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Abstract
We study the problem of sampling almost uniform proper q-colorings in sparse Erdős-Rényi ran-
dom graphs G(n, d/n), a research initiated by Dyer, Flaxman, Frieze and Vigoda [2]. We obtain
a fully polynomial time almost uniform sampler (FPAUS) for the problem provided q > 3d + 4,
improving the current best bound q > 5.5d [6].

Our sampling algorithm works for more generalized models and broader family of sparse
graphs. It is an efficient sampler (in the same sense of FPAUS) for anti-ferromagnetic Potts
model with activity 0 ≤ β < 1 on G(n, d/n) provided q > 3(1 − β)d + 4. We further identify
a family of sparse graphs to which all these results can be extended. This family of graphs is
characterized by the notion of contraction function, which is a new measure of the average degree
in graphs.
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1 Introduction

We study the problem of sampling almost uniform proper q-colorings in sparse Erdős-
Rényi random graphs G(n, d/n). A classic sampling problem is to sample proper q-colorings
of graphs with bounded maximum degree when q ≥ α∆ +β, where ∆ is the maximum degree.
There is a substantial body of works on the problem [16, 1, 25, 3, 20, 14, 15, 13, 4, 10, 19].
The best positive result for this fundamental problem is the MCMC sampler for q > 11

6 ∆ by
Vigoda [25], and the best lower bound is due to Galanis, Štefankovič and Vigoda [9], which
proved that the problem is intractable to solve when q < ∆, even restricted to triangle-free
∆-regular graphs. The critical threshold q = ∆ + 1 is of great significance because it is the
uniqueness threshold for the ∆-regular tree [18].

The studies of sampling proper q-colorings of graphs with bounded average degree, in
particular the Erdős-Rényi random graph G(n, d/n) with constant d, was initiated in the
seminal work of Dyer, Flaxman, Frieze and Vigoda [2], in which an algorithm was given
to solve the problem with q = Θ(log logn/ log log logn) colors, substantially fewer than the
maximum degree Θ(logn/ log logn) of the random graph. Several improvements have been
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done since then. A significant step was made by Efthymiou and Spirakis [8] and independently
by Mossel and Sly [21], in which the bound of q was improved to a constant f(d) which is a
large enough polynomial of d. Most recently, in a breakthrough by Efthymiou [6], an efficient
algorithm was given to solve the problem when q > 5.5d, in linear of average degree d.

In all aforementioned results, the algorithms are FPAUSes (fully polynomial-time almost
uniform samplers), meaning that for any ε > 0 the algorithms terminates in time polynomial
in n and 1/ε and returns a random proper q-coloring according to a distribution within total
variation distance ε from the uniform distribution over all proper q-colorings of the graph.
For a much weaker goal where the total variation distance ε is fixed, an elegant combinatorial
algorithm was given by Efthymiou [5, 7] to solve the problem for all q > d, approaching the
uniqueness threshold.

In this paper, we consider FPAUS for proper q-colorings of G(n, d/n) with constant d.
We give an algorithm which achieves an improved bound q > 3d+O(1).

I Theorem 1. For all sufficiently large constant d, all finite q > 3d+ 4, there is an FPAUS
for proper q-colorings of G ∼ G(n, d/n) whp.

The result is established in a more general context, namely the anti-ferromagnetic Potts
model. In the q-state Potts model with activity β, given a graph G = (V,E), a configuration
σ ∈ [q]V assigns each vertex v ∈ V one of the q colors from [q], and is assigned with the
weight

w(σ) =
∏
uv∈E

β1(σ(u)=σ(v)).

The Gibbs distribution over all configurations σ ∈ [q]V , denoted by µ = µq,β,G, is defined as
µ(σ) = w(σ)/Z where the normalizing factor Z =

∑
σ w(σ) is the partition function. When

0 ≤ β < 1, the model is anti-ferromagnetic, meaning that adjacent vertices favor disagreeing
colors. In particular, when β = 0 the Gibbs distribution is the uniform distribution over all
proper q-colorings of G. In [19], it was discovered that sampling from Potts model is tractable
for any q when 3(1 − β)∆ < β, and the lower bound in [9] shows that it is intractable to
sample in the anti-ferromagnetic Potts model on triangle-free ∆-regular graph for any even q
when q < (1− β)∆.

We give the following sampling algorithm for anti-ferromagnetic Potts model on sparse
random graphs.

I Theorem 2. For all sufficiently large constant d, all 0 ≤ β < 1 and q > 3(1−β)d+4, there
is an algorithm such that for G ∼ G(n, d/n) and any ε > 0, the algorithm terminates in time
polynomial in n and 1/ε and returns a random q-coloring of G, according to a distribution
within total variation distance ε from the Potts Gibbs distribution µq,β,G whp (with respect to
the law of G(n, d/n)).

In particular, when β = 0, the above algorithm is an FPAUS for proper q-colorings of
G ∼ G(n, d/n) for q > 3d+ 4. Theorem 1 is a special case of Theorem 2.

Our algorithm on graphs with bounded average degree asymptotically approaches the
lower bound in [9] in terms of maximum degree.

In fact, the algorithm in Theorem 2 works for any family of graphs characterized by
a particular contraction function. We introduce the notion of contraction function to
generalize the connective constant [24, 23], a notion of average degree extensively studied
in statistical physics. Therefore, the algorithm stated in Theorem 2 does not only work for
Erdős-Rényi random graph but also for families of sparse graphs with a proper notion of
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bounded average degree. In particular, it holds for graphs with bounded maximum degree
∆ when q > 3(1 − β)∆ + 1, which also greatly improves the existing upper bounds for
anti-ferromagnetic Potts model on graphs with bounded maximum degree [10, 19]. The
definition of contraction function and the full statement of the main result with it are quite
technical. We defer them to Section 2.

1.1 Techniques

In most of the previous works [2, 8, 21, 6], the sampling algorithms were based on block
Glauber dynamics. For proper q-colorings, if the degree of a vertex is much higher than q,
then the standard Glauber dynamics will have torpid mixing around that vertex since the
color of that vertex will be frozen for most of the time. In previous works this was overcome
by using block dynamics, such that within a block the high-degree vertices are hidden in the
block’s “core”, which is separated from the block’s boundary by an intermediate “buffer” of
low-degree vertices. It is not hard to imagine that the construction of such blocks can be
quite complicated and the efficient construction of blocks crucially relies on the sparsity of
Erdős-Rényi random graph G(n, d/n).

In contrast, we use the correlation decay technique. This approach was introduced to
multi-spin models (e.g. colorings) in the seminal work of Gamarnik and Katz [10], in which
they gave an FPAUS for proper q-colorings when q > 2.844∆ where ∆ is the maximum
degree. This was later improved to q > 2.581∆ in [19], which remains to be the best bound
achieved by correlation-decay-based algorithms for proper q-colorings.

Our algorithm heavily relies on the computation tree recursion introduced in [10]. The
basic idea is simple: sampling with the estimations of marginal probabilities, which are
computed approximately by a proper truncation of the the computation tree recursion. With
correlation decay, the approximation is accurate enough so the algorithm is an FPAUS.
A complication here is that the degrees of vertices are unbounded. We overcome this by
introducing a computation tree in terms of blocks and establish the decay of correlation
between blocks.

The blocks in our algorithm can be constructed straightforwardly: they are just clusters
of high-degree vertices. Due to the simple and generic construction of blocks, our algorithm
may work for general families of graphs, and can be applied as a generic method for graphs
with a few high-degree vertices.

