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—— Abstract

Finding a small spectral approximation for a tall n x d matrix A is a fundamental numerical
primitive. For a number of reasons, one often seeks an approximation whose rows are sampled
from those of A. Row sampling improves interpretability, saves space when A is sparse, and
preserves row structure, which is especially important, for example, when A represents a graph.

However, correctly sampling rows from A can be costly when the matrix is large and cannot be
stored and processed in memory. Hence, a number of recent publications focus on row sampling
in the streaming setting, using little more space than what is required to store the outputted
approximation [12, 11].

Inspired by a growing body of work on online algorithms for machine learning and data ana-
lysis, we extend this work to a more restrictive online setting: we read rows of A one by one and
immediately decide whether each row should be kept in the spectral approximation or discarded,
without ever retracting these decisions. We present an extremely simple algorithm that approx-
imates A up to multiplicative error € and additive error ¢ using O(dlog dlog(e||A||3/3)/€?) online
samples, with memory overhead proportional to the cost of storing the spectral approximation.
We also present an algorithm that uses O(d?) memory but only requires O(dlog(e||A||3/5)/€?)
samples, which we show is optimal.

Our methods are clean and intuitive, allow for lower memory usage than prior work, and
expose new theoretical properties of leverage score based matrix approximation.
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1 Introduction

1.1 Background

A spectral approximation to a tall n x d matrix A is a smaller, typically O(d) x d matrix A
such that ||Ax||s = ||Ax]|2 for all x. Typically one asks for a multiplicative approximation,
which guarantees that (1 — €)||Ax||3 < [|[Ax||3 < (1 +¢)||Ax]3. In other notation,

(1-e)A <A< (1+eA.
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Such approximations have many applications, most notably for solving least squares
regression over A [6, 8]. If A is the vertex edge incidence matrix of a graph, A is a spectral
sparsifier [20]. Tt can be used to approximate effective resistances, spectral clustering, mixing
time and random walk properties, and many other computations.

A number of recent papers focus on fast algorithms for spectral approximation. Using
sparse random subspace embeddings [6, 18, 17], it is possible to find A in input sparsity time,
essentially by randomly recombining the rows of A into a smaller number of rows. In some
cases these embeddings are not enough, as it is desirable for the rows of A to be a subset of
rows sampled from A. If A is sparse, this ensures that A is also sparse. If A represents a
graph, it ensures that A is also a graph, specifically a weighted subgraph of the original.

It is well known that sampling O(dlogd/e?) rows of A with probabilities proportional
to their leverage scores yields a (1 4 €) multiplicative factor spectral approximation to A.
Further, this sampling can be done in input sparsity time, either using subspace embeddings
to approximate leverage scores, or using iterative sampling techniques [15], some that only
work with subsampled versions of the original matrix [8].

1.2 Streaming and Online Row Sampling

When A is very large, input sparsity runtimes are not enough — memory restrictions also
become important. Hence, recent work has tackled row sampling in a streaming model of
computation. [12] presents a simple algorithm for sampling rows from an insertion only
stream, using space approximately proportional to the size of the final approximation. [11]
gives a sparse-recovery based algorithm that works in dynamic streams with row insertions
and deletions, also using nearly optimal space. Unfortunately, to handle dynamic streams,
the algorithm in [11] is complex, requires additional restrictions on the input matrix, and uses
significantly suboptimal runtime to recover a spectral approximation from its low memory
representation of the input stream.

While the algorithm in [12] is simple and efficient, we believe that its proof is incomplete,
and do not see an obvious way to fix it. The main idea behind the algorithm is to sample
rows by their leverage scores with respect to the stream seen so far. These leverage scores
may be coarse overestimates of the true scores. However as more rows are streamed in, better
estimates can be obtained and the sampled rows pruned to a smaller set. Unfortunately, the
probability of sampling a row becomes dependent on which other rows are sampled. This
seems to break the argument in that paper, which essentially claims that their process has
the same distribution as would a single round of leverage score sampling.

In this paper we initiate the study of row sampling in an online setting. As in an insertion
stream, we read rows of A one by one. However, upon seeing a row, we immediately decide
whether it should be kept in the spectral approximation or discarded, without ever retracting
these decisions. We present a similar algorithm to [12], however, since we never prune
previously sampled rows, the probability of sampling a row only depends on whether previous
rows in the stream were sampled. This limited dependency structure allows us to rigorously
argue that a spectral approximation is obtained.

In addition to addressing gaps in the literature on streaming spectral approximation,
our restricted model extends work on online algorithms for a variety of other machine
learning and data analysis problems, including principal component analysis [4], clustering
[16], classification [3, 10], and regression [10]. In practice, online algorithms are beneficial
since they can be highly computationally and memory efficient. Further, they can be applied
in scenarios in which data is produced in a continuous stream and intermediate results must
be output as the stream is processed. Spectral approximation is a widely applicable primitive
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for approximate learning and computation, so studying its implementation in an online
setting is a natural direction.

1.3 Our Results

Our primary contribution is a very simple algorithm for leverage score sampling in an online
manner. The main difficultly with row sampling using leverage scores is that leverage scores
themselves are not easy to compute. They are given by [; = al (AT A)~!a;, and so require
solving systems in AT A if computed naively. This is not only expensive, but also impossible
in an online setting, where we do not have access to all of A.

