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Abstract
The following paradigm is often used for handling NP-hard combinatorial optimization problems.
One first formulates the problem as an integer program, then one relaxes it to a linear program
(LP, or more generally, a convex program), then one solves the LP relaxation in polynomial
time, and finally one rounds the optimal LP solution, obtaining a feasible solution to the original
problem. Many of the commonly used rounding schemes (such as randomized rounding, threshold
rounding and others) are oblivious in the sense that the rounding is performed based on the LP
solution alone, disregarding the objective function. The goal of our work is to better understand
in which cases oblivious rounding suffices in order to obtain approximation ratios that match
the integrality gap of the underlying LP. Our study is information theoretic – the rounding
is restricted to be oblivious but not restricted to run in polynomial time. In this information
theoretic setting we characterize the approximation ratio achievable by oblivious rounding. It
turns out to equal the integrality gap of the underlying LP on a problem that is the closure
of the original combinatorial optimization problem. We apply our findings to the study of the
approximation ratios obtainable by oblivious rounding for the maximum welfare problem, showing
that when valuation functions are submodular oblivious rounding can match the integrality gap
of the configuration LP (though we do not know what this integrality gap is), but when valuation
functions are gross substitutes oblivious rounding cannot match the integrality gap (which is 1).
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1 Introduction

Rounding and Obliviousness

Consider a combinatorial maximization problem π, represented by a pair (V,X). The set V
contains all possible problem instances, where an instance is the linear objective function to

∗ This work was partly done at Microsoft Research, Herzliya, Israel.
† The work of U. Feige was supported in part by the Israel Science Foundation (grant No. 621/12) and

by the I-CORE Program of the Planning and Budgeting Committee and the Israel Science Foundation
(grant no. 4/11).

‡ The work of M. Feldman was supported in part by the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement number 337122.

§ The work of I. Talgam-Cohen was supported in part by the I-CORE Program of the Planning and
Budgeting Committee and the Israel Science Foundation (grant no. 4/11), and by the European
Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC
grant agreement number 337122.

© Uriel Feige, Michal Feldman, and Inbal Talgam-Cohen;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 8; pp. 8:1–8:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


8:2 Oblivious Rounding and the Integrality Gap

be maximized, represented as a vector in Rd≥0. The set X contains all feasible solutions to the
problem, also represented as vectors in Rd≥0. The goal is, given an instance v ∈ V , to return
a feasible solution x ∈ X that maximizes the objective v · x among all feasible solutions.
If the combinatorial problem is hard, the goal is to approximate rather than optimize the
objective. As a concrete example, consider the problem of finding a max-cut in a complete
weighted graph. In this case, V is the set of all possible edge weights, and X is the set of all
valid cuts where each cut is represented by the set of edges in the cut. The objective value
v · x that a cut x obtains for a weighted graph v is the total weight of edges in the cut.

A paradigmatic approach to solving combinatorial optimization problems is that of
relaxation and rounding: The problem π is relaxed to a new problem π′ = (V, Y ) where Y
is such that X ⊂ Y , i.e., the new feasible solution set is a relaxation of the original one.
Typically the new feasible domain is fractional while the original one is integral. To solve a
given instance v, first a relaxed solution y ∈ Y to the new problem π′ is computed, and then
it is (randomly) rounded to get a solution x ∈ X to the original problem π. The algorithm
designer aims to design a rounding process that does not lose too much in the objective value,
i.e., for which the inner product v · x is not far in a multiplicative sense (and in expectation)
from v · y. If she succeeds we say that the rounding scheme guarantees a good approximation
ratio. A rounding scheme is oblivious if y is rounded to x without knowledge of the objective
function v.1 In other words, v is used only to obtain a relaxed solution (e.g., to formulate
and solve a linear program), and not to round it back to a feasible solution (e.g., a solution
to a corresponding integer program).