The idea of block correlation decay was introduced in our previous work [26] to establish
the correlation decay for proper q-colorings of G(n, d/n) for q > 2d + O(1), by a block
modification to another recursion of Gamarnik, Katz and Misra [11]. This recursion is
suitable for proving “correlation decay only” result. A drawback of the current approaches
based on correlation decay is that we do not know how to use this approach to get an
algorithm achieving a bound which is close to q > 2∆ +O(1), even on graphs with maximum
degree ∆. Sampling proper q-coloring in G(n, d/n) for q > 2d or smaller q may require
new understandings of correlation decay in multi-spin systems, or may have to use other
techniques such as Glauber dynamics.

2 Preliminary and statement of the main result

Let G = (V,E) be an undirected graph. For any subset S ⊆ V of vertices, let G[S] denote
the subgraph of G induced by S, and let ∂B = {u ∈ V \B | ∃w ∈ B, (u,w) ∈ E} denote the
vertex boundary of B. Given a vertex v in G, let distG (v, S) denote the minimum distance

APPROX/RANDOM’16
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from v to any vertex u ∈ S in G. In case that S = {u} is a singleton, we write distG (v, u)
instead of distG (v, S).

Potts model

The anti-ferromagnetic Potts model is parameterized by an integer q ≥ 2 and an activity
parameter 0 ≤ β < 1. Each element of [q] represents a color or a state. Let G = (V,E) be a
graph. A configuration σ ∈ [q]Λ on a subset Λ ⊆ V of vertices assigns each vertex v in Λ one
of the q colors in [q]. In the Potts model on graph G, each configuration σ ∈ [q]V is assigned
a weight

wG(σ) = β#mon(σ),

where #mon(σ) = | {(u, v) ∈ E | σ(u) = σ(v)} | gives the number of monochromatic (undir-
ected) edges in the configuration σ.

The analysis of correlation decay introduces Potts model with boundary conditions. More
formally, we consider an instance of Potts model as a tuple Ω = (G,Λ, σ) where G = (V,E)
is an undirected graph, Λ ⊆ V is a subset of vertices in G and σ ∈ [q]Λ is a configuration on
Λ. Given such an instance Ω = (G,Λ, σ), the weight function wΩ assigns each configuration
π ∈ [q]V the weight wΩ(π) = wG(π) if π agrees with σ over all vertices in Λ, and wΩ(π) = 0 if
otherwise. An instance Ω is feasible if there exists a configuration on V with positive weight.
This gives rise to a natural probability distribution µ = µq,β,G, called Gibbs distribution, over
all configurations π ∈ [q]V for a feasible Potts instance:

µ(π) = PrΩ [c(V ) = π] = wΩ(π)
Z(Ω) ,

where Z(Ω) =
∑
σ∈[q]V wΩ(σ) is the partition function. For a vertex v ∈ V and any color

x ∈ [q], we use PrΩ [c(v) = x] to denote the marginal probability that v is assigned color x by
a configuration sampled from the Gibbs distribution. Similarly, for a set S ⊆ V and π ∈ [q]S ,
we use PrΩ [c(S) = π] to denote the marginal probability that S is assigned configuration π
by a configuration sampled from the Gibbs distribution.

Block and sparsity

Fix any q ≥ 2 and 0 ≤ β < 1. Let Ω = (G,Λ, σ) be an instance of q-state Potts model with
activity β and v a vertex in G. We call v a low-degree vertex if degG(u) < q−1

1−β − 2, and
otherwise we call it a high-degree vertex.

I Definition 3 (permissive block). Let Ω = (G,Λ, σ) be a Potts instance where G = (V,E).
A vertex set B ⊆ V \ Λ is a permissive block in Ω if every boundary vertex u ∈ ∂B \ Λ is
a low-degree vertex. For any subset of vertices S ⊆ V \ Λ, we denote B(S) = BΩ(S) the
minimal permissive block containing S. We write B(v) = B(S) if S = {v} is a singleton.

I Definition 4. A family G of finite graphs is locally sparse if there exists a constant C > 0
such that for every G = (V,E) in the family and every path P in G of length ` we have
|B(P )| ≤ C(`+ log |V |).

SAW tree

Given a graph G = (V,E) and a vertex v ∈ V , a rooted tree T can be naturally constructed
from all self-avoiding walks starting from v in G as follows: Each vertex in T corresponds to
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a self-avoiding walk (simple path in G) P = (v, v1, v2, . . . , vk) starting from v, whose children
correspond to all self-avoiding walks (v, v1, v2, . . . , vk, vk+1) in G extending P , and the root
of T corresponds to the trivial walk (v). The resulting tree, denoted by TSAW (G, v), is called
the self-avoiding walk (SAW) tree constructed from vertex v in graph G.

From this construction, every vertex in TSAW (G, v) can be naturally identified with the
vertex in V (many-to-one) at which the corresponding self-avoiding walk ends.

Contraction function

Given a vertex v in a locally finite graph G = (V,E), let SAW(v, `) denote the set of self-
avoiding walks in G of length ` starting at v. The following notion of connective constant of
families of finite graphs is introduced in [24].

I Definition 5 (connective constant [24, 23]). Let G be a family of finite graphs. The
connective constant of G is bounded by ∆ if there exists a positive constant C > 0 such that
for any graph G = (V,E) in G and any vertex v in G, we have |SAW(v, `)| ≤ nC∆` where
n = |V | for all ` ≥ 1.

Let δ : N→ R+ be a function. Given a vertex v in a locally finite graph G = (V,E), let

Eδ(v, `) :=
∑

(v,vi,...,v`)
∈SAW(v,`)

∏̀
i=1

δ(deg (vi)). (1)

I Definition 6 (contraction function). Let G be a family of finite graphs. The δ : N→ R+ is
a contraction function for G if there exist positive constants C > 0, γ < 1 such that for any
graph G = (V,E) in G and any vertex v in G, we have Eδ(v, `) < nCγ` where n = |V | for all
` ≥ 1.

It is easy to see that graph families G with constant contraction function δ(d) = 1
∆ are

precisely the families G of connective constant bounded strictly by ∆.

Statement of the main result

Now we are ready to state our main technical result.

I Theorem 7 (Main theorem). Let q ≥ 3 be an integer and 0 ≤ β < 1. Let G be a family of
finite graphs that satisfies the followings:

the following δ(·) is a contraction function for G:

δ(d) =
{ 2(1−β)
q−1−(1−β)d if d ≤ q−1

1−β − 2,
1 otherwise;

(2)

G is locally sparse;
(proper q-coloring) if β = 0, then G also needs to be q-colorable.

Then there is an FPTAS for computing the partition function Z(Ω) for every Ω = (G,Λ, σ)
with G ∈ G. Consequently, there is an algorithm such that for all G = (V,E) ∈ G, all ε > 0,
the algorithm terminates in time polynomial in n = |V | and 1/ε, and returns a random
σ ∈ [q]V according a distribution within total variation distance ε from the Potts Gibbs
distribution µq,β,G.

APPROX/RANDOM’16
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3 The computation tree for blocks

In this section, we introduce recursions to compute the marginal probabilities on a vertex
and on a permissive block respectively.

When β = 0, the model becomes proper q-coloring, and the feasibility of a configuration
becomes an issue.

Let Ω = (G,Λ, σ), where G = (V,E) be a feasible instance of proper q-coloring. Recall
that an instance Ω = (G,Λ, σ) is feasible if there exists a proper q-coloring consistent with
σ. For a subset of vertices S ⊆ V \ Λ, a q-coloring π ∈ [q]S is (globally) feasible if it can be
extended to a proper q-coloring of G. A q-coloring π ∈ [q]S is locally feasible, if σ ∪ π is a
proper q-coloring in the subgraph G[Λ ∪ S] induced by Λ ∪ S.

I Proposition 8. Let Ω = (G,Λ, σ) where G = (V,E) be a feasible instance of proper
q-coloring, v ∈ V \ Λ be a vertex and π ∈ [q]B(v) be a locally feasible configuration. Then π
is also feasible.