A critical observation is that it always suffices to sample rows by overestimates of their
true leverage scores. The number of rows that must be sampled is proportional to the sum
of these overestimates. Since the leverage score of a row can only go up when we remove
rows from the matrix, a simple way to obtain an overestimate is to compute leverage score
using just a subset of the other rows of A. That is, letting A; contain just j of A’s n rows,
we can overestimate I; by [; = a?(AfAj)’lai

[8] shows that if A, is a subset of rows sampled uniformly at random, then the expected
leverage score of a; is d/j. This simple fact immediately gives a result for online sampling
from a randomly ordered stream. If we compute the leverage score of the current row a;
against all previously seen rows (or some approximation to these rows), then the expected
sum of our overestimates is bounded by d + d/2 + ... + ... + d/n = O(dlogn). So, sampling

O(dlog dlogn/e?) rows is enough obtain a (1+¢€) multiplicative factor spectral approximation.

What if we cannot guarantee a randomly ordered input stream? Is there any hope of
being able to compute good leverage score estimates in an online manner? Surprisingly the
answer to this is yes - we can in fact run nearly the exact same algorithm and be guaranteed
that the sum of estimated leverage scores is low, regardless of stream order. Roughly, each
time we receive a row which has high leverage score with respect to the previous rows, it must
compose a significant part of A’s spectrum. If A does not continue to grow unboundedly,
there simply cannot be too many of these significant rows.

Specifically, we show that if we sample by the ridge leverage scores [1] over all previously
seen rows, which are the leverage scores computed over AT A; 4+ \I for some small regularizing
factor \, then with just O(dlog dlog(e||A|3/d)/€?) samples we obtain a (1+ €) multiplicative,
0 additive error spectral approximation. That is, with high probability we sample a matrix
A with (1 —€)ATA — T < ATA < (1+¢)ATA + 61

To gain intuition behind this bound, note that we can convert it into a multiplicative
one by setting § = €0,,in(A)? (as long as we have some estimate of 0,,;,(A)). This setting
of § will require taking O(dlogdlog(k(A))/e?) samples. If we have a polynomial bound on
the condition number of A, as we do, for instance, for graphs with polynomially bounded
edges weights, this becomes O(dlog? d/e?) — nearly matching the O(dlogd/e®) achievable if
sampling by true leverage scores.

Our online sampling algorithm is extremely simple. When each row comes in, we compute
the online ridge leverage score, or an estimate of it, and then irrevocably either add the row
to our approximation or remove it. As mentioned, it is similar in form to the streaming
algorithm of [12], except that it does not require pruning previously sampled rows. This
allows us to avoid difficult dependency issues. Additionally, without pruning, we do not
even need to store all previously sampled rows. As long as we store a constant factor
spectral approximation our previous samples, we can compute good approximations to the
online ridge leverage scores. In this way, we can store just O(dlogdlog(e||A]|3/5)) rows
in working memory (O(dlog2 d) if we want a spectral graph sparsifier), filtering our input

7:3

APPROX/RANDOM’16



7:4

Online Row Sampling

stream into an O(dlog dlog(k(A))/e?) sized output stream. Note that this memory bound
in fact improves as € decreases, and regardless, can be significantly smaller than the output
size of the algorithm.

In addition to our main sampling result, we use our bounds on online ridge leverage
score approximations to show that an algorithm in the style of [2] allows us to remove
a logd factor and sample just O(dlog(e||A||3/5)/€%) rows (Theorem 10). This algorithm
is more complex and can require O(d?) working memory. However, in Theorem 12 we
show that it is asymptotically optimal. The log(e||A||2/8) factor is not an artifact of our
analysis, but is truly the cost of the restricting ourselves to online sampling. No algorithm
can obtain a multiplicative (1 + ¢) additive § spectral approximation taking fewer than
Q(dlog(e||A||3/6)/€?) rows in an online manner.

2 Overview

Let A be an n X d matrix with rows ay,...,a,. A natural approach to row sampling from
A is picking an a priori probability with which each row is kept, and then deciding whether
to keep each row independently. A common choice is for the sampling probabilities to be
proportional to the leverage scores of the rows. The leverage score of the i-th row of A is
defined to be

al(ATA)Ta,,

where the dagger symbol denotes the pseudoinverse. In this work, we will be interested in
approximating AT A with some (very) small multiple of the identity added. Hence, we will
be interested in the A-ridge leverage scores [1]:

al (ATA + A1) 'a,,

for a parameter A > 0.

In many applications, obtaining the (nearly) exact values of al (ATA + AI)~!a; for
sampling is difficult or outright impossible. A key idea is that as long as we have a sequence
li,..., 1, of overestimates of the A\-ridge leverage scores, that is for i =1,....,n

i >al (ATA 4+ \I)"'a,,

we can sample by these overestimates and obtain rigorous guarantees on the quality of the
obtained spectral approximation. This notion is formalized in Theorem 1.