Many rounding schemes in the optimization literature are oblivious, and many are not
oblivious (see Section 5). This raises the following natural question: Is there a reason why
for some problems oblivious rounding works well (achieves good approximation ratios to
the optimal objective), while for others it fails miserably? For an algorithm designer it may
be very useful to be able to predict in advance whether the relaxation she has formulated
for the problem admits an oblivious rounding scheme with a good approximation ratio, or
whether any good scheme will need to utilize the objective function to guide its rounding
process. The purpose of this paper is to initiate a systematic study of the power of oblivious
rounding relative to its non-oblivious counterpart. We study this question from an information
perspective, imposing no polynomial time constraint on the rounding schemes. We remark
that even non-polynomial time rounding schemes are of interest, for example, as a way of
bounding the integrality gap of the underlying relaxation.

Advantages of Oblivious Rounding

There is also reason to try and aim specifically for a relaxation that admits good oblivious
rounding, and/or to be able to prove the impossibility of getting a good approximation via
oblivious rounding. The advantages of rounding that is oblivious are demonstrated nicely
in the context of welfare maximization in combinatorial auctions, which will be the main
domain in which we demonstrate the results of our study of oblivious rounding (see Section
4 for more details on welfare maximization). In this context, indivisible items are to be
allocated among buyers, each with her own valuation function mapping bundles of items to
values. The valuations are very large objects (exponential in the number of items), and there
is extensive literature related to their communication complexity (see, e.g., [20]). Oblivious

1 Our notion of oblivious rounding is not to be confused with the rounding technique of [27], which avoids
solving a linear program – see the discussion of related work below.
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rounding limits the algorithmic stage in which communication in required, and there is no
need for communication after a relaxed solution is found. Also, as we show in Proposition
23, oblivious rounding gives the different buyers the same treatment in terms of the value
they are guaranteed to obtain after the rounding, and so has a “built-in” fairness guarantee.

Recently in [7], oblivious rounding was studied in the context of incentive properties of
allocation mechanisms. It turns out that when an algorithm is based on the relax-and-round
paradigm, and the rounding is oblivious, there are price rules that can be added to the
algorithm such that the worst equilibrium behavior (the price of anarchy) is determined
by the relaxation and by the approximation ratio of the oblivious rounding. This is quite
remarkable, as there is no a priori reason to believe that the consequences of strategic
behavior would be determined by algorithmic properties of the rounding, and indeed this
is not the case for non-oblivious rounding. Thus, an algorithmic mechanism designer may
aim for a design based on obliviousness to get good strategic properties, and so it would be
helpful to understand what a design based on oblivious rounding can hope to achieve.

Finally, in [12, 24], the issue of robustness of the welfare guarantees to noise in the
objective function is studied. Ideally, an algorithm for approximating welfare will get a good
approximation despite small perturbations in the buyers’ valuations. In the common case
that the welfare maximization problem is relaxed to a linear program which is then solved
and rounded, it turns out that solving the LP is quite robust, and so if the rounding is
oblivious this ensures the robustness of the entire algorithm.

Our Results

Consider a problem π = (V,X) and a relaxed problem π′ = (V, Y ). Our main result is to
relate the approximation ratio achievable by oblivious rounding to the well-studied notion of
integrality gap.

In the context of our work, we define the approximation ratio to be the worst case ratio,
over all instances v ∈ V and all relaxed solutions y ∈ Y , between the (expected) objective
value v · x achieved by the (random) rounded solution x ∈ X, and between the objective
v · y achieved by the relaxed solution to be rounded y. Note that there is another notion of
approximation ratio, which compares v · x achieved by the rounding to v · x∗ (rather than
v · y), where x∗ is the optimal feasible solution to instance v. While different in general, in
many cases the two notions coincide.

On the other hand, recall that the integrality gap is the worst case ratio, over all instances
v and all relaxed solutions y, between the objective value v · x that can be achieved by the
best feasible solution x, and between v · y. As our starting point, we observe that no oblivious
rounding can guarantee a better approximation factor than the integrality gap. Thus the
question that we ask is: For which problems does the approximation ratio achievable by
oblivious rounding techniques match the integrality gap? We stress that we do not require
oblivious rounding to be polynomial time, but nevertheless the question is of interest due to
the information-theoretic obliviousness requirement. This question also comes in another
flavor, where one gets an optimal solution to the relaxed problem and needs to round it.