Proof. Denote B = B(v). Fix a configuration η ∈ [q]V such that wΩ(η) > 0, this is possible
since Ω is feasible. We denote by η′ the restriction of η to V \ ((B ∪ ∂B) \ Λ), i.e., the set of
vertices that are either in Λ, or not in B ∪ ∂B.

Consider the configuration η = π ∪ η′ ∈ [q]V \(∂B\Λ), it can be extended to a configuration
ρ ∈ [q]V with wΩ(ρ) > 0 in a greedy fashion, since every vertex in ∂B \ Λ is of low-degree.
Thus ρ witness that π is feasible. J

With this proposition, we do not distinguish between local feasibility and feasibility of
configurations on permissive blocks. For a permissive block B, we use F(B) to denote the
set of feasible configuration. Note that when β > 0, the set F(B) is simply [q]B .

3.1 The recursion
Let Ω = (G,Λ, σ) where G = (V,E) be an instance of Potts model and v ∈ V \Λ be a vertex.
Let B = B(v) be the minimal permissive block containing v. Let δB = {uivi | i ∈ [m]}
be an enumeration of boundary edges of B where vi 6∈ B for every i ∈ [m]. In this
notation, more than one ui or vi may refer to the same vertex. We denote E(B) :=
{uv ∈ E | u, v ∈ B} the edges in B. We use B̄ to denote the inner boundary of B, i.e.,
B̄ = {u ∈ B | uv ∈ E and v 6∈ B}.

Recall that we use F(B) to denote the set of feasible configurations on a permissive block
B, it is easy to see that, for every x ∈ [q],

PrΩ [c(v) = x] =
∑

π∈F(B):
π(v)=x

PrΩ [c(B) = π] .

This identity relates the marginal probability on a vertex to marginal probabilities on a block.
We now define notations for some sub-instances and give a block-to-vertices identity.

Let π ∈ F(B) be a configuration on a permissive block B. For every i ∈ [m], denote
πi = π(ui). Let GB = (VB , EB) denote the graph obtained from G by removing B \ B̄ and
edges in E(B), i.e., V ′ = (V \ B) ∪ B̄, E′ = E \ E(B). Let ΩB = (GB ,Λ, σ). For every
i = 1, 2, . . . ,m+ 1, define Ωπi = (Gπi ,Λπi , σπi ) as the instance obtained from ΩB by fixing uj
to color πj for every j ∈ [i− 1] and by removing edges ujvj for every j = i, i+ 1, . . . ,m.
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I Lemma 9. Assuming above notations, it holds that

PrΩ [c(B) = π] =
wG[B](π) ·

∏m
i=1
(
1− (1− β)PrΩπ

i
[c(vi) = πi]

)
∑
ρ∈F(B) wG[B](ρ) ·

∏m
i=1

(
1− (1− β)PrΩρ

i
[c(vi) = ρi]

) . (3)

Proof.

PrΩ [c(B) = π] =
wG[B](π) · Z(Ωπm+1)∑

ρ∈F(B) wG[B](ρ) · Z(Ωρm+1) =
wG[B](π) · Z(Ωπm+1)

Z(Ωπ1 )∑
ρ∈F(B) wG[B](ρ) · Z(Ωρm+1)

Z(Ωρ1)

=
wG[B](π) ·

∏m
i=1

Z(Ωπi+1)
Z(Ωπ

i
)∑

ρ∈F(B) wG[B](ρ) ·
∏m
i=1

Z(Ωρ
i+1)

Z(Ωρ
i
)

.

Since for every ρ ∈ F(B) and i ∈ [d],

Z(Ωρi+1) =
∑
y∈[q]

Z (Ωρi | c(vi) = y) · β1(y=ρ(ui))

where Z (Ωρi | c(vi) = y) stands for the sum of the weights of all feasible configurations σ on
Ωρi satisfying σ(vi) = y and 1(·) is the indicator function. With this identity, we can further
write

PrΩ [c(B) = π] =
wG[B](π) ·

∏m
i=1

∑
y∈[q]

Z(Ωπi | c(vi)=y)·β1(y=π(ui))

Z(Ωπ
i

)∑
ρ∈F(B) wG[B](ρ) ·

∏m
i=1

∑
y∈[q]

Z(Ωρ
i | c(vi)=y)·β1(y=ρ(ui))

Z(Ωρ
i
)

=
wG[B](π) ·

∏m
i=1
(
1− (1− β)PrΩπ

i
[c(vi) = πi]

)
∑
ρ∈F(B) wG[B](ρ) ·

∏m
i=1

(
1− (1− β)PrΩρ

i
[c(vi) = ρi]

) . J

This identity expresses the marginal probability on a permissive block as the function of
marginal probabilities on its incident vertices, with modified instances. We now analyze the
derivatives of this function, which is important in the analysis of correlation decay.

I Lemma 10. Let p = (pi,ρ)i∈[m],ρ∈F(B) , p̂ = (p̂i,ρ)i∈[m],ρ∈F(B) be two tuples of variables
and

f(p) :=
wG[B](π)

∏m
i=1 (1− (1− β)pi,π)∑

ρ∈F(B) wG[B](ρ)
∏m
i=1 (1− (1− β)pi,ρ)

.

Assume for every i ∈ [m], ρ ∈ F(B(v)), pi,ρ, p̂i,ρ ≤ 1−β
q−(1−β)di , then

|log f(p)− log f(p̂)| ≤
∑
i∈[d]

2(1− β)
q − (1− β)di − 1 · max

ρ∈F(B(v))
|log pi,ρ − log p̂i,ρ| .

Proof. For every i ∈ [m], we have

∂f

∂pi,π
= −(1− β)f(1− f) · 1

1− (1− β)pi,π
.

For every i ∈ [m] and ρ 6= π, we have

∂f

∂pi,ρ
= (1− β)f ·

wG[B](ρ)
∏m
i=1(1− (1− β)pi,ρ)∑

σ∈F(B) wG[B](σ)
∏m
i=1(1− (1− β)pi,σ)

· 1
1− (1− β)pi,ρ

.

APPROX/RANDOM’16



47:8 Sampling in Potts Model on Sparse Random Graphs

Thus,∑
ρ∈F(B)
ρ 6=π

∂f

∂pi,ρ
≤ (1− β)f(1− f) · max

ρ∈F(B)
ρ 6=π

1
1− (1− β)pi,ρ

.

Let Φ = 1
x , by mean value theorem, for some p̃ = (p̃i,ρ)i∈[m],ρ∈F(B(v)) where each p̃i,ρ ≤

1−β
q−(1−β)di , we have

|log f(p)− log f(p̂)|

=
∑
i∈[m]

∑
ρ∈F(B)

(
Φ(f)

Φ(pi,ρ)

∣∣∣∣ ∂f∂pi,ρ

∣∣∣∣)∣∣∣∣
p=p̃
· |log pi,ρ − log p̂i,ρ|

≤
∑
i∈[m]

 Φ(f)
Φ(pi,π)

∣∣∣∣ ∂f∂pi,π

∣∣∣∣+
∑

ρ∈F(B)
ρ 6=π

Φ(f)
Φ(pi,ρ)

∣∣∣∣ ∂f∂pi,ρ

∣∣∣∣

∣∣∣∣∣∣∣∣
p=p̃

· max
ρ∈F(B(v))

|log pi,ρ − log p̂i,ρ|

≤
∑
i∈[m]

(1− β)

 pi,π
1− (1− β)pi,π

+ max
ρ∈F(B)
ρ 6=π

pi,ρ
1− (1− β)pi,ρ

∣∣∣∣∣∣
p=p̃

· max
ρ∈F(B(v))

|log pi,ρ − log p̂i,ρ|

≤
∑
i∈[m]

2(1− β)
q − (1− β)di − (1− β) · max

ρ∈F(B(v))
|log pi,ρ − log p̂i,ρ| . J

3.2 Bounds for marginals
The following lemma gives an upper bound for the probability PrΩ [c(v) = x].

I Lemma 11. Assume q > (1− β)d. For every color x ∈ [q], it holds that

PrΩ [c(v) = x] ≤ 1
q − (1− β)d ,

where d is the degree of v in G.