» Theorem 1. Let A be an n X d matrix with rows ay,...,a,. Let e € (0,1),0 > 0, :=
§/e,c:=8logd/e?. Assume we are given ly,...,l, such that for alli=1,...,n,

l; >al (ATA + D) 'a;.
Fori=1,...,n, let p; := min(cl;, 1). Construct A by independently sampling each row a; of
A with probability p;, and rescaling it by 1/./p; if it is included in the sample. Then, with
high probability,

(1—e)ATA — 0T < ATA < (1+¢)ATA + 41,

and the number of rows in A is O (31—, ;) logd/€?).
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Proof. This sort of guarantee for leverage score sampling is well known. See for example
Lemma 4 of [8]. If we sampled both the rows of A and the rows of vAI with the leverage
scores over (AT A + A1), we would have (1 — ¢)(ATA +AI) < ATA < (1 +¢)(ATA + AI).
However, we do not sample the rows of the identity. Since we could have sampled them each
with probability 1, we can simply subtract AI = (§/€)I from the multiplicative bound and
have: (1 —€)ATA — 0T < ATA < (1+¢)ATA + 4L <

The idea of using overestimates of leverage scores to perform row sampling has been
applied successfully to various problems (see e.g. [13, 8]). However, in these applications,
access to the entire matrix is required beforehand. In the streaming and online settings, we
have to rely on partial data to approximate the true leverage scores. The most natural idea
is to just use the portion of the matrix seen thus far as an approximation to A. This leads
us to introduce the online A-ridge leverage scores:

l; == min(a] (AL A;_1 + A\I) 'a;, 1),

where A; (i =0,...,n) is defined as the matrix consisting of the first i rows of Al
Since clearly A;TFAZ- < ATA for all 4, it is not hard to see that I; does overestimate the
true A-ridge leverage score for row a;. A more complex question, however, is establishing an
upper bound on Y. I; so that we can bound the number of samples needed by Theorem 1.
A core result of this work, stated in Theorem 2, is establishing such an upper bound; in
fact, this bound is shown to be tight up to constants (Theorem 12) and is nearly-linear in
most cases.

» Theorem 2. Let A be an n x d matriz with rows ay,...,a,. Let A; fori € {0,...,n} be
the matriz consisting of the first i rows of A. For A > 0, let

l; == min(al (AT [A;_1 + AXI)"'a;, 1).

be the online \-ridge leverage score of the i*" row of A. Then
n

D L= 0(dlog(|A[3/X)).

i=1

Theorems 2 and 1 suggest a simple algorithm for online row sampling: simply use the
online A-ridge leverage scores, for A := ¢/e. This produces a spectral approximation with
only O(dlogdlog(e||A|3/5)/€%) rows. Unfortunately, computing I; exactly requires us to
store all the rows we have seen in memory (or alternatively to store the sum of their outer
products, ATA;). In many cases, such a requirement would defeat the purpose of streaming
row sampling.

A natural idea is to use the sample we have kept thus far as an approximation to A; when
computing I;. It turns out that the approximate online ridge leverage scores l; computed in
this way will not always be good approximations to [;; however, we can still prove that they
satisfy the requisite bounds and yield the same row sample size! We formalize these results
in the algorithm ONLINE-SAMPLE (Figure 1) and Theorem 3.

» Theorem 3. Let A be the matriz returned by ONLINE-SAMPLE(A, €,8). With high prob-
ability,

(1—e)ATA — 0T < ATA < (1+¢)ATA + 41,
and the number of rows in A is O(dlogdlog(e||A|3/5)/€?).

1 'We use the proposed scores ; for simplicity, however note that the following, perhaps more natural,
definition of online leverage scores would also be effective: I} := aZ (AT A; + AI) " la;.
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= ONLINE-SAMPLE(A, ¢, d), where A is an n X d matrix with rows ay,...,a,,
€ (0,1), 6 > 0.

Set A := /¢, ¢ := 8logd/e>.

Let Ay be a 0 x d matrix.

For:=1,...,n:

a. Let I; := min((1 + e)al (AL |A;_; + \I)"'a;, 1).

b. Let p; := min(cl;, 1).

LN,

A
_ ! with probability p;,
c. Set A; :={ |ai/\/Di
Ai— 1 otherwise.

4. Return A := An.

Figure 1 The basic online sampling algorithm.

To save computation, we note that, with a small modification to our analysis, we can
run ONLINE-SAMPLE with batch processing of rows. Specifically, say we start from the i*"
position in the stream. we can store the next b = O(d) rows. We can then compute sampling
probabilities for these rows all at once using a system solver for (AiT+bAi+b + AI). Using a
trick introduced in [19], by applying a Johnson-Lindenstrauss random projection to the rows
whose scores we are computing, we need just O(log(1/0)) system solves to compute constant
factor approximations to the ridge scores with probability 1 — §. If we set § = 1/poly(n)
then we can union bound over our whole stream, using this trick with each batch of O(d)
input rows. The batch probabilities will only be closer to the true ridge leverage scores than
the non-batch probabilities and we will enjoy the same guarantees as ONLINE-SAMPLE.