Our general results can be summarized informally by the following theorem. The convex
closure of a problem π is obtained by taking the convex closure of its instance set. This
may not actually change the problem, i.e., the instance set may be closed under convex
combinations. For example, welfare maximization in a combinatorial auction setting with
submodular valuations is an example of such a problem (because submodularity is preserved
under convex combinations), but with gross substitutes (GS) valuations it is not (the average
of two GS functions need not be GS – see Section 4). The convex closure of the class of GS
valuations is the class cone GS (CGS) defined in [6].

APPROX/RANDOM’16
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I Theorem (Informal).
For optimization problems closed under convex combinations, the approximation ratio of
the best oblivious rounding scheme equals the integrality gap.
More generally, for optimization problems that are not closed under convex combinations,
the approximation ratio of the best oblivious rounding scheme equals the integrality gap of
the convex closure of the problem.
If the relaxed solution to be rounded obliviously is guaranteed to be optimal, the approx-
imation ratio of the best oblivious rounding scheme is at least the integrality gap of the
convex closure of the problem, and may be strictly greater than it in some cases.

See Section 3 for formal statements of these results.
We apply our general results to the welfare maximization problem for combinatorial

auctions. In particular, we use the integrality gap of welfare maximization with coverage
valuations – the convex closure of unit-demand valuations – to establish a bound on what
the best oblivious rounding can achieve for unit-demand valuations.

I Theorem. For the welfare maximization problem with unit-demand valuations and for its
relaxation based on the configuration linear program, no oblivious rounding can get more than
a 5/6-approximation ratio for two buyers, and no oblivious rounding can get more than a
0.782-approximation ratio for n buyers. These bounds immediately extend to gross substitutes,
for which the integrality gap is known to be 1.

Another application of our general results to welfare maximization is the prediction that
the above gap, which occurs between the integrality gap and the approximation ratio of the
best oblivious rounding for unit-demand valuations, will not occur for classes of valuations
like submodular valuations, which are closed under convex combinations. See Section 4 for
formal statements of these results.

Related Work

In recent years, the connection between various notions of rounding and algorithmic mech-
anism design has been studied in several works. [15] use the technique of randomized
metarounding [3] to derive truthful-in-expectation mechanisms. They require their rounding-
based approximation algorithms to satisfy a stronger property than obliviousness (the output
expected allocation should be a scaled version of the input for a universal scaling factor).
We have already mentioned the work of [7] above, which is directly related to the notion
of oblivious rounding that we study (see also Proposition 23 below). Both works and
the latter in particular can be seen as strong motivation to systematically study oblivious
rounding. [6] requires a different property – convexity of the rounding – in order to derive
truthful-in-expectation mechanisms.

In terms of techniques, our work is related to that of [9], which considers a class of
oblivious algorithms for the max directed cut problem. These are algorithms in which each
vertex independently decides at random on which side of the cut to place itself, based only
on its own in-degree and its own out-degree. One of the results in that work (Theorem 1.8 in
the journal version, Theorem 1.5 in the preliminary version) shows equivalence in the worst
case approximation ratio of two different ways of using a finite set of oblivious algorithms,
one called mixed (in which an algorithm is chosen at random), the other called max (in
which the best algorithm is chosen). The proof of that theorem and the proof of our main
theorem are based on similar principles.
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[27] introduced a technique for developing approximation algorithms that avoid the
bottleneck of first solving a linear program. This technique is also known as “oblivious
rounding”, but this notion is different than our definition of (objective-)oblivious rounding.

Examples of oblivious rounding techniques that appear in the literature are mentioned in
Section 5.

Organization

In Section 2 we present our general framework. In Section 3 we formally state and prove
our results for the general framework. Section 4 contains our results for the application of
welfare maximization. In Section 5 we list known rounding techniques from the literature
and how they fit into the framework.

2 Framework

In this section we present our framework. After several general definitions, in Section 2.1
we define an optimization problem and its relaxation, and recall the well-known notion of
integrality gap – a measure of how “relevant” optimization of the relaxation is to optimization
of the original problem. In Section 2.2 we introduce oblivious rounding and define the
approximation ratio of such rounding schemes, according to how well they round a solution
to the relaxed problem into a feasible solution of the original problem.

