
A Direct-Sum Theorem for Read-Once Branching
Programs∗

Anup Rao1 and Makrand Sinha2

1 Computer Science and Engineering, University of Washington, Seattle WA,
USA
anuprao@cs.washington.edu

2 Computer Science and Engineering, University of Washington, Seattle WA,
USA
makrand@cs.washington.edu

Abstract
We study a direct-sum question for read-once branching programs. If M(f) denotes the minimum
average memory required to compute a function f(x1, x2, . . . , xn) how much memory is required
to compute f on k independent inputs that arrive in parallel? We show that when the inputs
are sampled independently from some domain X and M(f) = Ω(n), then computing the value
of f on k streams requires average memory at least Ω

(
k · M(f)

n

)
.

Our results are obtained by defining new ways to measure the information complexity of
read-once branching programs. We define two such measures: the transitional and cumulative
information content. We prove that any read-once branching program with transitional inform-
ation content I can be simulated using average memory O(n(I + 1)). On the other hand, if
every read-once branching program with cumulative information content I can be simulated
with average memory O(I + 1), then computing f on k inputs requires average memory at least
Ω(k · (M(f)− 1)).

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.2 Modes of Computation

Keywords and phrases Direct-sum, Information complexity, Streaming Algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.44

1 Introduction

In this paper we investigate direct-sum questions for read-once branching programs (equival-
ently, streaming algorithms). Recall that an input to a read-once branching program is a
sequence of n updates x1, . . . , xn arriving sequentially in time, and the branching program
at the end must compute a function f(x1, x2, . . . , xn). The complexity measure of interest
is the amount of memory that is needed to carry out the computation. Here the memory
used by the program at time t is the logarithm of the number of potential states that the
program can be in after reading the inputs x1, . . . , xt.

We are interested in how the complexity of a problem changes when the branching
program must process k independent inputs that arrive in parallel. The program now gets
k inputs x1 = x1

1, . . . , x1
n, x2 = x2

1, . . . , x2
n, . . . , xk = xk

1 , . . . , xk
n, where the inputs x1

t , . . . , xk
t

arrive simultaneously in the t’th time-step. Obviously one can process each of the inputs
independently, giving a branching program that uses k times as much memory. The central

∗ Supported by the National Science Foundation under agreement CCF-1016565, an NSF Career award,
and by the Binational Science Foundation under agreement 2010089.

© Anup Rao and Makrand Sinha;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 44; pp. 44:1–44:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.44
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

44:2 A Direct-Sum Theorem for Read-Once Branching Programs

question that we investigate in this paper is: are there interesting functions f for which
the best branching program that computes f on k independent inputs does not operate
independently on each input? This question is dual to another interesting question: When
can we effectively reduce the memory of a branching program without compromising its
accuracy?

Viewing these read-once branching programs as streaming algorithms, these questions also
make a lot of sense in the context of the most common applications for streaming algorithms
like internet traffic analysis or data from multiple satellites. They also make sense from a
theoretical perspective: they help to identify exactly what makes some streaming tasks hard
and others easy.

The extensive literature on branching programs is mostly concerned with understanding
the maximum number of bits of memory used by the branching program throughout its run.
One can imagine pathological cases one can effectively process k inputs at the same cost as
processing a single input using this measure of complexity. Suppose there is a uniformly
random block of n/k3 consecutive updates that contains information in the input, and all
other updates are set to 0. Then without loss of generality, the best (read-once) branching
program uses almost no memory for most of the time, and some memory to process the block
of important inputs. When the program processes k parallel inputs, it is very likely that the
k informative blocks will not overlap in time, and so the maximum memory usage remains
unchanged. Thus, if we are only aiming for a read-once branching program that succeeds
with high probability over this distribution of inputs, one need not increase the memory at
all!

However, we see that the average memory usage per unit time-step does increase by
a factor of k in this last example. The average memory is defined to be the number of
bits of memory used on an average time-step. Arguably from the streaming viewpoint, the
average memory is what we care about when considering practical applications of streaming
algorithms. Another appealing reason to consider average memory as a complexity measure
is that some known streaming lower bounds actually yield lower bounds on the average
memory. For example, the lower bound proofs for approximating the frequency moments
[1, 4, 10, 22] and for approximating the length of the longest increasing subsequence [19] can
be easily adapted to give matching lower bounds for average memory. In the rest of this
work we focus on the average memory used by the branching program.

Note that it is standard for analyzing branching programs to count the number of states
in each layer, but since we will be working with entropy it will be more convenient for us to
talk about the memory required to store each layer. As such to present our results we adopt
the point of view of inputs as streams and a branching program as a streaming algorithm.

1.1 Related Work
The interest in the field of streaming algorithms was renewed by the seminal paper of Alon,
Matias and Szegedy [1] who gave algorithms for approximating lower frequency moments
and also showed that lower bounds in the multi-party number-in-hand communication model
implied memory lower bounds for streaming algorithms approximating the higher frequency
moments. Since then, lower bounds in communication complexity (and more recently in
information complexity) have found applications in proving memory lower bounds in the
streaming model (see [1, 4, 10, 32, 19, 23, 22, 28] for some of them).

Questions analogous to the ones we study here have been studied in the setting of two-
party communication complexity and information complexity [5, 9, 6]. It was shown in [21]
that there are communication tasks that can be solved much more efficiently in parallel than
by naively solving each one independently.

