitions of conditional local distributions and YX,α(i, j) completes the proof for
i, j ≥ 1: the above expression is equal to∑

β∈{0,1}Cl(X)

βX=α

DCl(X)(Cl(X) = β)
DX(X = α) · YCl(X),β(i, j).

When i or j is equal to 0, an essentially identical argument can be used. J

Lemma 28 follows immediately from Lemma 30 and Claim 31.

7.2 Rank lower bounds for static LS+ and LS+

We now use the results of the previous section to prove Theorem 5, a lower bound on
the degree of any static LS+ refutation. The proof is essentially the same as that of [30,
Theorem 3.27], which is the special case of P being pairwise uniform. This will immediately
imply Theorem 4, the rank lower bound for LS+.

Proof of Theorem 5. Assume that the rank of any standard, non-static LS+ proof is at
least r; by Theorem 4, r = Ω(n

ε
t−2 ). Assume for a contradiction that there exists a static

LS+ refutation of degree r − k. Recall that a static LS+ refutation has the form
r∑
`=1

w`q`(x)φI`,J`(x) = −1, (7.10)

where w` ≥ 0, each q`(x) is either an axiom or the square of a linear form, and

φI,J(x) =
∏
i∈I

xi
∏
j∈J

(1− xj).

By Theorem 18, we know that there exist r-consistent local distributions {DS}; let Ẽ[·] be
the corresponding rank-r SA pseudoexpectation. In addition, Corollary 20 states that there
also exist conditional (r − |X|)-consistent local distributions {DS|X=α} for any α such that
µ(αC) > 0 for all C ∈ C(X),

We will derive a contradiction by applying the operator Ẽ[·] to both sides of (7.10). Specif-
ically, we will show that if the degree of each term is at most r−k, then Ẽ[q`(x)φI`,J`(x)] ≥ 0.
Applying Ẽ[·] to the left hand side of (7.10) gives a value at least 0, while the right hand
side is −1. To show that Ẽ[q`(x)φI`,J`(x)] ≥ 0, we consider two cases.

Case 1. q` is an axiom. If q` is an axiom, then the number of variables in the expression
q`(x)φI`,J`(x) is |I` ∪ J` ∪ supp(q`)| ≤ r − k + k = r. We also know that q`(x)φI`,J`(x) ≥ 0
for all x ∈ {0, 1}n. The definition of rank-r SA pseudodistributions then implies that
Ẽ[q`(x)φI`,J`(x)] ≥ 0.
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Case 2. q` is the square of a linear form. In this case, the result follows almost immediately
from Lemma 28. Write q`(x) as follows:

q`(x) =

a0 +
∑
i∈[n]

aixi

2

=
∑
i,j∈[n]

aiajxixj + 2a0
∑
i∈[n]

aixi + a2
0.

Also, let A` = I` ∪ J` and define β ∈ {0, 1}|A`| so that φI`,J`(x) = 1 if and only if xA` = β.
Then we have the following calculation:

Ẽ[q`(x)φI`,J`(x)] = Ẽ[q`(x) · 1(A` = β)]

=
∑
i,j∈[n]

aiajẼ[xixj · 1(A` = β)] + 2a0
∑
i∈[n]

aiẼ[xi · 1(A` = β)]

+ a2
0Ẽ[1(A` = β)]

=
∑
i,j∈[n]

aiajDA`∪{i,j}(A` = β)YA`,β(i, j)

+ 2a0
∑
i∈[n]

aiDA`∪{i,j}(A` = β)YA`,β(i, 0) + a2
0DA`(A` = β)

= DA`(A` = β)a>(YA`,β)a by r-local consistency of {DS}
≥ 0 by Lemma 28. J

Theorem 4, our rank lower bound for LS+ refutations, follows immediately from Theorem 5
and the following fact.

I Fact 32. If there exists a rank-r LS+ refutation of a set of axioms A, then there exists a
static LS+ refutation of A with rank at most r.

Proof. Let R be a rank-r LS+ refutation. We look at R as a DAG in which each node is
the application of some inference rule, the root is −1 ≥ 0, and the leaves are axioms or
applications of the rule P (x)2 ≥ 0 for P with degree at most 1. Starting from the root −1 ≥ 0
and working back to the axioms, we can substitute in the premises of each inference to get
an expression Q(x) = −1. Since R has rank r, each path in r has at most r multiplications
by a term of the form xi or (1− xi) and Q(x) = −1 must be a valid static LS+ refutation of
rank at most r. J
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A Proofs from Section 2.4

I Fact 15. (s, k − d)-expansion implies (s, k − 2d)-boundary expansion.