Additionally, it turns out that with a simple trick, it is possible to reduce the memory usage
of the algorithm by a factor of €2, bringing it down to O(dlogdlog(e||A||3/)) (assuming
the row sample is output to an output stream). Note that this expression gets smaller
with €; hence we obtain a row sampling algorithm with memory complexity independent
of desired multiplicative precision. The basic idea is that, instead of keeping all previously
sampled rows in memory, we store a smaller set of rows that give a constant factor spectral
approximation, still enough to give good estimates of the online ridge leverage scores.

This result is presented in the algorithm SLIM-SAMPLE (Figure 2) and Lemma 9. A
particularly interesting consequence for graphs with polynomially bounded edge weights is:

» Corollary 4. Let G be a simple graph on d vertices, and € € (0,1). We can construct a
(1 + €)-sparsifier of G of size O(dlog® d/e?), using only O(dlog* d) working memory in the
online model.

2 .n(A). For an unweighted

graph on d vertices, ||A||3 < d, since d is the largest squared singular value of the complete
graph. Combining with Lemma 6.1 of [21], we have that the condition number of a graph on
d vertices whose edge weights are within a multiplicative poly(d) of each other is polynomial
in d. So log(e||A||3/6) = log(k?(A)) = O(log d). <

Proof. This follows simply from applying Theorem 3 with § = ¢/o

We remark that the algorithm of Corollary 4 can be made to run in nearly linear time in
the stream size. We combine SLIM-SAMPLE with the batch processing idea described above.
Because A is a graph, our matrix approximation is always a symmetric diagonally dominant
matrix, with O(d) nonzero entries. We can solve systems in it in time O(d). Using the
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Johnson-Lindenstrauss random projection trick of [19], we can compute approximate ridge
leverage scores for a batch of O(d) rows with failure probability polynomially small in n in

O(dlogn) time. Union bounding over the whole stream, we obtain nearly linear runtime.

To complement the row sampling results discussed above, we explore the limits of
the proposed online setting. In Section 4 we present the algorithm ONLINE-BSS, which
obtains spectral approximations with O(dlog(e||A||%/8)/e?) rows in the online setting (with
larger memory requirements than the simpler sampling algorithms). Its analysis is given in
Theorem 10. In Section 5, we show that this number of samples is in fact the best achievable,
up to constant factors (Theorem 12). The log(e||Al|3/d) factor is truly the cost of requiring
rows to be selected in an online manner.

3 Analysis of Sampling Schemes

We begin by bounding the sum of online A-ridge leverage scores. The intuition behind the
proof of Theorem 2 is that whenever we add a row with a large online leverage score to a
matrix, we increase its determinant significantly, as follows from the matrix determinant
lemma (Lemma 5). Thus we can reduce upper bounding the online leverage scores to
bounding the matrix determinant.

» Lemma 5 (Matrix determinant lemma). Assume S is an invertible square matriz and u is
a vector. Then

det(S +uu’) = (det S)(1 +u’'S 'u).
Proof of Theorem 2. By Lemma 5, we have
det(A] ;A1 + AI) = det(AT A; + AI) - (L +al (ATA; + M) ta; )
> det(ATA; + AI) - (14 lig1)
> det(ATA; + AT) - eli+1/2,

Hence,
det(ATA 4+ AI) = det(ATA,, + AI)
> det(AI) - e /2
— 2 li/2
We have det(ATA + AI) < (||A]|2 + A\)?. Therefore
(IAJZ +N)® > Ade2ot/2,
Taking logarithms of both sides, we obtain
dlog(||Al3 +\) > dlog A+ > 1;/2
> 1 < 2dlog(1+ [[A[3/N). <

We now turn to analyzing the algorithm ONLINE-SAMPLE. Because the samples taken
by the algorithm are not independent, we are not able to use a standard matrix Chernoff
bound like the one in Theorem 1. However, we do know that whether we take row ¢ does not
depend on later rows; thus, we are able to analyze the process as a martingale. We will use a
matrix version of the Freedman inequality given by Tropp.

77
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» Theorem 6 (Matrix Freedman inequality [22]). Let Yo,Y1,..., Y, be a matriz martingale
whose values are self-adjoint matrices with dimension d, and let X4, ...,X,, be the difference
sequence. Assume that the difference sequence is uniformly bounded in the sense that

IXkll2 < R almost surely, fork=1,....,n

Define the predictable quadratic variation process of the martingale:
kazEJ ) , fork=1,.

Then, for all € > 0 and 02 > 0,

—€2/2
P [[[Yall2 > € and [|[Wy|2 < 0°] <d-exp <_U2+Iée/3>

We begin by showing that the output of ONLINE-SAMPLE is in fact an approximation of
A, and that the approximate online leverage scores are lower bounded by the actual online
leverage scores.

» Lemma 7. After running ONLINE-SAMPLE, it holds with high probability that
(1—e)ATA - 0T < ATA < (1+¢)ATA + 41,

and also
I; >al'(ATA + 1)}

fori=1,...,n

Proof. Let
u; = (ATA + AI)"V/2q,

We construct a matrix martingale Yo, Y1,...,Y, € R¥9 with the difference sequence
Xi,.o o, Xy Set Yo =0. If |[Y;—1]]2 > €, we set X; := 0. Otherwise, let

—w;u’ otherwise.