A. Rao and M. Sinha 44:3

Combining these results about parallelizing communication with known methods for
proving lower bounds on streaming algorithms gives several interesting worst-case memory
lower bounds for computing natural functions on k parallel streams. To give an example,
it is known that computing (1 + ε) approximation of the pth frequency moment for p 6= 1
requires worst-case memory Ω(1/ε2) [32, 22]. Combining this with the results of [9] one
can show that computing (1 + ε) approximation of the frequency moment on k streams in
parallel requires Ω(k/ε2) memory in the worst-case. We do not give the proof here, since it
is relatively straightforward.

A related model is that of dynamic distributed functional monitoring introduced by
Cormode, Muthukrishnan and Yi [15] where there are multiple sites receiving data streams and
communicating with a central coordinator who wants to maintain a function of all the input
streams. Recent progress has been made in understanding the communication complexity of
various tasks in this model [15, 33, 34]. Variants of this model have been studied extensively
in relation to databases and distributed computing (see [13, 14, 31, 30, 12, 16, 2, 27, 26, 3] for
some of the applications). Another closely related model is the multi-party private message
passing model introduced in [18]. Any lower bound proved in the message passing model
implies a lower bound in the streaming model. Many works have studied this model and its
variants (see [23, 20, 29, 7, 11, 25] for some of them). These works do not appear to have
any connection to the questions we study here.

2 Our Results

Our results are proved in the setting of average-case complexity: we assume that there is
a known distribution on inputs, and consider the performance of algorithms with respect
to that distribution. Let A be a randomized streaming algorithm which receives an input
stream X1, . . . , Xn sampled from a distribution p(x1, . . . , xn). Throughout this paper we
will only consider the case when p is a product distribution except in Section 4.1, where we
discuss the issues that arise when considering non-product input distributions.

Let M1, . . . , Mn denote the contents of the memory of the algorithm at each of the
time-steps. Let |Mt| denote the number of bits used to store Mt. The average memory
used by the algorithm is (1/n)

∑n
t=1 |Mt|. Let M(f) denote the minimum average memory

required to compute a function f with probability 2/3 when the inputs are sampled according
to p.

Let pk(x) denote the product distribution on k independent streams, each identically
distributed as p(x), where the resulting streams arrive synchronously in parallel. Thus at
time t the input is the tth element of all the k streams. Write fk to denote the function that
computes f on each of the k streams. Then we prove,

I Theorem 2.1.

M(fk) = Ω
(

k

(
M(f)

n
− 1
))

.

Theorem 2.1 is proved by a reduction that compresses streaming algorithms with regards to
its information complexity. There are several reasonable measures of information complexity
for streaming algorithms. Here we define two such information complexity measures. We use
Shannon’s notion of mutual information, which is defined in the preliminaries (Section 3).

The transitional information content captures the average amount of information that
the algorithm learns about the next input conditioned on its current state.

I Definition 2.2 (Transitional Information). ICtr(A) = 1
n

∑n
t=1 I(Mt; Xt|Mt−1).

APPROX/RANDOM’16

44:4 A Direct-Sum Theorem for Read-Once Branching Programs

The cumulative information content measures the average amount of information that
the streaming algorithm remembers about the inputs seen so far.

I Definition 2.3 (Cumulative Information). ICcum(A) = 1
n

∑n
t=1 I(Mt; X1 . . . Xt).

Note that both the transitional and the cumulative information content for an algorithm
are bounded by the average memory used by the algorithm. We prove that algorithms with
low transitional information can be efficiently simulated:

I Theorem 2.4. Every streaming algorithm with transitional information content I can be
simulated with average memory O(nI + n).

The above theorem is tight as the following example shows. Let the input x be sampled
from the uniform distribution on {0, 1}n (i.e. each update xi for i ∈ [n] is a bit). Consider the
streaming algorithm A which remembers all the updates seen so far and outputs x1, . . . , xn

at the end. The average memory used by the algorithm is Ω(n) while the transitional
information content of this algorithm is 1. In this case the compression algorithm given by
the above theorem would simulate A with average memory O(n) which is the best one could
hope for.

Finally, we show that if algorithms with low cumulative information can be simulated,
then one can obtain no savings when parallelizing streaming algorithms:

I Theorem 2.5. If every algorithm with cumulative information I can be simulated using
average memory O(I), then M(fk) = Ω (k · (M(f)− 1)).

In Section 5, we discuss more about the possibility of compressing algorithms with low
cumulative information content.

3 Preliminaries

Throughout this report, the base of all logarithms is 2. Random variables will be denoted by
capital letters and the values that they attain will be denoted by lower-case letters. Given
x = x1, . . . , xn, we write x≤i to denote the sequence x1, x2, . . . , xi. We define x<i, x>i and
x≥i similarly. We write x−i to denote x1, . . . , xi−1, xi+1, . . . , xn.

We use p(x) to denote both the distribution on the variable x and the probability
Pp[X = x], the distinction will be clear from context. For any joint random variables X

and Y , we will write X|Y = y to denote the random variable X conditioned on the event
Y = y and use p(x|y) to denote the distribution of X|Y = y as well as the probability
Pp[X = x|Y = y].

We denote by pk(x) the product distribution sampling k independent copies of x according
to p. Given a joint distribution p(x, y, z), we write p(x, y) to denote the marginal distribution
(or probability according to the marginal distribution) on the variables x and y. We often
write p(xy) instead of p(x, y) to make the notation more concise. When X, Y are random
variables, XY denotes the random variable that is the concatenation of X and Y .