Let d ∈ N>0 be a positive integer. For every set S ⊆ Rd of d-dimensional vectors, let
C(S) denote its convex hull, i.e., C(S) = {

∑
s∈S λss | ∀s ∈ S : λs ≥ 0 and

∑
s∈S λs = 1}. A

set S is compact if it is closed (no infinite sequence of vectors converges to a vector outside
the set), and bounded (there is some finite µ such that the norm of every vector in the
set is at most µ). If S is convex and compact, let ∂(S) denote its outer boundary, i.e.,
∂(S) = {s ∈ S | ∀ scalar δ ∈ R, δ > 1 : δs 6∈ S}.

For sets S1, S2 ⊆ Rd, we use the notation mins1∈S1 maxs2∈S2{·} when we are optimizing
by first choosing s1 ∈ S1, and then choosing s2 ∈ S2 based on knowledge of s1; similarly, the
notation maxs2∈S2 mins1∈S1{·} means that s2 ∈ S2 is chosen first and s1 ∈ S1 is chosen with
prior knowledge of s2. Here, min and max can be replaces by inf and sup where needed.

2.1 Problems, Relaxations, Closures
We consider optimization problems with linear objectives. We define a problem of dimension
d as a collection of d-dimensional instances coupled with a feasible solution set. This means
that in our formulation, problem instances of a certain dimension all share the same set of
feasible solutions.

For concreteness our framework is developed for maximization problems (the results can
be adapted also to minimization).

I Definition 1. A problem π of dimension d is a pair (V,X), where V,X ⊆ Rd≥0 are nonempty
sets of d-dimensional vectors with non-negative entries. V contains the problem instances
(also called value functions or objectives), and X is the set of feasible solutions. Given an
instance v ∈ V , the value of solution x ∈ X is the inner product v · x, and x is optimal if it
has maximum value among all feasible solutions.2

2 The non-negativity in this definition of vectors in V, X can be replaced by a weaker condition of v ·x ≥ 0
for every v ∈ V, x ∈ X, and our results will still hold.

APPROX/RANDOM’16
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For concreteness, recall the max-cut example mentioned in Section 1: The instances
are modeled as weighted complete graphs over n nodes, all of which share the same set of
possible cuts. An instance is thus simply a vector of n(n− 1)/2 non-negative edge weights,
and a feasible solution is a {0, 1}-vector indicating the edges that participate in a cut.

We now define a problem relaxation, which is itself a problem achieved by expanding the
original set of feasible solutions:

I Definition 2. A problem π′ = (V, Y ) is a relaxation of problem π = (V,X) if X ⊆ Y . The
solutions in Y are referred to as relaxed solutions.

For every relaxed solution y ∈ Y , V +
y denotes all instances for which the value of y is

strictly positive, and V ∗y denotes all instances for which y is optimal:

V +
y = {v ∈ V | v · y > 0}; V ∗y = {v ∈ V | v · y ≥ v · y′ ∀y′ ∈ Y }. (1)

Finally, we introduce the closure of a problem, achieved by convexifying the set of
instances:

I Definition 3. The problem cl(π) = (C(V ), X) is the closure of problem π = (V,X).

2.1.1 Assumed Properties of Problems and Relaxations
All problems and relaxations we consider in this paper are assumed to have the natural
properties of compactness and positivity unless stated otherwise, and all relaxations are
assumed to be convex:

A problem π = (V,X) is compact if the feasible solution set X is compact, and there is a
compact set V ′ ⊆ Rd≥0 \ {0d} such that the instance set V is {v = cv′ | c ∈ R>0 and v′ ∈
V ′}. Without loss of generality, the vectors in V ′ can also be assumed to be normalized
(i.e.,