Proof. Assume x = 1. For every i ∈ [q], let xi denote the number of neighbors of v that are
of color i. Then pv,1 ≤ max βx1∑

i∈[q]
βxi

subject to the constraints that all xi are nonnegative

integers and
∑q
i=1 xi = d. Since β ≤ 1, we can assume x1 = 0, thus pv,1 ≤ max 1

1+
∑q

i=2
βxi

.
We now distinguish between two cases:
1. (If d ≥ q − 1) In this case, let λ = 1− β, then

1
1 +

∑q
i=2 β

xi
≤ 1

1 + (q − 1)(1− λ)
d
q−1

♥
≤ 1

1 + (q − 1)
(

1− λd
q−1

) = 1
q − (1− β)d ,

where ♥ is due to the fact that the inequality (1 − a)b ≥ 1 − ab holds when 0 ≤ a ≤ 1
and b ≥ 1.

2. (If d < q − 1) In this case, due to the integral constraint of xi’s, the term
∑q
i=2 β

xi

minimizes when d of xi’s are set to one and remaining xi’s are set to zero. Therefore, we
have

1
1 +

∑q
i=2 β

xi
≤ 1

1 + dβ + (q − 1− d) = 1
q − (1− β)d , J
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Algorithm 1: marg(Ω, v, x, `)
1 If v is fixed to be color y, then return 1 if x = y and return 0 if x 6= y;
2 If ` < 0 return 1/q;
3 Compute B(v);
4 For every ρ ∈ F(B(v)), let p̂ρ ← marg-block(Ω, B(v), ρ, `);

5 Return min
{∑

π∈F(B(v))
s.t. π(v)=x

p̂π,
1

max{1,q−(1−β)degG(v)}

}

Algorithm 2: marg-block(Ω, B(v), π, `)
1 Compute Pi for every i ∈ [m];
2 p̂i,ρ ← marg(Ωρi , vi, ρi, `− |Pi|) for every i ∈ [m] and ρ ∈ F(B);

3 Return
wG[B](π)

∏
i∈[m]

(1−(1−β)p̂i,π)∑
ρ∈F(B)

wG[B](ρ)
∏

i∈[m]
(1−(1−β)p̂i,ρ)

;

The recursion (3) holds for arbitrary set of vertices B (not necessary a permissive block),
thus if one takes B as a single vertex, it implies the following simple lower bound for marginal
probabilities on a vertex.

I Lemma 12. For every feasible x ∈ [q], it holds that

PrΩ [c(v) = x] ≥ βd

q
,

where d is the degree of v in G.

3.3 The algorithm

We now implement the recursions introduced in previous sections to estimate marginals.
There is a slight difference between the case of β > 0 and the case of β = 0. If β = 0,
our algorithm may encounter an infeasible instance and we need to check the feasibility in
advance.

The β > 0 case

We define two procedures marg(Ω, v, x, `) and marg-block(Ω, B(v), π, `) calling each other to
estimate vertex and block marginal respectively. We assume Ω = (G,Λ, σ) with G = (V,E) is
an instance of Potts model, v ∈ V \Λ is a vertex, x ∈ [q] is a color and ` is an integer. Recall
that for a permissive block B(v), we use F(B) to denote the set of feasible configurations
over B(v).

To describe the algorithm for estimating the block marginals, we need to introduce some
notations. Let B = B(v), and we enumerate the boundary edges in δB by ei = uivi for
i = 1, 2, . . . ,m, where vi 6∈ B. With this notation more than one ui or vi may refer to the
same vertex, which is fine. For every i ∈ [m] and ρ ∈ F(B), define ΩB and Ωρi as in Lemma 9.

Let Pi = (v, w1, w2, . . . , wk, vi) be a self-avoiding walk from v to vi such that all interme-
diate vertices wi are in B(v). Since B(v) is a minimal permissive block, such walk always
exists, and let Pi be an arbitrary one of them if there are multiple ones.

APPROX/RANDOM’16
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Algorithm 3: marg(Ω, v, x, `)
1 If v is fixed to be color y, then return 1 if x = y and return 0 if x 6= y;
2 Compute B(v);
3 If ` < 0, then return 1/q if there is a feasible π ∈ F(B(v)) such that π(v) = x and

return 0 if no such π exists;
4 For every ρ ∈ F(B(v)), let p̂ρ ← marg-block(Ω, B(v), ρ, `);

5 Return min
{∑

π∈F(B(v))
s.t. π(v)=x

p̂π,
1

max{1,q−(1−β)degG(v)}

}

The β = 0 case

We slightly modify our procedure to deal with infeasible instance. Let Ω = (G,Λ, σ) be an
instance of Potts model with q ≥ 3 and activity β = 0 where G = (V,E), v ∈ V \ Λ be a
vertex, x ∈ [q] be a color and ` be an integer. We define

The only difference of this version of marg is at step 3, where we check whether the color
x is locally feasible. We return 1/q if so and return 0 otherwise.

4 Correlation decay

In this section, we show that the algorithms introduced in Section 3 to estimate marginals are
accurate, if the input instance satisfies the conditions specified in the statement of Theorem 7.

I Lemma 13. Let q ≥ 3 be an integer and 0 ≤ β < 1 be a real. Let G be a family of finite
graphs satisfying the conditions of Theorem 7.

There exists an algorithm such that for every feasible instance Ω = (G,Λ, σ) of Potts
model where G = (V,E) ∈ G with |V | = n, Λ ⊆ V and σ ∈ [q]Λ, for every vertex v ∈ V and
every color x ∈ [q], it can compute an estimation p̂ of PrΩ [c(v) = x] in time polynomial in
n, such that

1−O
(

1
n3

)
≤ p̂

PrΩ [c(v) = x] ≤ 1 +O

(
1
n3

)
.

To prove Lemma 13, we introduce the notion of error function to relate contraction
function and the accurate of our estimation algorithm.

I Definition 14. Given an instance Ω = (G,Λ, σ) of Potts model with q ≥ 3 and activity
0 ≤ β < 1 where G = (V,E) with |V | = n. Let v ∈ V \ Λ be a vertex, T = TSAW (G[V ], v)
be the self-avoiding walk tree rooted at v in G and S be a set of vertices in T . Assume v has
m children v1, v2, . . . , vm in T , let Ti denote the subtree of T rooted at vi. We recursively
define the error function:

Case β > 0:

ET,S :=


∑m
i=1 δ(degG (vi)) · ETi,S if v 6∈ S ∪ Λ,

q + n log 1
β if v ∈ S,

0 if v ∈ Λ.

Case β = 0:

ET,S :=


∑m
i=1 δ(degG (vi)) · ETi,S if v 6∈ S ∪ Λ,

n log q if v ∈ S,
0 if v ∈ Λ.
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In the above definition, the set S specifies the boundary of our recursively defined error
function ET,S . The error function ET,S will be used as an upper bound for the error in our
estimation algorithm. If the function δ(·) is a contraction for a family G, then for every graph
G = (V,E) ∈ G and vertex v ∈ V , as we shall show in the next lemma, there exists a set of
low-degree vertices in TSAW (G, v) at certain depth. This set of vertices, as it will become
clear later, serves as the boundary S in our computation tree.