Let X, W, M be random variables distributed according to p(x, w, m). We say that
they form a Markov chain iff p(x, w, m) = p(w) · p(x|w) · p(m|w) and we denote this by
X −W −M . In some cases we will have Markov chains where W determines M (p(m|w) is
a point distribution). To emphasize this we will write this Markov chain as X −W →M .
For brevity we will write X|R−W |R−M |R to assert that p(xwm|r) is a Markov chain for
every r.

A. Rao and M. Sinha 44:5

3.1 Information Theory Basics
Here we collect some standard facts from information theory. For more details, we refer the
reader to the textbook [17]. For a discrete random variable X with probability distribution
p(x), the entropy of X is defined as

H(X) = Ep(x)

[
log 1

p(x)

]
.

For any two random variables X and Y with the joint distribution p(x, y), the entropy of
X conditioned on Y is defined as H(X|Y) = Ep(y)[H(X|Y = y)]. The conditional entropy
H(X|Y) is at most H(X) where the equality holds if and only if X and Y are independent.

The mutual information between X and Y is defined as I(X; Y) = H(X)−H(X|Y) =
H(Y) − H(Y |X). Similarly, the conditional mutual information I(X; Y |Z) is defined to
be H(X|Z) − H(X|Y Z). If X and Y are independent then I(X; Y) = 0. Moreover,
0 ≤ I(X; Y) ≤ min{H(X), H(Y)}. A standard fact about mutual information is the chain
rule: For jointly distributed random variables X1, . . . , Xn, Y and Z,

I(X1, . . . , Xn; Y |Z) =
n∑

i=1
I(Xi; Y |X<iZ).

I Lemma 3.1. If Y and Z are independent, I(X; Y) ≤ I(X; Y |Z).

Proof. We repeatedly use the chain rule:

I(X; Y) ≤ I(X; Y) + I(Z; Y |X) = I(XZ; Y) = I(Z; Y) + I(X; Y |Z) = I(X; Y |Z). J

I Proposition 3.2 (Data Processing Inequality). Let X, W and M be random variables such
that X −W −M , then I(X; M) ≤ I(X; W).

I Proposition 3.3. Let X, Y, Z and W be random variables such that XY − Z −W , then
I(X; Y |ZW) = I(X; Y |Z).

Proof. Using the chain rule we expand I(XW ; Y |Z) in two different ways:

I(W ; Y |Z) + I(X; Y |ZW) = I(XW ; Y |Z) = I(X; Y |Z) + I(W ; Y |XZ).

The terms I(W ; Y |Z) and I(W ; Y |XZ) are 0 since XY − Z −W . J

The next proposition says that for any discrete random variable X there is a prefix-free
encoding with average length at most H(X) + 1.

I Proposition 3.4 (Huffman Encoding). Let X and Y be random variables where X is discrete.
Then, there exists a prefix-free encoding ` : supp(X) → {0, 1}∗ satisfying Exy[|`(x)| | Y =
y] ≤ H(X|Y) + 1.

3.2 Common Information and Error-free Sampling
Wyner [35] defined the quantity common information between X and M as

C(X; M) = inf
X−W−M

I(XM ; W) ,

where the infimum is taken over all jointly distributed W such that, X −W −M and W is
supported over a finite set. Wyner showed that the above infimum is always achieved. By

APPROX/RANDOM’16

44:6 A Direct-Sum Theorem for Read-Once Branching Programs

the data-processing inequality applied to the Markov chain X −W −M it is easily seen that
C(X; M) ≥ I(X; M).

It turns out that the gap between C(X; M) and I(X; M) can be very large. There are
known examples of random variables X and M where C(X; M) = ω(I(X; M)). We include
one simple example in Appendix A. Another example is described in the work of Harsha et
al. [24], who also proved a related upper bound. They showed that there always exist C and
S, where S is independent of X, X −CS →M and H(C) ≈ I(X; M). The random variable
S in their work depends on the distribution of M . Braverman and Garg [8] showed a similar
result that we quote and use in this work:

I Lemma 3.5 ([8]). Let p(xm) be an arbitrary discrete probability distribution, with finite
support. Let S be an infinite list of uniform samples from supp(M) × [0, 1], independent
of XM . Then there exists a random variable C such that X − CS → M and H(C|S) ≤
I(X; M) + log(I(X; M) + 1) +O(1).

3.3 Streaming Algorithms
Without loss of generality, we associate the values stored by the algorithm with a non-negative
integer. Assuming that the inputs to the algorithm come from the domain X , a streaming
algorithm defines a function A : [n]× N× X → N. At time t− 1, let the memory state of
the algorithm be mt−1 (we define m0 := 1). On seeing the input xt at time t, the algorithm
computes the tth memory state mt := A(t, mt−1, xt). The output of the algorithm is mn.
Randomized streaming algorithms toss independent random coins rt at each time-step t and
sample the memory state at time t as follows: mt := A(t, mt−1, rt, xt).

The following is obvious from the definition:

I Proposition 3.6 (Markov Chain Property). If m1, . . . , mn denote the memory of a (possibly
randomized) streaming algorithm, then for each t ∈ [n], X≤nM<t −XtMt−1 −Mt.

The last proposition also implies the following.

I Proposition 3.7. For a randomized streaming algorithm, the following holds,

I(M≤n; X≤n) = I(M1; X1) + I(M2; X2|M1) + · · ·+ I(Mn; Xn|Mn−1).

Proof. Applying the chain-rule, we get

I(M≤n; X≤n) =
n∑

t=1
I(Mt; X≤n|M<t) ≤

n∑
t=1

I(Mt; XtX≤nM<t−1|Mt−1).