X, {(l/pi — Duu?  if a; is sampled in A,

In the case that ||[Y;_1]|2 < €, by construction, ||Y,||2 < € for all j <i— 1. So we have:
Y= (ATA+XD)"V2(AT A, — AT A, )(ATA +21)7V/2,
Hence, we have

l~i - min(( €)a zT( i— lAz 1+ )‘I) a;, 1)
> min((1 +e)a) (AL A; +>\I+6(ATA+)\I)) ta;, 1)
> mm((l +e)a) ((1 +¢)(ATA +AI)) " ta;, 1)
al (ATA + ) 'a; (1)

_ T
= u; u;,
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and so p; > mim(cu;fui7 1). If p; = 1, then X; = 0. Otherwise, we have p; > cu;fui and:

1
1Xill2 < max{1,1/p; — 1} - [usuf [ < —uju; < 1/c.
Di
Further
Ei 1 [X] < pi- (1/pi — D*(wiu])? + (1 = py) - (wu])?

= (wu})?- (1 —pi)/ps
= uiuiT . (uiTui/pi)

< uu! /e

(2)

(by equation (2))

And so, for the predictable quadratic variation process of the martingale {Y,;}:

Wi = ZEk*l [Xi] 5
k=1

we have

[Willz < <1/e

i
E wu’ /¢
k=1

Therefore by, Theorem 6, we have

2

_62
P[”Yn”ZZE]gdeXP <1/C+6//2(3c))

< d-exp(—ce?/4)
=1/d.

This implies that with high probability

[(ATA + AI)"YV2(ATA + ML) (ATA + \I)"V2 — ||, < e
and so

(1—e)(ATA+ ) < ATA + M < (1 +¢)(ATA 4+ 2T).
Subtracting AI = (§/¢)I from all sides, we get

(1—e)ATA — T <ATA < (1+e)ATA + /L

Finally, note that, since we set X; = 0 if [|[Y;—1]l2 > €, || Y, |l2 < € implies ||'Y;]|2 < € for

all i < n. We thus have the desired bound on I; by equation (1).

<

If we set ¢ in ONLINE-SAMPLE to be proportional to logn rather than log d, we would be
able to take a union bound over all the rows and guarantee that with high probability all

the approximate online leverage scores [; are close to true online leverage scores [;. Thus
Theorem 2 would imply that ONLINE-SAMPLE only selects O(dlognlog(]|A||3/)\)/€?) rows

with high probability.

In order to remove the dependency on n, we have to sacrifice achieving close approxima-
tions to [; at every step. Instead, we show that the sum of the computed approximate online
leverage scores is still small with high probability, using a custom Chernoff bound.

APPROX/RANDOM’16
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» Lemma 8. After running ONLINE-SAMPLE, it holds with high probability that
> 1= O(dlog(||A][3/X))-
i=1

Proof. Define
8; :=logdet(AT A; + \I) — logdet(AT ; A;_; + AI).

The proof closely follows the idea from the proof of Theorem 2. We will aim to show that
large values of [; correlate with large values of 8;. However, the sum of §; can be bounded by
the logarithm of the ratio of the determinants of ATA + I and AI. First, we will show that
E;,_ [exp(l}/S — 52)] is always at most 1. We begin by an application of Lemma 5.

Ei1 [eXP(Zi/g — )] =pi- efi/g(l +al (AL A+ 2D)tay/p) (1 *pi)ems
<pi- (LG9 +al (AL A+ D) a/p) ™'+ (1= pi) (1 +1/4).
If ¢l; < 1, we have p; = ¢l; and [; = (1+ e)aiT(AiT_lAi,l + M)~ ta;, and so:
E; 1 [exp(l;/8 —6;)] <cli- (1 +1;/4)(1+1/((L+€)e)) ™"+ (1 —ely) (1 +13/4)

= (14 1;/4)(ci(1 +1/((1 +€)e)) L +1 —cly)
< (L+1;/4) (1 +el;(1 — 1/(4c) — 1))
(1+15/4)(1 - 1;/4)

1

IN

Otherwise, we have p; = 1 and so:
Ei,1 [exp(z;/S - 61)} S (1 + 51/4)(1 + a;-‘r(AzllAi,l + )\I)_lai)_l
<(A+L/4)A+5)7!
<1.

We will now analyze the expected product of exp(l;- /8 — §;) over the first k steps. We group
the expectation over the first k steps into one over the first k — 1 steps, aggregating the
expectation for the last step by using one-way independence. For k > 1 we have

k k—1
exp (ZL‘/8—5¢>] = E |f5Xp <Zl~i/8_5i> E;_1 [exp(ik/8—6k)]

first k — 1 steps i—1

k-1
exp (Z 1;/8 — 51’)] ;

E

<E

and so by induction on &

Hence by Markov’s inequality

iz; > 8d+8i57] S eid.
i=1 i=1

E

P
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A = SLIM-SAMPLE(A, €, §), where A is an n x d matrix with rows ay, ..., a,,
e€ (0,1), 46 >0.
1. Set A:=d/e, c:=8logd/e>.
2. Let Ag be a 0 x d matrix.
3. Let ly,...,1, be the approximate online leverage scores computed by an inde-
pendent instance of ONLINE-SAMPLE(A, 1/2,5/(2¢)).
4. Fori=1,...,n:
a. Let p; := min(cl;, 1).
[ Ay ] . "
with probability p;,
b. Set A; := { [ai/V/Di

A, otherwise.
5. Return A := An.