I Lemma 15. Let G be a family of finite graphs for which δ(·) is a contraction function.
Then for some constants θ > 1 and C > 0, for every G = (V,E) ∈ G with |V | = n, every
v ∈ V and every L ≥ C logn, there exists a low-degree S in T = TSAW (G, v) such that for
every u ∈ S, L < distT (u, v) ≤ θL and every self-avoiding walk in T from v of length θL
intersects S.

Proof. Let G = (V,E) ∈ G be a graph. It follows from the definition of contraction function
that for some constant C > 0, for every ` ≥ C logn, Eδ(v, `) < α` for some constant
0 < α < 1.

It is sufficient to show that, for some constant integer θ > 0 it holds that for every v ∈ V ,
every L ≥ C logn, every P = (v, v1, . . . , vθL) ∈ SAW(v, θL), there exists a low-degree vertex
vj among {vL+1, vθL, . . . , vθL}.

Let θ = max
{
dlog1/α

(
q−1

2(1−β)

)
e, 2
}
. Assume for the contradiction that every vertex in

{vL+1, vL+2, . . . , vθL} has high-degree. Since θL > L ≥ C logn, we have
∏θL
i=1 δ(deg (vi)) ≤

αθL.
On the other hand, since δ(d) ≥ δ(0) = 2(1−β)

q−1 , we have
∏θL
i=1 δ(deg (vi)) ≥

(
2(1−β)
q−1

)L
.

This is a contradiction for our choice of θ. J

We now define the error of our estimation.

I Definition 16. Let Ω = (G,Λ, σ) with G = (V,E) be an instance of Potts model, v ∈ V \Λ
be a vertex, x ∈ [q] be a color and ` ∈ Z be an integer. Let p̂Ω,v,x,` := marg(Ω, v, x, `) be the
value returned by our algorithm. We define

EΩ,v,` := max
y∈[q]

log
(

p̂Ω,v,y,`

PrΩ [c(v) = y]

)
with the convention 0/0 = 1.

Let Ω = (G,Λ, σ) with G = (V,E) be an instance of Potts model, v ∈ V \ Λ be a vertex,
x ∈ [q] be a color and ` ∈ Z be an integer. We can recursively identify each vertex in the
computation tree of marg(Ω, v, x, `) with a subtree of T = TSAW (G, v):

the root of the computation tree is identified with the root of T , i.e., the single vertex
path (v);
assuming the notations used in the description of Algorithm 2, if marg(Ω, v, x, `) is
identified with a subtree of T rooted at self-avoiding walk P , then for every ρ ∈ F(B(v))
and i ∈ [m], the routine marg(Ωρi , vi, ρi, `− Pi) is identified with the subtree of T rooted
at the concatenation of P and Pi.

With this property, the following lemma relates our error of estimation to the error
function defined before.

I Lemma 17. Let Ω = (G,Λ, σ) with G = (V,E) be an instance of Potts model, v ∈ V \ Λ
be a vertex, x ∈ [q] be a color and ` ∈ Z be an integer.

APPROX/RANDOM’16
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Let S denote the set of vertices in T that can be identified to the leaves of the computation
tree of marg (Ω, v, x, `). Let T = TSAW (G, v), then we have

EΩ,v,` ≤ ET,S .

The key to prove Lemma 17 is to establish the one-step contraction of EΩ,v,`, as stated in
the following lemma:

I Lemma 18. Let Ω = (G,Λ, σ) with G = (V,E) be an instance of Potts model, v ∈ V \Λ be
a vertex and ` ∈ Z be an integer. Let B = B(v) the minimal permissive block in G containing
v. Assume the edge boundary δB = {uivi | i ∈ [m]} where vi 6∈ B.

Then it holds that

EΩ,v,` ≤
m∑
i=1

1− β
q − 1− (1− β)degG (vi)

· max
ρ∈F(B)

EΩρ
i
,vi,`i

where Ωρ
i is defined in Section 3 and `i = ` − |Pi| for the self-avoiding walk Pi chosen in

Algorithm 2.

Proof. Let π ∈ F(B) be a coloring of the block B. We use p̂Ω,B,π,` = marg-block (Ω, B, π, `)
to denote the value return by our estimation algorithm for block marginals. Let x denote
the color that achieves the maximum in the definition of EΩ,v,`, we have

EΩ,v,` = log
(

p̂Ω,v,x,`

PrΩ [c(v) = x]

)
≤ log


∑

π∈F(B)
s.t. π(v)=x

p̂Ω,B,π,`∑
π∈F(B)

s.t. π(v)=x
PrΩ [c(B) = π]


≤ max

π∈F(B)
s.t. π(v)=x

log
(

p̂Ω,B,π,`

PrΩ [c(B) = π]

)
.

By our algorithm, all the marginals in the recursion satisfies the upper bound in Lemma 11,
it then follows from Lemma 10 that for every π ∈ F(B), it holds that

log
(

p̂Ω,B,π,`

PrΩ [c(B) = π]

)
≤

m∑
i=1

2(1− β)
q − (1− β)degG (vi)− 1 · max

ρ∈F(B)
EΩρ

i
,vi,`i . J

We can use Lemma 18 to prove Lemma 17.

Proof of Lemma 17. We apply induction on T := TSAW (G, v). The base case is that v ∈ Λ
or v ∈ S. If v ∈ S and β > 0, then by Lemma 11 and Lemma 12, it holds that

EΩ,v,` = max
y∈[q]

log
(

p̂Ω,v,y,`

PrΩ [c(v) = y]

)
≤ q + n log 1

β
.

If v ∈ S and β = 0, by Proposition 8 and Lemma 11, we have

EΩ,v,` = max
y∈[q]

log
(

p̂Ω,v,y,`

PrΩ [c(v) = y]

)
≤ n log q.

If v ∈ Λ, then EΩ,v,` = 0.
Now assume v 6∈ S ∪ Λ and denote B = B(v) the minimal permissive block containing v.

Assume the edge boundary δB = {uivi | ui ∈ B}.
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It then follows from Lemma 18 that

EΩ,v,` ≤
m∑
i=1

1− β
q − 1− (1− β)degG (vi)

· max
ρ∈F(B)

EΩρ
i
,vi,`i .

Recall for every i ∈ [m], we define in Algorithm 2 a self-avoiding walk Pi containing uivi
with every intermediate vertices in B. For every u ∈ Pi such that u 6= v, vi, it holds that
δ(degG (u)) = 1). With this property, if we use Ti to denote the subtree of T rooted at Pi,
then

m∑
i=1

1− β
q − q − (1− β)degG (vi)

· ETi,S ≤ ET,S .

We can then complete the proof by using induction hypothesis to show

EΩρ
i
,vi,`i ≤ ETi,S

for every i ∈ [m] and ρ ∈ F(B). J

We are now ready to prove the main lemma of this section.

Proof of Lemma 13
We can assume v 6∈ Λ, otherwise, the color on v is fixed by σ.

Let T := TSAW (G, v). For every `, let S` denote the set of vertices at which the procedure
marg(Ω, v, x, `) terminates. Then it follows Lemma 17,

log
(

p̂Ω,v,x,`

PrΩ [c(v) = x]

)
≤ EΩ,v,` ≤ ET,S` .

Note that distT (v, S`) ≥ `, since δ(·) is a contraction function for G, we have ET,S` ≤ nCγ`
for some constants C > 0 and 0 < γ < 1. This implies that for some constant C0 > 0, if
` ≥ C0 logn, then

1−O
(

1
n3

)
≤ p̂Ω,v,x,`

PrΩ [c(v) = x] ≤ 1 +O

(
1
n3

)
.

To bound the running time of marg(Ω, v, x, `), we can apply Lemma 15 to conclude that if
` = Θ(logn), then the algorithm must terminate at depth L = Θ(logn) of T , i.e., for every
u ∈ S`, it holds that distT (v, u) ≤ L.