The second inequality follows since I(Mt; XtX≤nM<t−1|Mt−1) = I(Mt; M<t−1|Mt−1) +
I(Mt; X≤n|M<t) + I(Mt; Xt|M<tX≤n) and mutual information is a non-negative quantity.

Applying the chain rule one more time, we have

I(M≤n; X≤n) ≤
n∑

t=1
I(Mt; XtX≤nM<t−1|Mt−1)

=
n∑

t=1
I(Mt; Xt|Mt−1) +

n∑
t=1

I(Mt; X≤nM<t−1|XtMt−1).

Proposition 3.6 implies that X≤nM<t −XtMt−1 −Mt for every t ∈ [n] and hence the
second term on the right hand side is zero. J

A. Rao and M. Sinha 44:7

The following proposition states that both the transitional and cumulative information
content are upper bounded by the average memory.

I Proposition 3.8. For a randomized streaming algorithm A with average memory M ,

max{ICtr(A), ICcum(A)} ≤M .

I Definition 3.9 (Simulation). We say that a streaming algorithm A1 simulates another
algorithm A2 if for every input x1, . . . , xn, the distribution on outputs is exactly the same in
both algorithms.

In general it even makes sense to allow errors during simulation. Our simulations have no
error, so we define simulation using the strong definition given above.

4 Compression and Direct Sums for Streaming Computation

The following is a natural strategy to prove our direct-sum theorem: given an algorithm
that computes fk correctly with probability 2/3 on all the streams and uses average memory
M , first show that there is some stream “with respect to” which the information content is
M/k. Then derive a randomized streaming algorithm that computes f and has information
content at most M/k as follows: embed the input stream at the location j about which the
memory has small information and simulate the behavior of the algorithm on this stream by
generating the other streams randomly, or to say alternately, sample from the distribution
p(mn|X(j) = x). The resulting algorithm would have information content at most M/k but
would still use M bits of average memory. The last step would then be to give a way to
simulate a streaming algorithm that has information content I with a streaming algorithm
that uses average memory approximately I.

For product distributions, we can show that if there exists an algorithm for computing k

copies of f with memory M , then there is a randomized algorithm for computing a single
copy of f with transitional and cumulative information content at most M/k. To prove our
direct-sum result, we are able to show that algorithms with transitional information content
I can be simulated with O(nI+n) average memory which as discussed before is best possible.
To give an optimal direct-sum result, one could still hope that streaming algorithms with
cumulative information content I can be simulated with O(I) average memory. We discuss
more about this possibility in Section 5.

4.1 Non-product Distributions and Correlated Randomness
Before we begin the proof of our compression and direct-sum results, we briefly discuss the
difficulty that arises in dealing with non-product distributions. For proving a direct-sum
result for non-product distributions using the above strategy, the natural way of using an
algorithm that computes k copies of f to compute a single copy of f , is to embed our input
stream at position j and generate other streams as randomness so that we can run the
algorithm for k copies. The algorithm we get for computing f in this way uses randomness
that is correlated across various time-steps if the input stream distribution is non-product.

Transitional information content is not a useful information measure for compressing such
algorithms as the following example shows. We give an example of a function which require
Ω(1) average memory, but can be computed by an algorithm that uses correlated randomness
and has transitional information content 1/n. Let f(x) =

∑n
t=1 xt mod 2. Consider the

following algorithm that takes as input a random input stream x (each update xt is a bit) and

APPROX/RANDOM’16

44:8 A Direct-Sum Theorem for Read-Once Branching Programs

computes f(x). The algorithm at time t uses randomness rt where r1, . . . , rt are correlated
so that they satisfy

∑n
t=1 rt = 0 mod 2. At time t, the algorithm stores in its memory∑t

i=1(xt + rt) mod 2 and at time t = n outputs the last value stored in memory. Since∑n
t=1 rt = 0 mod 2, the algorithm outputs f(x). This algorithm has transitional information

content 1/n, but one can not hope to compute the parity of an n bit string without using
Ω(1) bits of average memory.

4.2 Compressing Streaming Algorithms
In this section we show how algorithms with small transitional information content can be
simulated with small average memory.

I Theorem 4.1 (Restated). Let A be a randomized streaming algorithm with ICtr(A) = I.
Then there exists a randomized streaming algorithm Atr with average memory O(nI + n)
that simulates A.

Let m1, . . . , mn denote the memory states of the algorithm A. Recall that Lemma 3.6
implies that for each t ∈ [n], X≤nM<t − XtMt−1 −Mt. Hence, to prove Theorem 4.1, it
suffices to sample from p(mt|xt, mt−1) if mt−1 has been sampled correctly. The compression
algorithm will toss random coins to sample an infinite list st of samples from supp(Mt)× [0, 1]
and then sample Ct (whose existence is guaranteed by Lemma 3.5) satisfying

Xt − CtSt|Mt−1 →Mt|Mt−1, (4.1)
H(Ct|StMt−1) = I(Mt; Xt|Mt−1) + log(I(Mt; Xt|Mt−1) + 1) +O(1). (4.2)

The value of mt determined by the sample ct is distributed according to the distribution
p(mt|xt, mt−1).

The algorithm will store the Huffman encoding (Proposition 3.4) of Ct conditioned on St

and Mt−1. This encoding determines Ct given St and Mt−1, both of which are known to the
algorithm at this time.

Randomized Streaming Algorithm Atr

Input : Stream x ∼ p(x)
Randomness : s1, . . . , sn where si is an infinite sequence of uniform samples from supp(Mi)× [0, 1].
// At time t: the content of the memory are some encodings of c<t, where ci determines mi given si

and mi−1.