Proof. Let S be a set of at most s hyperedges. Each of the vertices in Γ(S) is either
a boundary vertex that appears in exactly one hyperedge or it appears in two or more
hyperedges, so |Γ(S)| ≤ |∂S|+ 1

2 (|k|S| − |∂S|). Therefore, we can write

|∂S| ≥ 2|Γ(S)| − k|S| ≥ (k − 2d)|S|,

where the second inequality follows the expansion assumption. J

I Lemma 16. Fix δ > 0. With high probability, a set of m ≤ Ω(nt/2−δ) constraints chosen
uniformly at random is both

(
n

δ
t−2 , k − t

2 + δ
2

)
-expanding and

(
n

δ
t−2 , k − t+ δ

)
-boundary

expanding.

Proof. By Fact 15, it suffices to show that a random instance is(
n

δ
t−2 , k − t

2 + δ
2

)
-expanding. We give the proof of [26], which is essentially the same as

that of [9].

http://dx.doi.org/10.1561/2200000001
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We want to upper bound the probability that any set of r hyperdges with r ≤ n
δ
t−2

contains less than r(k− t
2 + δ

2 ) vertices. Fix an r-tuple of edges T ; this is a tuple of indices in
[m] representing the indices of the hyperedges in T . We wish to upper bound Pr[|Γ(T )| ≤ v];
we can do this with the quantity

(# sets S of v vertices) · (# sets of r edges contained in S)
(# of ways of choosing r edges) .

Taking a union bound over all tuples of size r, we see that

Pr[|Γ(S)| ≤ v ∀S s.t. |S| = r] ≤ r!
(
m

r

)
·
(
n
v

)(
k!(vk)
r

)
(k!
(
n
k

)
)r
.

Simplifying and applying standard approximations, we get that

Pr[|Γ(S)| ≤ v ∀S s.t. |S| = r] ≤ e(2+k)r+vvkr−vr−rnv−krmr.

Set v = br(k − t
2 + δ

2 )c and simplify to get

Pr[|Γ(S)| < r(k − t

2 + δ

2) ∀S s.t. |S| = r] ≤ (C(k, t)mn−(t/2−δ/2)rt/2−1−δ/2)r

Then set m = nt/2−δ and take a union bound over all choices of r to get that

Pr[HI not (n
δ
t−2 , k − t

2 + δ

2)-expanding] ≤
bnδ/(t−2)c∑

r=1
(C(k, t)n−δ/2rt/2−1−δ/2)r

=
dlogne∑
r=1

(C(k, t)n−δ/2rt/2−1−δ/2)r +
bnδ/(t−2)c∑
r=dlogne+1

(C(k, t)n−δ/2rt/2−1−δ/2)r

≤ 2C(k, t)n−δ/2(logn)t/2−δ/2 + n
δ
t−2 (C(k, t)n−δ/2(n

δ
t−2 )t/2−1−δ/2)logn

= O(n−δ/3). J

B Equivalence between PSDness of the degree-2 moment matrix
and the covariance matrix

I Lemma 33.(
1 wT

w B

)
is PSD ⇐⇒ B − wwT is PSD.

Proof.(
1 wT

w B

)
is PSD ⇐⇒

(
(v0 v)

(
1 wT

w B

)
(v0 v)T ≥ 0 ∀v0 ∈ R, v ∈ Rnq

)
⇐⇒

(
v2

0 + 2〈w, v〉v0 + 〈Bv, v〉 ≥ 0 ∀v0 ∈ R, v ∈ Rnq
)

⇐⇒
(
(v0 + 〈w, v〉)2 − 〈w, v〉2 + 〈Bv, v〉 ≥ 0 ∀v0 ∈ R, v ∈ Rnq

)
⇐⇒

(
−〈w, v〉2 + 〈Bv, v〉 ≥ 0 ∀v ∈ Rnq

)
⇐⇒

(
v(B − wwT )vT ≥ 0 ∀v ∈ Rnq

)
⇐⇒ B − wwT is PSD. J

I Lemma 10. M is PSD if and only if Σ is PSD.
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Proof. We rewrite M as(
1 wT

w B

)
,

where w is a vector whose (i, a)-element is p{i}(xi = a) for i ∈ [n] and a ∈ [q], where B is
a matrix whose ((i, a), (j, b))-element is p{i,j}(xi = a ∧ xj = b) for i, j ∈ [n] and a, b ∈ [q].
From Lemma 33, we know that(

1 wT

w B

)
is PSD if and only if B − wwT is PSD.