We use T` to denote the subtree of T obtained by removing all descendants of S` and
let L(T`) to denote the set of self-avoiding walks corresponding to leaves of T`. Let τΩ,v,`
to denote the maximum running time of marg(Ω, v, x, `) over all colorings x ∈ [q], we apply
induction on T` to show that for some C1 > 0, it holds that

τΩ,v,` ≤ nC1 ·
∑

P∈L(T`)

q2|B(P )|. (4)

The base case is that v ∈ S` or v ∈ Λ and our bound for running time trivially holds.
Otherwise, denote B = BΩ(v) the minimal permissive block containing v. Assume the edge
boundary δB = {uivi | ui ∈ B}. We have for some constant C2 > 0, it holds that

τΩ,v,` ≤ q|BΩ(v)|nC2 + q|BΩ(v)|
m∑
i=1

max
ρ∈F(B(v))

τΩρ
i
,vi,`i (5)

APPROX/RANDOM’16
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Recall that Pi is a self-avoiding walk from v to vi containing ui with every intermediate
vertex in B. Let Ti denote the subtree of T rooted at Pi. Then we can apply induction
hypothesis to obtain

τΩρ
i
,vi,`i ≤ n

C1 ·
∑

P∈L(T`i )

q
2
∣∣∣BΩρ

i
(P )
∣∣∣

(6)

for every ρ ∈ F(B) and i ∈ [m]. Furthermore, by our construction of Ωρi and the definition
of permissive block, we have |BΩ(v)|+

∣∣∣BΩρ
i
(vi)

∣∣∣ ≤ ∣∣∣BΩ(v) ∪BΩρ
i
(vi)(vi)

∣∣∣ for every ρ ∈ F(B)
and i ∈ [m]. Plugging (6) into (5) proves (4).

Since G is locally sparse, we know that the term q2|B(P )| is bounded by a polynomial in
n for every P ∈ L(T`). It remains to show that |L(T`)| is bounded by a polynomial in n. To
see this, consider the contribution of a walk P in L(T`) of length k to the quantity Eδ(v, k)
defined in (1). The contribution of this walk is at least 1

poly(n) since k = O(logn) and for
every u ∈ P , the value δ(u) is bounded below by a constant. It then follows from the fact
that δ(·) is a contraction function for G, there are at most polynomial many leaves in T` for
our choice of `.

5 The FPTAS and the sampling algorithm

In this section, we prove Theorem 7, by using the correlation decay property established in
Section 4.

Proof of Theorem 7. Let Ω = (G,∅,∅) be an instance of Potts model, where G = (V,E) ∈
G. Without loss of generality, we give an algorithm to compute an approximation of the
partition function Ẑ(Ω) satisfying

1−O
(

1
n2

)
≤ Ẑ(Ω)
Z(Ω) ≤ 1 +O

(
1
n2

)
.

Since our family of instances of Potts model is “self-embeddable” in the sense of [22], the
algorithm can be boosted into an FPTAS.

Assume V = {v1, . . . , vn}. First find a configuration σ ∈ [q]V such that wG(σ) > 0.
This task is trivial when β > 0. When β = 0, since G is q-colorable, we can also do it in
polynomial time:

If the graph is not empty, then choose a vertex v and find a feasible coloring of B(v).
Then remove B(v) from the graph and repeat the process.

If G is q-colorable, then G[V \B(v)] is colorable as the boundary of B(v) consists of low-degree
vertices, thus the above process will end with a proper coloring of G, which is the union of
colorings found at each step. The process terminates in polynomial time since G is locally
sparse and thus the size of every B(v) is O(logn).

With σ in hand, we have

Z(Ω) = wG(σ)/PrΩ [c(V ) = σ] = wG(σ)
(

PrΩ

[
n∧
i=1

c(vi) = σ(vi)
])−1

= wG(σ)

 n∏
i=1

PrΩ

c(vi) = σ(vi)

∣∣∣∣∣∣
i−1∧
j=1

c(vj) = σ(vj)

−1
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For every i ∈ [n], let Ωi = (G,Λi, σi) where Λi = {v1, . . . , vi−1} and σi(vj) = σ(vj) for every
j = 1, . . . , i− 1. We have

Z(Ω) = wG(σ)
(

n∏
i=1

PrΩi [c(vi) = σ(vi)]
)−1

.

Note that the graph class G is closed under the operation of fixing some vertex to a specific
color, we can apply Lemma 13 for every Ωi and obtain p̂i such that

1−O
(

1
n3

)
≤ p̂i

PrΩi [c(vi) = σ(vi)]
≤ 1 +O

(
1
n3

)
.

Let Ẑ(Ω) = wG(σ) (
∏n
i=1 p̂i)

−1, then Theorem 13 implies that

1−O
(

1
n2

)
≤ Ẑ(Ω)
Z(Ω) ≤ 1 +O

(
1
n2

)
.

This approximate counting algorithm implies a sampling algorithm via Jerrum-Valiant-
Vazirani reduction[17]. J

6 Random Graphs

In this section, we prove Theorem 2. We first prove the following properties of G(n, d/n).

I Theorem 19. Let d be a sufficiently large constant, q > 3(1− β)d+ 4 and G = (V,E) ∼
G(n, d/n). Then with probability 1− o(1), the following holds

there exist two universal positive constants C > 0, γ < 1 such that Eδ(v, `) < nCγ` for all
v ∈ V and for all ` = o(

√
n), where Eδ(v, `) is defined in (1);

if β = 0, then G is q-colorable;
there exists a universal constant C > 0 such that for every path P in G of length `,
|B(P )| ≤ C(`+ logn).

Note that the first property in above theorem impose an upper bound on `. This is
not harmful as our algorithms for FPTAS and sampling only require the property holds for
` = O(logn). Thus Theorem 19 and Theorem 7 together imply Theorem 2.

It is well-known that when β = 0, G is q-colorable with high probability (see e.g., [12]),
we verify the first property in Lemma 20 and the third property in Lemma 22.

6.1 Contraction function for random graphs
I Lemma 20. Let d > 1, 0 ≤ β < 1 and q > 3(1− β)d+ 4 be constants. Let G = (V,E) ∼
G(n, d/n). There exist two positive constants C > 0 and γ < 1 such that with probability
1−O

( 1
n

)
, for every v ∈ V and every ` = o(

√
n), it holds that

Eδ(v, `) ≤ nCγ`

We first prove a technical lemma.

I Lemma 21. Let 0 ≤ β < 1 be a constant. Let fq(d) : R≥0 → R≥0 be a piece wise function
defined as

fq(d) :=
{ 2(1−β)
q−1−(1−β)d if d ≤ q−1

1−β − 2
1 otherwise.

APPROX/RANDOM’16
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Let X be a random variable distributed according to binomial distribution Bin(n, ∆
n ) where

∆ > 1 is a constant. Then for q ≥ 3(1− β)∆ + 2 and all sufficiently large n, it holds that
E [fq(X)] < 1

∆ .

Proof. Let λ = 1− β. Since f(d) is decreasing in q, we can assume q = 3λ∆ + 2. Note that

E
d∼Bin(n,∆n )

[f(d)] ≤ 1
∆ ⇐⇒ E

d∼Bin(n,∆n )
[1− f(d)] ≥ ∆− 1

∆ .

Let g(x) := 1− f(x), then

E
d∼Bin(n,∆n )

[1− f(d)] =
b q−1
λ −2c∑
k=0

g(k) · p(k)

where p(k) =
(
n
k

) (∆
n

)k (1− ∆
n

)n−k.
Define

g̃(x) := 1− 2λ
q − 1− λ∆ −

2λ2(x−∆)
(q − 1− λ∆)2 −

2λ3(x−∆)2

(q − 1− λ∆)3 −
2λ4(x−∆)3

(q − 1− λ∆)4

− 2λ5(x−∆)4

(q − 1− λ∆)5 −
2λ6(x−∆)5

(q − 1− λ∆)6 −
2λ6(x−∆)6

(q − 1− λ∆)6 .