1. Let mt−1 be determined by ct−1 and st−1. On input xt, sample ct from the Markov chain in (4.1);
2. Append the Huffman encoding of ct conditioned on st and mt−1 to the previous memory contents;

Note that the algorithm needs to store the encodings of all the previous c≤t at time t

since in order to determine mt uniquely, the value of mt−1 needs to be known which depends
on the previous memory contents.

The following proposition is straightforward from (4.1).

I Proposition 4.2. The algorithm Atr simulates A.

Next we finish the proof of Theorem 4.1 by bounding the total memory used by Atr.

I Lemma 4.3. The average memory used by Atr is O(nI + n).

Proof. At time t, the expected number of bits appended to the memory (where the expecta-
tion is over the choice of x≤t and s≤t) is bounded by H(Ct|StMt−1). From (4.2), this is at

A. Rao and M. Sinha 44:9

most 2I(Mt; Xt|Mt−1) +O(1). Hence, the number of bits stored in the memory at a time
t ∈ [n] is at most

t∑
i=1

(2I(Mi; Xi|Mi−1) +O(1)) ≤
n∑

i=1
(2I(Mi; Xi|Mi−1) +O(1)) = 2nI +O(n).

Since this is true for every time-step t, the average memory is also upper bounded by
2nI +O(n). J

4.3 Direct Sum for Product Distributions

Recall that we want to prove the following theorem.

I Theorem 4.4 (Direct Sum – Restated). If p is product input distribution, then

M(fk) = Ω
(

k

(
M(f)

n
− 1
))

.

To prove the above we first show that if there is a deterministic algorithm for computing
k copies of f with average memory M and error probability 1/3, then there is a randomized
algorithm which computes a single copy of f with error at most 1/3 and has transitional
information content at most M/k. Then, we apply Theorem 4.1 to compress this algorithm
and get a contradiction if M is smaller than the right hand side in Theorem 4.4.

4.3.1 Computing f with Small Information

Let A be a deterministic streaming algorithm that uses average memory M and computes
fk on inputs sampled from pk with error at most 1/3. Let m1, . . . , mn denote the memory
states of the algorithm A. Consider the following randomized algorithm Aran that computes
f with error at most 1/3 on inputs sampled from p. The algorithm chooses a random j ∈ [k],
embeds the input stream at position j and at time t, samples and stores the memory state
mt from the distribution p(mt|x(j)

t = xt, mt−1).

Randomized Streaming Algorithm Aran

Input : Stream x sampled from p(x)
Randomness : j uniformly drawn from [k], streams x(−j)

Output : f(x) with error at most 1/3

1. Set Stream x(j) to be x;
2. At time t, use randomness x

(−j)
t to sample mt from p(mt|x(j)

t = xt, mt−1);
3. Output the answer of the algorithm on stream j;

Note that for any fixed value of j, the algorithm Aran uses independent randomness x
(−j)
t

in each step as the input distribution p is product. We show that on average over the choice
of j, the transitional and cumulative information content of the above algorithm is at most
M/k.

I Lemma 4.5. Ej [ICtr(Aran|J = j)] ≤M/k and Ej [ICcum(Aran|J = j)] ≤M/k.

Proof of Lemma 4.5. Conditioned on any event J = j, the transitional information content

APPROX/RANDOM’16

44:10 A Direct-Sum Theorem for Read-Once Branching Programs

of Aran is given by

ICtr(Aran|J = j) = 1
n

n∑
t=1

I(Mt; Xt | Mt−1, J = j)

= 1
n

n∑
t=1

I(Mt; X
(j)
t | Mt−1, J = j) (with probability 1, X(j) = X)

= 1
n

n∑
t=1

I(Mt; X
(j)
t | Mt−1) (Mt ind. of event J = j).

Since the input stream comes from a product distribution, X
(1)
t , . . . , X

(k)
t are all inde-

pendent conditioned on Mt−1. By Lemma 3.1, the term I(Mt; X
(j)
t | Mt−1) in the above

sum is bounded by I(Mt; X
(j)
t | X

(<j)
t Mt−1). Taking an expectation over j, we get

Ej [ICtr(Aran|J = j)] ≤ Ej

(
1
n

n∑
t=1

I(Mt; X
(j)
t | X

(<j)
t Mt−1)

)

= 1
k

 1
n

n∑
t=1

k∑
j=1

I(Mt; X
(j)
t | X

(<j)
t Mt−1)


From the chain rule the right hand side above equals

1
k

(
1
n

n∑
t=1

I(Mt; X
(1)
t . . . X

(k)
t |Mt−1)

)
= 1

k
ICtr(A) ≤ M

k
,

where the last inequality follows since the transitional information content is bounded by the
average memory (Proposition 3.8).

Analogously, the cumulative information content of Aran is given by

ICcum(Aran|J = j) = 1
n

n∑
t=1

I(Mt; X≤t | J = j)

= 1
n

n∑
t=1

I(Mt; X
(j)
≤t | J = j) (with probability 1, X(j) = X)

= 1
n

n∑
t=1

I(Mt; X
(j)
≤t) (Mtind. of event J = j).