Observe that B − wwT is equal to the covariance matrix Σ. J

C Proofs from Section 2.5

I Lemma 17. If HI is (s1, e1)-expanding and S is a set of variables such that |S| < (e1−e2)s1
for some e2 ∈ (0, e1), then there exists a set Cl(S) ⊆ [n] such that S ⊆ Cl(S) and HI − Cl(S)
is (s2, e2)-expanding with s2 ≥ s1 − |S|

e1−e2
and Cl(S) ≤ e1

e1−e2
|S|.

Proof. We calculate Cl(S) using the closure algorithm of [9, 30]:

Input: An (s1, e1)-expanding instance I, e2 ∈ (0, e1), a tuple S = (x1, . . . , xu) ∈ [n]u such
that u < (e1 − e2)s2.
Output: The closure Cl(S).

Set Cl(S)← ∅ and s2 ← s1.
for i = 1, . . . , u

Cl(S)← Cl(S) ∪ {xi}
if HI − Cl(S) is not (s2, e2)-expanding, then

Find largest set of constraints Mi in HI − Cl(S) such that
|Mi| ≤ s2 and |Γ(Mi)| ≤ e2|Mi|. Break ties by lexicographic order.
Cl(S)← Cl(S) ∪ Γ(Mi)
s2 ← s2 − |Mi|

return Cl(S)

It is clear from the statement of the algorithm that S ⊆ Cl(S). We need to show that
HI − Cl(S) is (s2, e2)-expanding, that s2 ≥ s1 − |S|

e1−e2
, and that Cl(S) ≤ e1

e1−e2
|S|. We give

the proof of [9].
1. HI − Cl(S) is (s2, e2)-expanding

We will show that at every step of the algorithm HI − Cl(S) is (s2, e2)-expanding. Say
we are in step i and that HI − (Cl(S) ∪ {xi}) is not (s2, e2)-expanding; if it were (s2, e2)-
expanding, we would be done. Let Mi be the largest set of hyperedges in HI −Cl(S) such
that |Mi| ≤ s2 and |Γ(Mi)| ≤ e2|Mi|. We need to show that HI − (Cl(S)∪ {xi} ∪ Γ(Mi))
is (ζ − |Mi|, e2)-expanding.
To see this, assume for a contradiction that there exists a set of hyperedges M ′ in
HI − (Cl(S) ∪ {xi} ∪ Γ(Mi)) such that M ′ ≤ s2 − |Mi| and |Γ(M ′)| < e2|M ′|. Consider
Mi ∪M ′. Note that Mi and M ′ are disjoint, so |Mi ∪M ′| ≤ s2. Also, |Γ(Mi ∪M ′)| ≤
e2|Mi|+ e2|M ′| = e2|Mi ∪M ′|, contradicting the maximality of Mi.

2. s2 ≥ s1 − |S|
e1−e2

Consider the set M =
⋃u
i=1 Mu. First, note that |M | = s1 − s2, so |Γ(M)| ≥ e1(s1 − s2)
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by expansion of HI . Second, each element of Γ(M)− S occurs in exactly one of the Mi’s
and each Mi has expansion at most e2. Using these two observations, we see that

e1(s1 − s2) ≤ |Γ(M)| ≤ |S|+
u∑
i=1

e2|Mi| = |S|+ e2(s1 − s2).

This implies the claim.
3. Cl(S) ≤ e1

e1−e2
|S|

Observe that Cl(S) = S∪
⋃u
i=1 Γ(Mi). Also, everyMi has expansion at most e2. Therefore,

we have that

|Cl(S)| ≤ |S|+
u∑
i=1
|Γ(Mi)|

≤ |S|+ e2

u∑
i=1
|Mi|

≤ |S|+ e2|S|
e1 − e2

=
(

e1

e1 − e2

)
|S|,

where we used that
∑u
i=1 |Mi| = s1 − s2 and s2 ≥ s1 − |S|

e1−e2
. J

I Theorem 18. For a random instance I with m ≤ Ω(nt/2−ε), the family of distributions
{DS}|S|≤r is r-locally consistent for r = n

ε
t−2 and is supported on satisfying assignments.