Then

g(x)− g̃(x) = 2λ6(q − 1− λ− xλ)(x−∆)6

(q − 1− xλ)(q − 1− λ∆)6 ,

which is positive for x ≤ b q−1
λ − 2c.

We now prove that

b q−1
λ −2c∑
k=0

g̃(k) · p(k) ≥ ∆− 1
∆ .

The expectation of g̃(k) can be computed directly:

E [g̃(k)] = 1
n5(q − 1− λ∆)6 ·

(
C5n

5 + C4n
4 ±O(n3)

)
,

where

C5 = 1− 2λ+ (12λ− 20λ2 − 2λ3 − 2λ4 − 2λ5 − 4λ6)∆
+ (60λ2 − 80λ3 − 12λ4 − 14λ5 − 74λ6)∆2 + (160λ3 − 160λ4 − 24λ5 − 50λ6)∆3

+ (240λ4 − 160λ5 − 16λ6)∆4 + (192λ5 − 64λ6)∆5 + 64λ6∆6;
C4 = 2λ3(1 + 3λ+ 7λ2 + 46λ3)∆2 + 2λ3(6λ+ 18λ2 + 234λ3)∆3

+ 2λ3(12λ2 + 69λ3)∆4 + 16λ6∆5.

Since C4 > 0, thus for sufficiently large n, it holds that

E [g̃(x)] ≥ C5

(q − 1− λ∆)6 .
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We also have that

E [g̃(x)] =
b q−1
λ −2c∑
k=0

g̃(k) · p(k) +
n∑

k=b q−1
λ −1c

g̃(k) · p(k)

It can be verified that g̃(x) is monotonically decreasing in x when x ≥ q−1
λ − 2 and

g̃
(
q−1
λ − 2

)
= −

(
1+2λ(∆−1)

1+2λ∆

)6
< 0.

Thus we have
b q−1
λ −2c∑
k=0

g̃(k) · p(k) ≥ E [g̃(x)] ≥ C5

(q − 1− λ∆)6 = ∆− 1
∆ + h(∆)

where

h(∆) =
(
1 + 10λ∆ + (40λ2 − 2λ3 − 2λ4 − 2λ5 − 4λ6)∆2

+(80λ3 − 12λ4 − 14λ5 − 74λ6)∆3 + (80λ4 − 24λ5 − 50λ6)∆4)
+(32λ5 − 16λ6)∆5) · (∆(1 + 2λ∆)6)−1

.

It can be verified that h(∆) is positive for every 0 < λ < 1 and ∆ ≥ 1. J

Proof of Lemma 20. Let v ∈ V be arbitrary fixed and Tv = TSAW (G, v) and ` > 0 be an
integer. By linearity of expectation, we have

E [Eδ(v, `)] ≤ n`
(
d

n

)`
E

[∏̀
i=1

δ(degG (vi))

∣∣∣∣∣ P = (v, v1, . . . , v`) is a path
]
.

Fix a tuple P = (v, v1, . . . , v`). To calculate the expectation, we construct an independent
sequence whose product dominates

∏`
i=1 δ(degG (vi)) as follows.

Conditioning on P = (v, v1, . . . , v`) being a path in G. Let X1, X2, . . . , X` be random
variables such that each Xi represents the number of edges between vi and vertices in V \
{v1, . . . , v`}; and let Y be a random variable representing the number of edges between vertices
in {v1, . . . , v`} except for the edges in the path P = (v, v1, . . . , v`). Then X1, . . . , X`, Y are
mutually independent binomial random variables with each Xi distributed according to
Bin(n− `, dn ) and Y distributed according to Bin(

(
`
2
)
− `+ 1, dn ), and for each vi in the path

we have degG (vi) = Xi + 2 + Yi with some Y1 + Y2 + · · ·+ Y` = 2Y .
Note that δ(degG (vi)) = fq(degG (vi)) where the function fq(x) is defined in Lemma 21.

Note that the ratio fq(x)/fq(x − 1) is always upper bounded by 2, and we have fq(x +
1) ≤ fq−1(x). Thus, conditioning on that P = (v, v1, . . . , v`) is a path, the product∏`
i=1 δq,β(degG (vi)) can be bounded as follows:

∏̀
i=1

δ(degG (vi)) =
∏̀
i=1

fq(Xi + Yi + 2) ≤ 22Y
∏̀
i=1

fq−2(Xi).

Let d′ = q−4
3(1−β) , then we have d′ > d. Let X be a binomial random variable distributed

according to Bin(n, d
′

n ), thus X probabilistically dominates every Xi whose distribution
is Bin(n − `, dn ). Since X1, X2, . . . , X`, Y are mutually independent conditioning on P =
(v, v1, . . . , v`) being a path in G, for any P = (v, v1, . . . , v`) we have

E

[∏̀
i=1

δ(degG (vi))

∣∣∣∣∣ P is a path
]
≤ E

[
4Y
∏̀
i=1

fq−2(Xi)
]
≤ E

[
4Y
]

E [fq−2(X)]` .
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Recall that Y ∼ Bin
((

`
2
)
− `+ 1, dn

)
, the expectation E

[
4Y
]
can be bounded as

E
[
4Y
]
≤

`2∑
k=0

4k
(
`2

k

)(
d

n

)k (
1− d

n

)`2−k
=
(

1 + 3d
n

)`2
≤ exp

(
3d`2

n

)
.

Since q − 2 ≥ 3(1 − β)d′ + 2, it follows from Lemma 21 that E [fq−2(X)] ≤ 1
d′ = 3(1−β)

q−4 .
Therefore,

E

[∏̀
i=1

δ(degG (vi))

∣∣∣∣∣ P is a path
]
≤ exp

(
3d`2

n

)(
3(1− β)
q − 4

)`
≤ 1
d`
· exp

(
−` log

(
q − 4

3d(1− β)

)
+ 3d`2

n

)
.

Since ` = o(
√
n),

E [Eδ(v, `)] ≤ exp
(
−` log

(
q − 4

3d(1− β)

)
+ o(1)

)
.

Then the lemma follows from the Markov inequality and the union bound. J

6.2 Locally sparsity for random graph
I Lemma 22. Let ε > 0 be some fixed constant. Let d be a sufficiently large number,
q ≥ (2 + ε)d and 0 ≤ β < 1 be constants. Let G = (V,E) ∼ G(n, d/n). There exists a
constant C > 0 such that with probability 1 − O

( 1
n

)
, for every path P in G of length `,

|B(P )| ≤ C(`+ logn).

Given P = (v1, . . . , vL), we are going to upper bound the probability

Pr [|B(P )| ≥ t | P is a path] (7)

for every t > 0.
A vertex v is a high-degree vertex if degG (v) ≥ q−1

1−β − 2. Thus the probability (7) is
maximized when β = 0. Note that conditioning on P is a path gives each vertex at most
two degrees, we can redefine the notion of “high-degree” as degG (v) ≥ q − 5 and drop the
condition that P is a path. Thus it is sufficient to upper bound

Pr [|B(P )| ≥ t]

with our new definition of high-degree vertices.
Let G = (V,E) be a graph. We now describe a BFS procedure to generate B∗(P ) :=

B(P ) ∪ ∂B(P ). Since B∗(P ) is always a superset of B(P ), it is sufficient to bound
Pr [|B∗(P )| ≥ t]. For a vertex v ∈ V , we use NG(v) to denote the set of neighbors of
v in G.

Initially, we have a counter i = 0, a graph G0 = G, a set of active vertices A0 =
{v1, v2, . . . , vL} and a set of used vertices U0 = ∅.