Since X(1), . . . , X(k) are all independent, by Lemma 3.1, the term I(Mt; X
(j)
≤t) is at most

I(Mt; X
(j)
≤t | X

(<j)
≤t). Taking an expectation over j and using the chain rule, we get

Ej [ICcum(Aran|J = j)] ≤ 1
k

 1
n

n∑
t=1

k∑
j=1

I(Mt; X
(j)
≤t | X

(<j)
≤t)


= 1

k

(
1
n

n∑
t=1

I(Mt; X
(1)
≤t . . . X

(k)
≤t)

)
= 1

k
ICcum(A) ≤ M

k
. J

4.3.2 Direct-sum Theorem
With the above, we can now apply Theorem 4.1 to get Theorem 4.4.

A. Rao and M. Sinha 44:11

Proof of Theorem 4.4. Let A be a streaming algorithm that computes fk with error at
most 1/3 and average memory M . By Lemma 4.5, there is an algorithm Aran that uses
randomness j and r, computes f with error at most 1/3 and satisfies Ej [ICtr(Aran)|j] ≤M/k.
Applying Theorem 4.1 to Aran gives us a randomized algorithm that uses random coins j

and r′ and computes f using average memory Ej,r′ [1
n

∑n
t=1 |Mt|] = O(nM/k + n).

Since the random coins j and r′ are independent of the input, we can fix them to get a
deterministic streaming algorithm with average memory O(nM/k + n). Since this must be
at least M(f), we have

O
(

nM

k
+ n

)
≥M(f).

Rearranging the above gives us that M is lower bounded by Ω
(

k
(

M(f)
n − 1

))
. J

5 Towards Optimal Direct Sums

The algorithm Aran that we gave in the last section also had cumulative information content
at most M/k as shown in Lemma 4.5. Analogous to Theorem 4.4, the following result follows.
We omit the proof since it is very similar to that of Theorem 4.4.

I Theorem 5.1 (Restated). If every algorithm with cumulative information I can be simulated
using average memory O(I), then M(fk) = Ω (k · (M(f)− 1)).

In this section, we describe a compression algorithm that could possibly simulate an
algorithm with cumulative information content I with average memory O(I + 1). However,
we are unable to either prove or disprove it.

To give some intuition about the new algorithm, let us recall Algorithm Atr where
the compression algorithm stored Huffman encodings (Proposition 3.4) of Ct satisfying
Xt −CtSt|Mt−1 →Mt|Mt−1. This necessitated storing the whole history since to determine
the sample mt required knowing encodings of all the previous c<t.

The new algorithm that we call Acum, on receiving the input xt at time t, samples Ct

conditioned on the value of xt and mt−1 where Ct satisfies the following properties that
follow from Lemma 3.5:

Xt − CtSt|S<t →Mt|S<t, (5.1)
H(Ct|S≤t) ≤ I(Mt; XtMt−1|S<t) + log(I(Mt; XtMt−1|S<t) + 1) +O(1). (5.2)

Again the value of mt determined by the sample ct is distributed according to the
distribution p(mt|xt, mt−1). Moreover, the algorithm Acum will store the Huffman encoding
of Ct conditioned on S≤t which avoids the need to store all the previous memory contents
since S≤t is randomness independent of the input and can be fixed in the beginning.

Randomized Streaming Algorithm Acum

Input : Stream x ∼ p(x)
Randomness : s1, . . . , sn where si is an infinite sequence of uniform samples from supp(Mi)× [0, 1].
// At time t: the content of the memory are some encodings of c<t, where ci determines mi given

s≤i.

1. Let mt−1 be determined by ct−1 and st−1. On input xt, sample ct from the Markov chain in (5.1);
2. Store the Huffman encoding of ct conditioned on s≤t;

APPROX/RANDOM’16

44:12 A Direct-Sum Theorem for Read-Once Branching Programs

I Conjecture 5.2. Let A be a randomized streaming algorithm with ICcum(A) = I. Then,
Acum simulates A using O(I + 1) average memory.

The proof that the above compression algorithm gives a correct simulation is straight-
forward from (5.1). We are able to prove the following bounds on the memory used by the
above algorithm.

I Lemma 5.3. In expectation over the choice of s≤t and x≤t, the memory used by algorithm
Acum at time t is at most O(I(Mt; X≤t|S<t) + 1).

Proof. The memory used by algorithm Acum at time t is bounded by H(Ct|S≤t) which as
given by (5.2) is at most O(I(Mt; XtMt−1|S<t)+1). Moreover, since Mt−1|S<t is determined
given Ct−1|S<t,

I(Mt; XtMt−1|S<t) ≤ I(Mt; XtCt−1|S<t),

by the data processing inequality (Proposition 3.2).
Next, we will show that I(Mt; XtCt−1|S<t) is upper bounded by I(Mt; X≤t|S<t). To

show this we bound I(Mt; XtCt−1|S<t) ≤ I(Mt; X≤tCt−1|S<t) which by chain rule is,

= I(Mt; X<tCt−1|S<t) + I(Mt; Xt|S<tX<tCt−1)
= I(Mt; X<t|S<t) + I(Mt; Ct−1|S<tX<t) + I(Mt; Xt|S<tX<tCt−1).

Note that in the algorithm Acum, X<t and S<t completely determine Ct−1. Hence, the
second term in the above expression is 0. Moreover, by the same fact MtXt−S<tX<t → Ct−1
and hence by Proposition 3.3, the last term I(Mt; Xt|S<tX<tCt−1) = I(Mt; Xt|X<tS<t).

The above discussion yields that

I(Mt; XtCt−1|S<t) ≤ I(Mt; X<t|S<t) + I(Mt; Xt|X<tS<t)
= I(Mt; X≤t|S<t),

where the second equality follows by another application of the chain rule. J

Note that since S<t is independent of X≤t, the above quantity I(Mt; X≤t|S<t) is at least
as large as I(Mt; X≤t) (recall Lemma 3.1), but it is possible that similar to Lemma 3.5, they
could be the same up to some lower order error terms. Towards proving such a statement,
we first propose to investigate whether the following stronger version of Lemma 3.5 holds.