To prove the theorem, we will use the following lemma, which says that the local distributions
on D′S and D′T with S ⊆ T are consistent if HI − T has high boundary expansion.

I Lemma 34. Let P be a (t− 1)-wise uniform supporting predicate, let I be an instance of
CSP(P ), and let S ⊆ T be sets of variables. If HI and HI − S are (r, k − t+ ε)-boundary
expanding for some ε > 0 and C(T ) ≤ r, then for any α ∈ [q]S,

D′S(α) =
∑
β∈[q]T
βS=α

D′T (β).

First, we will use this lemma to prove Theorem 18.

Proof of Theorem 18. Let S ⊆ T be sets of variables with |T | ≤ r. Consider U = Cl(S) ∪
Cl(T ). We will show that both DS and DT are consistent with U and therefore must
themselves be consistent. Observe that |Cl(S)| and |Cl(T )| are at most 2kr

ε , so |U | ≤ 4kr
ε .

Towards applying Lemma 34, we will first show that |C(U)| ≤ 8r
ε . Assume for a contradiction

that C is a subset of C(U) of size 8r
ε . Then

|Γ(C)|
|C|

≤ |U |
|C|

= 4kr/ε
8r/ε = k

2 < k − t

2 + δ,

which violates expansion.

APPROX/RANDOM’16
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We know that HI −Cl(T ) and HI −Cl(S) are (r, k− t+ ε)-boundary expanding for some
ε > 0. We can then apply Lemma 34 twice with sets Cl(S) ⊆ U and Cl(T ) ⊆ U to see that

DS(α) =
∑

β∈[q]Cl(S)

βS=α

D′Cl(S)(β) =
∑
γ∈[q]U
γS=α

D′U (γ)

=
∑

β′∈[q]Cl(T )

β′S=α

D′Cl(T )(β′) =
∑

α′∈[q]T
α′S=α

DT (α′). J

Now we prove Lemma 34.

Proof of Lemma 34. We follow the proof of Benabbas et al. [9]. Let C(T ) \ C(S) =
{C1, . . . , Cu} and, for a constraint C, let σ(C) be the variables in the support of C. First,
observe that

Z ′T
∑
β∈[q]T
βS=α

D′T (β) =
∑

γ∈[q]T\S

∏
C∈C(T )

µC((α, γ))

=

 ∏
C∈C(S)

µC(α)

 ∑
γ∈[q]S\T

u∏
i=1

µCi((α, γ))

= (Z ′SD′S(α))
∑

γ∈[q]S\T

u∏
i=1

µCi((α, γ))

To finish the proof, we will need the following claim.

I Claim 35. There exists an ordering (Ci1 , . . . , Ciu) of constraints of C(T ) \ C(S) and a
partition V1, · · · , Vu, Vu+1 of variables of T \S such that for all j ≤ u the following hold.
1. Vj ⊆ σ(Cij ).
2. |Vj | ≥ k − t+ 1
3. Vj does not intersect σ(Cil) for any l > j. That is, Vj ∩

⋃
l>j σ(Cil) = ∅.

Proof of Claim 35. We will find the sets Vj by repeatedly using (r, k − t + δ)-boundary
expansion of HI −S. Let Q1 = C(T ) \ C(S). We know that |Q1| ≤ r, so boundary expansion
of HI − S implies that |∂(Q1) \ S| ≥ (k − t+ δ)|Q1|. There must exist a constraint Cj ∈ Q1
with at least k − t+ 1 boundary variables in HI − S; i.e., |σ(Cj) ∩ (∂(Q1) \ S)| ≥ k − 2. We
then set V1 = σ(Cj)∩ (∂(Q1) \ S) and i1 = j. Let Q2 = Q1 \Cj . We apply the same process
u − 1 more times until Ql is empty and then set Vu+1 = (T \ S) \ (

⋃u
j=1 Vj). We remove

constraint Cil at every step and Fl ⊆ σ(Cil), so it holds that Vj ∩
⋃
l>j σ(Cil) = ∅. J