∑
k v
′
k = 1). This is a weaker assumption than assuming V is compact, since it allows

unbounded instances as well as instances that approach, but do not reach, 0d. Many
common optimization problems, for example max-cut, are compact: Indeed, the solution
set (cuts) is usually closed and bounded; the value functions that make up the instances
(edge weights) usually exclude the zero function v = 0d, and so can be normalized as
above without loss of generality (without affecting multiplicative approximation factors).
Thus V ′ can be taken to be the set of normalized instances, which is bounded and closed.3
A problem π = (V,X) is positive if for every v ∈ V there is some x ∈ X such that
v · x > 0 (in particular, V is not allowed to include 0d), and for every x ∈ X \ {0d}
there is some v ∈ V such that v · x > 0. In the max-cut example, the first positivity
condition holds because v 6= 0d and so at least one edge must have nonzero weight. For
the second positivity condition, a natural sufficient condition is that the graph has a
spanning tree such that for every edge in the tree, there is an edge-weight function in V
that assigns positive weight to that edge. For every cut x there is at least one edge of the
spanning tree in the cut, and therefore at least one instance v such that v · x > 0. Notice
that by the positivity assumption applied to a relaxation π′, V +

y is nonempty for every
y ∈ Y \ {0d}, ensuring that our definitions (such as Definition 4 below) are well-defined.
A relaxation π′ = (V, Y ) to problem π = (V,X) is convex if the set Y of relaxed solutions
is convex. For example, relaxations that result from formulating the problem as an integer

3 There is also a version of our results that holds when V ′ is not closed, in which sup and inf replace
max and min in the appropriate places.
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program and relaxing it to a linear program are convex. If π′ is convex then in particular
Y includes the convex hull C(X).

Observe that if a problem is compact and positive, then its closure is also compact and
positive.

2.1.2 Integrality Gap
Given a problem π = (V,X) and a relaxation π′ = (V, Y ), an important measure of the
quality of the relaxation is the integrality gap – the worst case (smallest) ratio, over all
possible instances in V , between the value achievable for the instance by a feasible solution
in X, and the value achievable for it by a relaxed solution in Y . Formally:

I Definition 4. Let π = (V,X) and π′ = (V, Y ) be a problem and its relaxation. For every
relaxed solution y ∈ Y \ {0d} and instance v ∈ V +

y , the integrality gap at v, y is

ρπ,π′(v, y) = max
x∈X

v · x
v · y

.

The integrality gap at solution y is then obtained by taking the worst case instance v,
i.e., ρπ,π′(y) = infv∈V +

y
ρπ,π′(v, y). Similarly, the integrality gap at instance v is ρπ,π′(v) =

infy:v∈V +
y
ρπ,π′(v, y). The (overall) integrality gap is ρπ,π′ = infy∈Y \{0d} ρπ,π′(y).

We make several basic observations regarding the integrality gap. Short proofs appear
for completeness in Appendix A.

I Observation 5. The integrality gap ρπ,π′ is ≤ 1.

Informally, the closer ρπ,π′ is to 1, the better the relaxation.
Taking the closure of a problem expands the instance set and so makes it “harder” to get

a good relaxation:

I Observation 6. For every π and relaxation π′, ρcl(π),cl(π′) ≤ ρπ,π′ .

The next observation shows that to find the integrality gap, we may restrict attention to
relaxed solutions that lie on the boundary. Recall that Y is compact, then:

I Observation 7. The overall integrality gap is not affected by the integrality gaps at relaxed
solutions that lie strictly within the boundary: ρπ,π′ = miny∈∂(Y ) ρπ,π′(y).

2.2 Oblivious Rounding
For the definitions in this section, fix a problem π = (V,X) and a relaxation π′ = (V, Y ).

A (randomized) rounding scheme receives an instance v ∈ V and a relaxed solution
y ∈ Y , and returns a distribution over feasible solutions in X. Note that since our objective
functions in V are linear, any distribution over feasible solutions in X can be summarized by
its average, which lies in the convex hull C(X). This leads to the following definition:

I Definition 8. A rounding scheme is a function f : V × Y → C(X).

A rounding scheme is oblivious if it is not allowed to “see” the objective function when
rounding a solution of the relaxed problem:

I Definition 9. An oblivious rounding scheme is a function f : Y → C(X).

I Remark. The rounding schemes we consider, whether oblivious or not, need not be
computable in polynomial time.