I Conjecture 5.4. Let X and M be arbitrary discrete random variables with finite support.
Let S be an infinite list of samples from supp(M)× [0, 1]. Then, there exist a random variable
C such that

X − CS →M .
H(C|S) ≤ I(M ; X) + log(I(M ; X) + 1) +O(1).
For any discrete random variable N such that X −M −N , it holds that

I(N ; M |S) ≤ I(N ; X) + log(I(N ; X) + 1) +O(1).

We also point out that an inductive use of the above conjecture does not give a non-trivial
upper bound on the memory used by the algorithm Acum because of the error terms in
the last statement of the conjecture. But we hope that the techniques used in proving the
above conjecture would be helpful in analyzing the memory used by the algorithm Acum.
Nonetheless the above conjecture might be interesting in its own right and of potential use
somewhere else.

Acknowledgments. We thank Paul Beame for helpful comments.

A. Rao and M. Sinha 44:13

References

1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.

2 Chrisil Arackaparambil, Joshua Brody, and Amit Chakrabarti. Functional monitoring
without monotonicity. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias,
Sotiris Nikoletseas, and Wolfgang Thomas, editors, Automata, Languages and Program-
ming, volume 5555 of Lecture Notes in Computer Science, pages 95–106. Springer Berlin
Heidelberg, 2009.

3 Brian Babcock and Chris Olston. Distributed top-k monitoring. In Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data, SIGMOD’03, pages
28–39, New York, NY, USA, 2003. ACM.

4 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An Information Statistics
Approach to Data Stream and Communication Complexity. In FOCS, pages 209–218, 2002.

5 Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive
communication. SIAM J. Comput., 42(3):1327–1363, 2013.

6 Mark Braverman. Interactive information complexity. In STOC, pages 505–524, 2012.
7 Mark Braverman, Faith Ellen, Rotem Oshman, Toniann Pitassi, and Vinod Vaikuntan-

athan. A tight bound for set disjointness in the message-passing model. In FOCS, pages
668–677, 2013.

8 Mark Braverman and Ankit Garg. Public vs Private Coin in Bounded-Round Information.
In ICALP, pages 502–513, 2014.

9 Mark Braverman and Anup Rao. Information equals amortized communication. In FOCS,
pages 748–757, 2011.

10 Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds on the
multi-party communication complexity of set disjointness. In 18th Annual IEEE Conference
on Computational Complexity (Complexity 2003), 7-10 July 2003, Aarhus, Denmark, pages
107–117, 2003.

11 Arkadev Chattopadhyay, Jaikumar Radhakrishnan, and Atri Rudra. Topology matters in
communication. In 55th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 631–640, 2014.

12 G. Cormode, S. Muthukrishnan, and Wei Zhuang. What’s different: Distributed, continu-
ous monitoring of duplicate-resilient aggregates on data streams. In Data Engineering,
2006. ICDE’06. Proceedings of the 22nd International Conference on, pages 57–57, April
2006.

13 Graham Cormode. Sketching streams through the net: Distributed approximate query
tracking. In VLDB, pages 13–24, 2005.

14 Graham Cormode and Minos Garofalakis. Holistic aggregates in a networked world: Dis-
tributed tracking of approximate quantiles. In SIGMOD, pages 25–36, 2005.

15 Graham Cormode, S. Muthukrishnan, and Ke Yi. Algorithms for distributed functional
monitoring. ACM Trans. Algorithms, 7(2):21:1–21:20, March 2011.

16 Graham Cormode, S. Muthukrishnan, Ke Yi, and Qin Zhang. Optimal sampling from
distributed streams. In Proceedings of the Twenty-ninth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS’10, pages 77–86, New York, NY,
USA, 2010. ACM.

17 Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, 2006.

18 Pavol Duris and Jose D.P. Rolim. Lower bounds on the multiparty communication com-
plexity. Journal of Computer and System Sciences, 56(1):90–95, 1998.

APPROX/RANDOM’16

44:14 A Direct-Sum Theorem for Read-Once Branching Programs

19 Funda Ergun and Hossein Jowhari. On distance to monotonicity and longest increasing
subsequence of a data stream. In Proceedings of the Nineteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA’08, pages 730–736, Philadelphia, PA, USA, 2008.
Society for Industrial and Applied Mathematics.

20 Anna Gál and Parikshit Gopalan. Lower bounds on streaming algorithms for approximating
the length of the longest increasing subsequence. SIAM J. Comput., 39(8):3463–3479,
August 2010.

21 Anat Ganor, Gillat Kol, and Ran Raz. Exponential Separation of Information and Com-
munication for Boolean Functions. Electronic Colloquium on Computational Complexity
(ECCC), 21:113, 2014.

22 André Gronemeier. Asymptotically optimal lower bounds on the nih-multi-party inform-
ation complexity of the and-function and disjointness. In STACS 2009, pages 505–516,
2009.

23 Sudipto Guha and Zhiyi Huang. Revisiting the direct sum theorem and space lower bounds
in random order streams. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias,
Sotiris Nikoletseas, and Wolfgang Thomas, editors, Automata, Languages and Program-
ming, volume 5555 of Lecture Notes in Computer Science, pages 513–524. Springer Berlin
Heidelberg, 2009.