Using the claim, we can write
∑
γ∈[q]S\T

∏u
i=1 µCi((α, γ)) as∑

γu+1∈[q]Vu+1

∑
γu∈[q]Vu

µCu(γ′u)
∑

γu−1∈[q]Vu−1

µCu−1(γ′u−1) · · ·
∑

γ1∈[q]V1

µC1(γ′1),

where each γ′j depends on α and γl with l ≥ j but does not depend on γl with l < j. We will
evaluate this sum from right to left. We know that each Vj contains at least k− t+1 elements,
so (t − 1)-wise uniformity of µ implies that

∑
γj∈[q]Vj µCj (γ

′
j) = q−(k−|Vj |). Applying this

repeatedly, we see that∑
γ∈[q]S\T

u∏
i=1

µCi((α, γ)) = q
−(ku−

∑u+1
j=1
|Vj |) = q|T\S|−k|C(T )\C(S)|.



R. Mori and D. Witmer 41:27

Plugging this quantity into the above calculation, we obtain

Z ′T
∑
β∈[q]T
β|S=α

D′T (β) = Z ′SD
′
S(α)q|T\S|−k|C(T )\C(S)|.

Since HI has (r, k − t+ δ)-boundary expansion for some δ > 0, we can set S = ∅ to get that
Z ′T = q|T |−k|C(T )|. Similarly, Z ′S = q|S|−k|C(S)|. Plugging these two quantities in completes
the proof. J

I Lemma 19. Let X ⊆ [n] and let {DS} be a family of r-locally consistent distributions
for sets S ⊆ [n] such that S ∩ X = ∅ and |S ∪ X| ≤ r. Then the family of conditional
distributions {DS(·|X = α)} is (r − |X|)-locally consistent for any α ∈ {0, 1}X such that
µ(α|C) > 0 for all constraints in C(X).

Proof. Tulsiani and Worah proved this lemma and we will use their proof [30]. Let S ⊆ T
and |T ∪ X| ≤ r. Let β be any assignment to S. Then local consistency of the {DS}
measures implies that DS∪X(S = β ∧X = α) = DT∪X(S = β ∧X = α) and DS∪X(X =
α) = DT∪X(X = α). We therefore have that

DS|X=α(S = β) = DS∪X(S = β ∧X = α)
DS∪X(X = α)

= DT∪X(S = β ∧X = α)
DT∪X(X = α) = DT |X=α(S = β). J

D Equivalence of SA, SA+, and static LS+ tightenings of linear and
degree-k relaxations of CSP(P )

I Lemma 12. Let r ≥ k. Then the following statements hold.
1. SAr(RI) = SAr(LI).
2. SAr

+(RI) = SAr
+(LI).

3. StaticLSr+(RI) = StaticLSr+(LI)

Proof. The proof is the same for SA, SA+, and static LS+. We use the notation introduced
in Section 2.2.1. For f ∈ {0, 1}k and z ∈ [0, 1]k, let P ′f (z) =

∑k
i=1 z

(fi). Let (c, S) ∈ I
be any constraint. Let Ẽ[·] be any r-round SA pseudoexpectation. We begin by making a
couple of observations. Let q be an arbitrary multilinear polynomial satisfying the following
conditions.
1. q(x) ≥ 0 for all x ∈ {0, 1}n.
2. q(x) · (P ′(x(c)

S ) − 1) depends on at most r variables. Equivalently, q(x) · (P ′f (x(c)
S ) − 1)

depends on at most r variables for all f ∈ F .
First, note that

P ′(x(c)
S )− 1 =

∑
f∈F

1{xS=f}(x) · (P ′f (x(c)
S )− 1). (D.11)

This implies that

Ẽ[p(x) · (P ′(x(c)
S )− 1)] =

∑
f∈F

Ẽ[p(x) · 1{xS=f}(x) · (P ′f (x(c)
S )− 1)]. (D.12)
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Second, we see that −q(x) ·1{xS=f}(x) · (P ′f (x(c)
S )−1) ≥ 0 for all x ∈ {0, 1}n for all (c, S) ∈ I,

and for all f ∈ F . Since Condition 2 implies that −q(x) · 1{xS=f}(x) · (P ′f (x(c)
S )− 1) depends

on at most r variables and Ẽ is a degree-r SA pseudexpectation,

Ẽ[q(x) · 1{xS=f}(x) · (P ′f (x(c)
S )− 1)] ≤ 0. (D.13)