Figure 2 The low-memory online sampling algorithm.

By Lemma 7, with high probability we have ATA 4+ AI < (1 + €)(ATA + AI). We also have
with high probability:
det(ATA +AI) < (1 + e)4(||A]13 + N4,
log det(ATA 4 AT) < d(1 + log(]|A]|2 + \)).

Hence, with high probability it holds that
n
> " 6; =logdet(ATA + AT) — dlog(\)
i=1
< d(1+log([[A]3 +X) —log(N))
= d(1+log(1 + [[A[3/N)).

And so, with high probability,

zn:z} < 8d + 82n:5i
i=1 i=1

< 9d + 8dlog(1+ [|A[2/N)
— O(dlog(| A[3/N)). <

Proof of Theorem 3. The thesis follows immediately from Lemmas 7 and 8. |

We now consider a simple modification of ONLINE-SAMPLE that removes dependency on
€ from the working memory usage with no additional cost.

» Lemma 9. Let A be the matriz returned by SLIM-SAMPLE(A, €,8). Then, with high
probability,

(1—e)ATA — 0T < ATA < (1+¢)ATA + 41,

and the number of rows in A is O(dlogdlog(e||A|3/5)/€?).
Moreover, with high probability the algorithm SLIM-SAMPLE’s memory requirement is
dominated by storing O(dlogdlog(e||A||2/8)) rows of A.

Proof. As the samples are independent, the thesis follows from Theorem 1 and Lemmas 7
and 8. <

7:11

APPROX/RANDOM’16



7:12

Online Row Sampling

4 Asymptotically Optimal Algorithm

In addition to sampling by online leverage scores, there is also a variant of the “BSS” method
[2] that applies in our setting. Like the original [2], this approach removes the logd factor
from the row count of the output spectral approximation, matching the lower bound for
online sampling given in Theorem 12.

Unlike [2] itself, our algorithm is randomized — it is similar to, and inspired by, the
randomized version of BSS from [14], especially the simpler “Algorithm 1” from that paper
(the main difference from that is considering each row separately). In fact, this algorithm
is of the same form as the basic sampling algorithm, in that when each row comes in, a
probability p; is assigned to it, and it is kept (and rescaled) with probability p; and rejected
otherwise. The key difference is the definition of the p;.

There are also some differences in the nature of the algorithm and its guarantees. Notably,
the p; cannot be computed solely based on the row sample output so far—it is necessary to
“remember” the entire matrix given so far. This means that the BSS method is not memory
efficient, using O(d?) space. Additionally, online leverage score sampling gives bounds on
both the size of the output spectral approximation and its accuracy with high probability.
In contrast, this method gives an expected bound on the output size, while it never fails to
output a correct spectral approximation. Note that these guarantees are essentially the same
as those in the appendix of [14].

One may, however, improve the memory dependence in some cases simply by running it
on the output stream of the online leverage score sampling method. This reduces the storage
cost to the size of that spectral approximation. The BSS method still does not produce an
actual space savings (in particular, there is a still a log d factor in space), but it does reduce
the number of rows in the output stream while only blowing up the space usage by O(1/¢?)
(due to requiring the storage of an e-quality approximation rather than only O(1)).

The BSS method maintains two matrices, BY and BF, acting as upper and lower “barriers”.
The current spectral approximation will always fall between them:

Bl < ATAT < BY.

This guarantee, at the end of the algorithm, will ensure that A is a valid approximation.
Below, we give the actual BSS algorithm and its performance guarantees.

» Theorem 10.
1. The online BSS algorithm always outputs A such that

(1—e)ATA - 6T < ATAT < (1+¢)ATA +41.
2. The probability that a row a; is included in A is at most E%li, where l; is the online

2—5—m'dge leverage score of a;. That is l; = min(al (AzTAi + %1)71 a;,1). The expected

€ %

number of rows in A is thus at most £ 30 1l = O(dlog(e||A|13/0)/€2).

Proof of Theorem 10 part 1. We first note the basic invariant that XY and X[ always
remain positive definite-or equivalently,

B < ATAT <BY.

We may prove this by induction on 7. The base case follows from the initialization of Ay,
BY and BE. For each successive step, we consider two possibilities.
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= ONLINE-BSS(A, €, ), where A is an n x d matrix with rows ay,...,a,,
€ (0,1), 6 > 0.

Seth:%—i—lanch:%—l.

Let Ag be a 0 x d matrix, B = 61, By = —0L

Fori=1,...,n:

a.Let X/} = (B, —Af A ), XP, = (AL A - Bl ).

b. Let p; := min(cyal (XY ;) ta; + cral (XE ) ta;, 1).