(P1)

1. Increase the counter i by one.
2. (If i ≤ L) Define Gi(Vi, Ei) = Gi−1[Vi−1 \ {vi}]. Let Ui = Ui−1 ∪ {vi}. Let Ai =

(Ai−1 ∪NGi−1(vi)) \ Ui. Goto 1.
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3. (If i > L) Terminate if Ai−1 = ∅. Otherwise, let u ∈ Ai−1 and let Ui = Ui−1 ∪ {u}.
a. (If |NG(u)| ≥ q−5) Define Gi(Vi, Ei) = Gi−1[Vi−1\{u}]. Let Ai = (Ai−1∪NGi−1(vi))\
Ui. Goto 1.

b. (If |NG(u)| < q − 5) Define Gi = Gi−1. Let Ai = Ai−1 \ Ui. Goto 1

The following proposition is immediate:

I Proposition 23. Assume the algorithm terminates at step t, then B∗(P ) = Ut−1 and
|B∗(P )| = t− 1.

Let R = {r1, r2, . . . , rL} be a set and each ri is the root of tree Ti. We now describe a
BFS procedure to explore these L trees. For a vertex v, we use C(v) to denote its children.

Initially, we have a counter i = 0 and a set of active vertices B0 = R.

(P2)

1. Increase the counter i by one.
2. (If i ≤ L) Let Bi = (Bi−1 ∪ C(ri)) \ {ri}. Goto 1.
3. (If i > L) Terminate if Bi−1 = ∅. Otherwise, let w ∈ Bi−1

a. (If |C(w)| ≥ q−5
2 ) Let Bi = (Bi−1 ∪ C(u)) \ {w}. Goto 1.

b. (If |C(w)| < q−5
2 ) Let Bi = Bi−1 \ {w}. Goto 1.

Now assume G ∼ G(n, d/n) and for every i ∈ [L], Ti is a branching process with
distribution Bin(n, d/n), i.e., each C(u) ∼ Bin([n], d/n). We can implement the (P1) when at
each step i, the vertex u chosen from the active set sample its neighbors NGi−1(u) according
to Bin(Vi, d/n). This random process can be coupled with G(n, d/n) such that B∗(P ) found
by it is always a superset of the one in G(n, d/n).

We now construct a coupling of (P1) and (P2) with the property that the later one always
terminates no earlier than the former one.

At each step i ≥ 1, let u and w be the vertex chosen from Ai and Bi respectively
(u = vi and w = ri if i ≤ L). Then

∣∣NGi−1(u)
∣∣ ∼ Bin(|Vi| , d/n). We couple it with some

x ∼ Bin(n, d/n) with the property that x ≥
∣∣NGi−1(vi)

∣∣ and let C(w) be a set with x

elements.

I Lemma 24. For every i ≥ 0, the following two properties hold:
(i1) There exists a surjective mapping Fi from Bi to Ai in each step i.
(i2) For every u ∈ Ai, we use ni(u) to denote the number of w ∈ Bi such that Fi(w) = u.

Then for every u ∈ Ai, ni(u) ≥ |NG(u)| − |NGi(u)|.

Proof. We apply induction on i to prove the lemma.
When i = 0, we let F0 : B0 → A0 be the function that F0(rj) = vj for every j ∈ [L].

Then both properties hold trivially.
Assume the lemma holds for smaller i. If i ≤ L, since by our coupling, |C(ri)| ≥∣∣NGi−1(vi)

∣∣, we can construct Fi by extending Fi−1 with an arbitrary surjective mapping
from C(ri) to NGi−1(vi). For every u′ ∈ Ai, if u′ ∈ NGi−1(vi), then ni(u′) ≥ ni−1(u′) + 1
and

∣∣NGi−1(u)
∣∣ − |NGi(u′)| = 1; otherwise ni(u′) = ni−1(u′) and

∣∣NGi−1(u)
∣∣ = |NGi(u′)|.

Induction hypothesis implies both (i1) and (i2) hold.
If i > L, we have to distinguish between cases:
(If |NG(u)| ≥ q − 5 and NGi−1(u) ≥ q−5

2 ) We construct Fi by extending Fi−1 with an
arbitrary surjective mapping from C(w) to NGi−1(u), the same argument as i ≤ L case
proves (i1) and (i2).
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(If |NG(u)| ≥ q − 5 and NGi−1(u) < q−5
2 ) In this case, by induction hypothesis, we know

that

ni−1(u) ≥ |NG(u)| −
∣∣NGi−1(u)

∣∣ ≥ q − 5
2 > NGi−1(u).

Choose a surjective f from F−1
i−1(u) to NGi−1(u) and construct Fi from Fi−1 by replacing

the mapping on F−1
i−1(u) by f . This is safe since u 6∈ Ai. The same argument as before

proves (i1) and (i2).
(If |NG(u)| < q−5) Construct Fi = Fi−1. Since everything does not change, the induction
hypothesis implies (i1) and (i2). J

The first property above guarantees that (P2) terminates no earlier than (P1) and thus
its stopping time is an upper bound for the size of B∗(P ) found by (P1).

(P2) can be modeled as follows:
1. Let X ∼ Bin(n, d/n) and X1, X2 . . . be an infinite sequence of independent random

variables defined as follows
For i = 1, 2, . . . , L, Xi is an independent copy of X;
For i > L, Xi has following distribution

Xi =
{

0 if X < (q − 5)/2
X otherwise.

2. Y1, Y2, . . . is an infinite sequence of random variables that Y0 = L and Yi = Yi−1 +Xi− 1
for every i ≥ 1.

3. Z = mint {Yt = 0}.

The above process is identical to (P2), thus we have

I Proposition 25. (P2) terminates after step t if and only if Z > t.

Note that Z > t implies Yt ≥ 0, we turn to bound the latter.

I Lemma 26. There exist two constants C1, C2 > 0 depending on d and ε such that

Pr [Yt ≥ 0] ≤ exp (−C1t+ C2L) .

Proof. By the definition, Yt+L = L− (t+L) +
∑L+t
i=1 Xi = −t+

∑L
i=1Xi +

∑L+t
i=L+1Xi. We

know the distribution of Xis and we now compute their moment generating function. For
every s > 0, it holds that

Pr [Yt+L ≥ 0] = Pr
[
esYt+L ≥ 1

]
≤ E

[
esYt+L

]
= e−st

(
E
[
esX

])L (
E
[
esXL+1

])t
.

Recall that X ∼ Bin(n, d/n), we have E
[
esX

]
=
(
1 + d

n (es − 1)
)n ≤ ed(es−1). Let p =

(q − 5)/2, we have

E
[
esXL+1

]
= Pr [X < p] +

n∑
k=bpc

esk ·Pr [X = k]

≤ 1 +
n∑

k=bpc

esk ·Pr [X ≥ k]

≤ exp

 ∞∑
k=bpc

esk ·Pr [X ≥ k]
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By Chernoff bound, for sufficiently large d, we have for some choices of s > 0 and C1 > 0,

∞∑
k=bpc

esk ·Pr [X ≥ k]− s < −C ′1.

Let C ′2 = d(es − 1), we have

Pr [Yt+L ≥ 0] ≤ exp (−C ′1t+ C ′2L) .

This implies for some constants C1, C2 > 0,

Pr [Yt ≥ 0] ≤ exp (−C1t+ C2L) . J

Proof of Lemma 22. By Lemma 26 and the union bound, the probability that there exists
a path P in G of length ` such that |B(P )| ≥ t is upper bounded by

n · n` ·
(
d

n

)`
·Pr [Yt ≥ 0] ≤ n · d` · exp (−C1t+ C2`) = O

(
1
n

)
for t = C(`+ logn) and sufficiently large constant C. J
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