Now assume that Ẽ[·] satisfies

Ẽ[p(x) · (P ′f (x(c)
S )− 1)] ≥ 0 (D.14)

for all f ∈ F and for all multilinear polynomials p satisfying conditions 1 and 2. We want to
show that Ẽ[q(x) · (P ′(x(c)

S )− 1)] = 0 for all multilinear q satisfying conditions 1 and 2. Since
q(x) · 1{xS=f}(x) is nonnegative and q(x) · 1{xS=f}(x) · (P ′f (x(c)

S )− 1) depends on at most r
variables, (D.14) implies that Ẽ[q(x) · 1{xS=f}(x) · (P ′f (x(c)

S )− 1)] ≥ 0. Together with (D.13),
this implies that Ẽ[q(x) · 1{xS=f}(x) · (P ′f (x(c)

S )− 1)] = 0 and the result follows from (D.12).
For the other direction, assume that Ẽ[·] satisfies Ẽ[p(x) · (P ′(x(c)

S ) − 1)] = 0 for all
multilinear polynomials p(x) satisfying conditions 1 and 2. Let q be an arbitrary multilinear
polynomial satisfying conditions 1 and 2. From (D.11), we see that∑

f∈F

Ẽ[q(x) · 1{xS=f}(x) · (P ′f (x(c)
S )− 1)] = 0.

The result then follows from (D.13). J

E Correspondence between static LS+roof system and relaxation

Recall the static LS+ relaxation.∑
α∈{0,1}S

pS(α)P (α+ c) ≥ 1 for all (c, S) ∈ I

{pS}S⊆[n], |S|≤r are r-locally consistent distributions (E.15)
ΣT=α is PSD ∀T ⊆ [n], α ∈ [q]T such that |T | ≤ r − 2, pT (α) > 0.

A static LS+ refutation has the following form.∑
`

γ`b`(x)φI`,J`(x) = −1, (E.16)

where γ` ≥ 0, b` is an axiom or the square of an affine function, and φI`,J` =
∏
i∈I` xi

∏
j∈J`(1−

xj).

I Proposition 36. The static LS+ SDP (E.15) is infeasible if and only if a static LS+
refutation of the form (E.16) exists.

Proof. Recall the definition of SAr. We require that

Ẽ

∏
i∈I

xi
∏
j∈J

(1− xj)

 ≥ 0 (E.17)

for all I, J ⊆ [n] such that |I ∪ J | ≤ r and

Ẽ

a(x)
∏
i∈I

xi
∏
j∈J

(1− xj)

 ≥ 0 (E.18)
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for every axiom a(x) ≥ 0 and for all I, J ⊆ [n] such that |I ∪ J | ≤ r.
Using linearity of Ẽ[·], we can write this as a linear program in the variables XI,J :=∏

i∈I xi
∏
j∈J (1− xj). Given a set T ⊆ [n] and some assignment α : T → {0, 1}, define α0 to

be {i ∈ T : α(i) = 0} and α1 to be {i ∈ T : α(i) = 1}. In (E.15), we additionally require
that the matrices

MT,α =
(
Ẽ

[
xixj

∏
a∈α1

xa
∏
b∈α0

(1− xb)
])

i∈[n],j∈[n]

= (Xα1∪{i,j},α0)i∈[n],j∈[n] (E.19)

are PSD for all T ⊆ [n] such that |T | ≤ r and all α ∈ {0, 1}T . As mentioned above, we can
arrange the matrices MT,α into a block diagonal matrix M such that M is PSD if and only
if each of the MT,α’s are PSD. Let d be the dimension of M . Furthermore, we can think of
the r-round SA constraints as being linear constraints on the entries of M . In particular, say
these constraints have the form A · vec(M) ≥ b, where vec(M) ∈ Rd2 is the vector formed by
concatenating the columns of M . Let c be the number of rows of A.