W=

A,
_ ' ] with probability p;,
c. Set A; := ai/\/@
Ai 1 otherwise.

d. Set BY =BY | + (1 +¢)a;al’, BF = BE | + (1 — €)a;al.

4. Return A := A,,.

Figure 3 The Online BSS Algorithm.

The first is that p; = 1. In that case, AT A always increases by exactly a;al, BY by
(1+ €)a;al and BE by (1 — €)a;al’. Thus XY and XZ increase by exactly ea;al, which is
positive semidefinite, and so remain positive definite.

In the other case, p; < 1. Now, XV decreases by at most the increase in AT AT or

aiaZT

o
Since ¢y > 1, p > al (XY )7 ta;, so a;al’ < pXV | and M; < XY . Subtracting this then
must leave XY positive definite. Similarly, X decreases by at most the increase in B,
which is (1 — €)a;al < a;al. Since ¢, > 1 and p < 1, al (XF |)7'a; < 1, and a;al < XF .
Subtracting this similarly leaves X” positive definite. Finally, we note that

M, =

BY = (1+¢ATA + 61
BL = (1-¢)ATA - 6L

This gives the desired result. |

To prove part 2, we will use quantities of the form v’ X 'v. We will need a lemma
describing how this behaves under a random rank-1 update:

» Lemma 11. Given a positive definite matriz X, two vectors u and v, two multipliers a
and b and a probability p, define the random variable X' to be X — auu” with probability p
and X — buu? otherwise. Then ifu’X tu=1,

apa+ (1 —p)b—ab

(1—-a)(1-0)
Proof. We apply the Sherman-Morrison formula to each of the two possibilities (subtracting
auu’ and buu” respectively). These give X’ values of respectively

E |[vIXlv —vIX"lv] = (vTX lu)

X lyu?TX-! a
X—l Inlaliheheiiel X—l 7x—1 Tx—l
+a17auTX*1u + 1—a ut
and
X 1lguTx-! b
X 1lypp2 =7 & _x-1y 7 x-lyufxi,
O X T Tyt

7:13
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The values of v X'~1v — vIX v are then respectively

4 T tguTX v = (vTXflu)ZL
1—-a 1—-a
and
LVTXAuuTXAV = (vIX~tu)?
1-0 1-b
Combining these gives the stated result. |

Proof of Theorem 10 part 2. First, we introduce some new matrices to help in the analysis:
U _ EAT € T
CYj =01+ SATA + (1 v 5) AT A,

€ €
Chj = —d1— ZATA; + (1 - 5) ATA;.

Note that C? BY, CL = BF

i, and for j <1, CU > BU and CL = BL We can then
define:

U _ U _ ATA
Y, =Cij —Aj A
L _ RTA L
vi = ATA; - CL,.
We then have, similarly, Y{; = XV, Y}, = X[, and for j <4, Y{; = X} and Y[, = XF.

We will assume that ; < 1, since otherwise the claim is 1mmed1ate (as probablhtles
cannot exceed 1). Now, note that

a; (Yio) 'ai =aj (Yg)™

-1
al (%AiTAi + 51) a;

l;.

AN AN

Next, we will aim to show that for j <i —1,

E[a] Y/, ,a] <E[a] Y/ a]

E[ TYZ 1]+1az]<E[ TY% 1,54 ]

In particular, we will simply show that conditioned on any choices for the first j rows,
the expected value of al YV , j+12 1s no larger than a; vV, &, and analogously for YL

Similar to the proof of part 1, we separately consider the case where p;;; = 1. In that
case, the positive semidefinite matrix §a;a] is simply added to YV and Y*. Adding this
can only decrease the values of a] YUa; and al Yta;

. . a;
The p;j11 < 1 case is more tricky. Here, we define the vector wji, = \/%. Importantly
T Uy—1 T U -1
pj+1 = cvaj 1 (X7) a1 > cvaj (Yo ;) aj

T Ly—1 T L -1
Pjt1 > cLaH_l(Xj) aj > CLaj-t,-l(Yi—l,j) Aj41-
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This means that
W;"FH(YiUij)_leH < —
W]T+1(YiL—1,j)_1W?+1 < .

Now, we additionally define

U o T U —-1...T
S =W (Y, ;)" Wi

L _ T L —-1_.T
sie1 = Wi (Yili )" Wi

v _ Wi+l
Uiy =
sU
J+1
W
L Jj+1
uy g
sk
Jj+1

We then deploy Lemma 11 to compute the expectations. For the contribution from

the upper barrier, we use X = YV u= ug-fﬂ, v=al a= fsjUH(l —pi+1(l +€/2)),

i—1,50
b= sg-;ﬂpj“(% +¢€/2), p = pj+1. For the ltzwer barrier, we use X = YiLij, u= uJLH,
v=a;,a=sj(1-pjt1(1 —€/2)), b= —s71pj+1(1 — €/2), p=pj11. In both cases we

can see that the numerator of the expected change is nonpositive. Finally, this implies that
the probability that row ¢ is sampled is

E[pi] = cv E [af (X{L)) &) + ¢, E [a] (X{)'ay]

=cvE[af (Y], 1) '] + L Efaf (Y], 1) "ay]