24 Prahladh Harsha, Rahul Jain, David A. McAllester, and Jaikumar Radhakrishnan. The
communication complexity of correlation. IEEE Transactions on Information Theory,
56(1):438–449, 2010. doi:10.1109/TIT.2009.2034824.

25 Zengfeng Huang, Božidar Radunović, Milan Vojnović, and Qin Zhang. Communication
complexity of approximate maximum matching in distributed graph data. In STACS, 2015.

26 Ram Keralapura, Graham Cormode, and Jeyashankher Ramamirtham. Communication-
efficient distributed monitoring of thresholded counts. In Proceedings of the 2006 ACM
SIGMOD International Conference on Management of Data, SIGMOD’06, pages 289–300,
New York, NY, USA, 2006. ACM.

27 Amit Manjhi, Vladislav Shkapenyuk, Kedar Dhamdhere, and Christopher Olston. Finding
(recently) frequent items in distributed data streams. In Proceedings of the 21st Interna-
tional Conference on Data Engineering, ICDE’05, pages 767–778, Washington, DC, USA,
2005. IEEE Computer Society.

28 Marco Molinaro, David P. Woodruff, and Grigory Yaroslavtsev. Beating the direct sum
theorem in communication complexity with implications for sketching. In SODA, pages
1738–1756, 2013.

29 Jeff M. Phillips, Elad Verbin, and Qin Zhang. Lower bounds for number-in-hand multiparty
communication complexity, made easy. In Proceedings of the Twenty-third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA’12, pages 486–501. SIAM, 2012.

30 Izchak Sharfman, Assaf Schuster, and Daniel Keren. A geometric approach to monitoring
threshold functions over distributed data streams. ACM Transactions on Database Systems,
32(4), November 2007.

31 Izchak Sharfman, Assaf Schuster, and Daniel Keren. Shape sensitive geometric monitoring.
In Proceedings of the Twenty-seventh ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS’08, pages 301–310, New York, NY, USA, 2008.
ACM.

32 David Woodruff. Optimal space lower bounds for all frequency moments. In Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’04, pages
167–175, Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathematics.

33 David P. Woodruff and Qin Zhang. Tight bounds for distributed functional monitoring. In
STOC, pages 941–960, 2012.

http://dx.doi.org/10.1109/TIT.2009.2034824

A. Rao and M. Sinha 44:15

34 David P. Woodruff and Qin Zhang. An optimal lower bound for distinct elements in the
message passing model. In SODA, pages 718–733, 2014.

35 A.D. Wyner. The common information of two dependent random variables. IEEE Trans-
actions on Information Theory, 21(2):163–179, 1975.

A Separation between common information and mutual information

In this section we will give an explicit example of random variables X and M such that
C(X; M) = ω(I(X; M)). Let G be a bipartite graph on the vertex set ([n], [n]) such that
the edge density of G is 1

2 + o(1) and there are no cliques with more than 3n log n edges in
G. As the following lemma shows a random bipartite graph where each edge is picked with
probability 1/2 satisfies these properties with high probability, so such graphs exist.

I Lemma 1.1. With probability 1 − o(1), a random bipartite graph on ([n], [n]) where
each edge is included with probability 1/2 has no clique U × V where U, V ⊆ [n] satisfying
min{|U |, |V |} ≥ 2 log n + 2.

Proof. Set t := 2 log n + 2 for notational convenience. If there is a clique U × V with
min{|U |, |V |} ≥ t then there also exists a clique of size t × t. Consequently, to prove the
lemma it suffices to upper bound the probability that a t× t clique exists in the graph. This
probability is at most(

n

t

)(
n

t

)
2−t2

≤ n2t2−t2
= 22t log n−t2

= 2t(2 log n−t) ≤ 2−2t = o(1). J

A corollary of the above lemma is that the maximal clique in a random bipartite graph
with edge probability 1/2 has at most n · 3 log n edges with high probability. Also it is easy
to see that with probability 1− o(1), every vertex in a random bipartite graph with edge
probability 1/2 has degree between n

2 − o(n) and n
2 + o(n) .

Now we can describe the random variables X and M which will be the end points of
a uniformly random edge E in the graph G. It is easily seen that the mutual information
I(X; M) ≤ 1−o(1) since H(X) = log n while for any M = m, H(X|M = m) ≥ log n−1−o(1).
On the other hand, if X −W −M , then for any value w attained by W , supp(X|W = w)
and supp(M |W = w) has to form a clique in the graph G. Since the maximal clique in G

has at most 3n log n edges, for any W = w, it holds that

|supp(X|W = w)| · |supp(M |W = w)| ≤ 3n log n.

It follows that for any such W we can write

H(XM |W) ≤ log(|supp(X|W = w)| · |supp(M |W = w)|) = log n +O(log log n).

Hence we have that the mutual information between XM and W is,

I(XM ; W) = H(XM)−H(XM |W) ≥ (2 log n− 1− o(1))− (log n +O(log log n))
= log n−O(log log n),

for any W satisfying X −W −M . It follows that C(X; M) = Ω(log n) while I(X; M) ≤
1− o(1).

APPROX/RANDOM’16

	Introduction
	Related Work

	Our Results
	Preliminaries
	Information Theory Basics
	Common Information and Error-free Sampling
	Streaming Algorithms

	Compression and Direct Sums for Streaming Computation
	Non-product Distributions and Correlated Randomness
	Compressing Streaming Algorithms
	Direct Sum for Product Distributions
	Computing f with Small Information
	Direct-sum Theorem

	Towards Optimal Direct Sums
	Separation between common information and mutual information