First, we show that the existence of a refutation of the form (E.16) implies that (E.15) is
infeasible. Assume for a contradiction that there exists a solution {pS}S⊆[n], |S|≤r to (E.15).
This implies the existence of a pseudoexpectation operator Ẽ[·] satisfying (E.17), (E.18), and
(E.19). Now apply Ẽ[·] to each term of (E.16). The degree of each term γ`b`(x)φI`,J`(x) is
at most r and we have that

Ẽ[γ`b`(x)φI`,J`(x)] = γ`Ẽ[b`(x) · 1{x=α}(x)],

where α is the unique assignment to I` ∪ J` such that φI`,J` = 1. Let U = supp(b`) ∪ I` ∪ J`.
If b`(x) ≥ 0 is an axiom, we know that Ẽ[b`(x) · 1x=α(x)] ≥ 0 since every assignment β to
U for which pU (β) > 0 satisfies b`(x) ≥ 0. If b` is the square of some affine function, then
PSDness of ΣI`∪J`=α implies that Ẽ[γ`b`(x)φI`,J`(x)] ≥ 0. Every term on the left hand side
must be at nonnegative and we have a contradiction.

Now assume that (E.15) in infeasible. If consistent local distributions {pS} do not
exist, then an SA refutation must exist and we are done. Assume, then, that consistent
local distributions {pS} exist but the corresponding matrix M cannot be PSD. The sets
{M ∈ Rd×d : A · vec(M) ≥ b} and {M ∈ Rd×d : M is PSD} are both nonempty, but their
intersection is empty. We will need the following claim.

I Claim 37. Let S ⊆ Rd×d be convex, closed, and bounded. Suppose that for all M ∈ S, M
is not PSD. Then there exists a PSD matrix C ∈ Rd×d such that C ·M < 0 for all M ∈ S.

Proof of Claim. The claim follows from the following two results.

I Theorem 38 (Separating Hyperplane Theorem). Let S, T ⊆ Rd be closed, convex sets such
that S ∩ T = ∅ and S is bounded. Then there exists a 6= 0 and b such that

a>x > b for all x ∈ S and a>x ≤ b for all x ∈ T .

I Lemma 39. A is PSD if and only if A ·B ≥ 0 for all PSD B.

Applied to our situation, the Separating Hyperplane Theorem says that there exists C and δ
such that C ·M < δ for all X ∈ S and C ·M ≥ δ for all PSD X. We need to show that we
can choose δ = 0. Applying Lemma 39 will then complete the proof.

We know δ ≤ 0 because the zero matrix is PSD. It remains to show that we can choose
δ ≥ 0. Assume for a contradiction that there exists PSD M such that C ·M < 0. We
can then scale X by a large enough positive constant to get a PSD matrix M ′ such that
C ·M < δ, a contradiction. J
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The claim implies that there is a PSD matrix C such that the set

{M ∈ Rd×d : A · vec(M) ≥ b} ∩ {M ∈ Rd×d : C ·M ≥ 0}

is empty. As this set is defined by linear inequalities, we can apply Farkas’ Lemma.

I Theorem 40 (Farkas’ Lemma). Let A ∈ Rm×n and consider a system of linear inequalities
Ax ≥ b. Exactly one of the following is true.
1. There is an x ∈ Rn such that Ax ≥ b.
2. There is a y ∈ Rm such that y ≥ 0, y>A = 0, and y>b > 0.

In particular, this implies that there exist y ∈ Rc and z ∈ R such that

y>(A · vec(M)− b) + zC ·M < 0 (E.20)

for all M ∈ Rd×d. Note that the first term is a nonnegative combination of SA constraints.
Since C is PSD, we can write the eigendecomposition its C =

∑
` λ`v`v

>
` with λ` ≥ 0 for

all `. Also, recall that M is block diagonal with blocks MT,α. This block structure induces
a corresponding partition of [d]. We can write the vector v` ∈ Rd as (v`,T,α)T,α using this
partition. Then the second term of (E.20) is

zC ·M = z
∑
`

λ`(v`v>` ) ·M

= z
∑
`

λ`v
>
` Mv`

= z
∑
`

λ`
∑

|T |≤r−2
α∈{0,1}T

v>`,T,αM
T,αv`,T,α

= z
∑
`

λ`
∑

|T |≤r−2
α∈{0,1}T

∑
i,j∈[n]

v`,T,α(i)v`,T,α(j)MT,α
ij .

Overall, we get

y>(A · vec(M)− b) + z
∑
`

λ`
∑

|T |≤r−2
α∈{0,1}T

∑
i,j∈[n]

v`,T,α(i)v`,T,α(j)MT,α
ij < 0.

Finally, we substitute in XI,J =
∏
i∈I xi

∏
j∈J (1− xj) and scale appropriately to get an LS+

refutation of the form (E.16). J
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