(2

<cvE[al (Yl10) 'a] + e E [af (Y1) 'ai]

|
|
—
Q
G
+
o
=~
~—
~
N

as desired. <

5 Matching Lower Bound

Here we show that the row count obtained by Theorem 10 is in fact optimal. While it is
possible to obtain a spectral approximation with O(d/€?) rows in the offline setting, online

dl Al%/s
og(e!2 15/ )) rOWS.

sampling always incurs a loss of 2 (log(e||A[|3/6)) and must sample (2 (
» Theorem 12. Assume that €| A2 > c16 and € > cy/\/d, for fized constants c; and cs.
Then any algorithm that selects rows in an online manner and outputs a spectral approximation
to AT A with (1 + €) multiplicative error and § additive error with probability at least 1/2

dlog(fl\?\lﬁ/&)

must sample ( rows of A in expectation.

Note that the lower bounds we assume on ¢€||A||3 and € are very minor. They just ensure
that log(e]|A[|2/8) > 1 and that € is not so small that we can essentially sample all rows.

Proof. We apply Yao’s minimax principle, constructing, for any large enough M, a distribu-
tion on inputs A with ||A||3 < M for which any deterministic online row selection algorithm

7:15
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Q dlog(;M/(i)

that succeeds with probability at least 1/2 must output ) rows in expectation.

The best randomized algorithm that works with probability 1/2 on any input matrix with
|A|2 < M therefore must select at least € (%QMM)) rows in expectation on the worst
case input, giving us the theorem.

Our distribution is as follows. We select an integer N uniformly at random from
[1,log(Me/d)]. We then stream in the vertex edge incidence matrices of N complete graphs
on d vertices. We double the weight of each successive graph. Intuitively, spectrally
approximating a complete graph requires selecting Q(d/e?) edges [2] (as long as € > ¢p/V/d
for some fixed constant ¢s). Each time we stream in a new graph with double the weight, we
force the algorithm to add €2(d/e?) more edges to its output, eventually forcing it to output
Q(d/e? - N) edges — Q(dlog(Me/5)/€?) in expectation.

Specifically, let K4 be the (g) x d vertex edge incidence matrix of the complete graph on
d vertices. K1 K, is the Laplacian matrix of the complete graph on d vertices. We weight
the first graph so that its Laplacian has all its nonzero eigenvalues equal to d/e. (That is,
cach edge has weight ). In this way, even if we select N = [log(Me/d)] we will have overall
A3 < 0/€e+ 20/ + ..2U0s(Me/)] =15 /e < M.

Even if N = 1, all nonzero eigenvalues of AT A are at least /e, so achieving (1 + )
multiplicative error and ¢I additive error is equivalent to achieving (1 + 2¢) multiplicative
error. AT A is a graph Laplacian so has a null space. However, as all rows are orthogonal to
the null space, achieving additive error JI is equivalent to achieving additive error I, where
I, is the identity projected to the span of ATA. 61, < eAT A which is why we must achieve
(1 + 2¢) multiplicative error.

In order for a deterministic algorithm to be correct with probability 1/2 on our distribution,
it must be correct for at least 1/2 of our |log(Me/d)| possible choices of N.

Let ¢ be the lowest choice of N for which the algorithm is correct. By the lower bound
of [2], the algorithm must output ©(d/e?) rows of A; to achieve a (1 + 2¢) multiplicative
factor spectral approximation. Here A; is the input consisting of the vertex edge incidence
matrices of i increasingly weighted complete graphs. Call the output on this input A;. Now
let j be the second lowest choice of N on which the algorithm is correct. Since the algorithm
was correct on A, to within a multiplicative (1 + 2¢), to be correct on A, it must output a
set of edges Aj such that

(ATA; —ATA) —4eATA; <ATA; - ATA 2 (ATA; —ATA) +4eATA;.

Since we double each successive copy of the complete graph, A]TAJ- = 2(A]-TA]- —ATA)).
So, A?Aj — AZTAZ must be a 1 + 8¢ spectral approximation to the true difference A;‘»FA]- —
AT A;. Noting that this difference is itself just a weighting of the complete graph, by the
lower bound in [2] the algorithm must select (d/e?) additional edges between the i*" and j**
input graphs. Iterating this argument over all |log(Me/§)|/2 inputs on which the algorithm
must be correct, it must select a total of (dlog(Me/d)/e?) edges in expectation over all
inputs. <

6 Future Work

An obvious open question arising from our work is if one can prove that the algorithm of [12]
works despite dependencies arising due to the row pruning step. By operating in the online
setting, our algorithm avoids row pruning, and hence is able to skirt these dependencies, as
the probability that a row is sampled only depends on earlier rows in the stream. However,
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because the streaming setting offers the potential for sampling fewer rows than in the online
case, obtaining a rigorous proof of [12] would be very interesting.

While our work focuses on spectral approximation, variants on (ridge) leverage score
sampling and the BSS algorithm are also used to solve low-rank approximation problems,
including column subset selection [5, 9] and projection-cost-preserving sketching [7, 9].
Compared with spectral approximation, there is less work on streaming sampling for low-rank
approximation, and understanding how online algorithms may be used in this setting would
an interesting extension of our work.
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