APPROX/RANDOM’16
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2.2.1 Approximation Ratio of Oblivious Rounding
Our goal is to study the power of oblivious rounding schemes for approximation. For this we
shall use the following definition – the approximation ratio of an oblivious rounding scheme
is the worst case ratio, over all possible instances in V , between the value achieved for the
instance by a rounded solution in X, and the value achievable for it by the corresponding
relaxed solution in Y . Formally:

I Definition 10. Consider an oblivious rounding scheme f : Y → C(X). For every relaxed
solution y ∈ Y \ {0d}, the approximation ratio of f at y is

απ,π′(y) = inf
v∈V +

y

v · f(y)
v · y

.

The approximation ratio of f is απ,π′ = infy∈Y \{0d} απ,π′(y).

A larger approximation ratio indicates better approximation by the rounding scheme.
A basic observation regarding the approximation ratio is that it is upper-bounded by the
integrality gap. A short proof appears in Appendix A for completeness.

I Observation 11. For every y ∈ Y \ {0d}, the approximation ratio of f at y is at most the
integrality gap at y: απ,π′(y) ≤ ρπ,π′(y). Therefore απ,π′ ≤ ρπ,π′ ≤ 1.

Observation 11 upper-bounds the approximation ratio, and a natural class of interest is
rounding schemes for which this bound is tight:

I Definition 12. An oblivious rounding scheme f : Y → C(X) is tight if απ,π′ = ρπ,π′ , and
individually tight if απ,π′(y) = ρπ,π′(y) for every relaxed solution y ∈ Y \ {0d}.

By definition, individual tightness implies tightness.

2.2.2 Approximation Ratio for Optimal Solutions
We are also interested in the approximation guarantees of oblivious rounding schemes only
for relaxed solutions y ∈ Y which have the following promised property: they are known
to be optimal solutions to some instance of the relaxed problem. Recall from (1) that V ∗y
denotes the set of all instances for which y is an optimal solution.

I Observation 13. If V ∗y is nonempty then y ∈ ∂(Y ).

See Appendix A for a proof.
The two definitions in this subsection are analogous to Definitions 10 (approximation

ratio) and 12 (tightness) above:

I Definition 14. Consider an oblivious rounding scheme f : Y → C(X). For every relaxed
solution y ∈ Y for which V ∗y 6= ∅, the approximation ratio for optimal solutions of f at y is

α∗π,π′(y) = inf
v∈V ∗y

v · f(y)
v · y

.

The approximation ratio for optimal solutions of f is α∗π,π′ = infy∈Y :V ∗y 6=∅{α
∗
π,π′(y)}.

By definition, for every y ∈ Y with nonempty V ∗y it holds that απ,π′(y) ≤ α∗π,π′(y), and
so απ,π′ ≤ α∗π,π′ . Note that this inequality may be strict in some cases, and moreover it is
not necessarily the case that the upper bound ρπ,π′ on απ,π′ is also an upper bound on α∗π,π′
(see Example 35 below). This motivates the next definition:
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I Definition 15. An oblivious rounding scheme f : Y → C(X) is tight for optimal solutions
if α∗π,π′ ≥ ρπ,π′ , and individually tight for optimal solutions if α∗π,π′(y) ≥ ρπ,π′(y) for every
relaxed solution y ∈ Y with nonempty V ∗y .

By definition, individual tightness for optimal solutions implies tightness for optimal
solutions.

3 General Results

In this section we state our results for the general framework; some proofs are deferred
to Appendix B.1. Appendix B.2 discusses implications for oblivious rounding of optimal
solutions. Additional results that concern the applications of the framework to welfare
maximization appear in Section 4.

Recall that the closure of problem π = (V,X) is cl(π) = (C(V ), X) (Definition 3). Our
main general theorem relates the (pointwise) approximation ratio of oblivious rounding to
the integrality gap of the problem’s closure:

I Theorem 16. Given a problem π = (V,X) and a relaxation π′ = (V, Y ):
1. Upper bound: For every oblivious rounding scheme f : Y → C(X), at every point

y ∈ Y \ {0d}, the approximation ratio απ,π′(y) is at most the integrality gap ρcl(π),cl(π′)(y)
of the closure of problem π.

2. Tightness: There exists an oblivious rounding scheme f : Y → C(X) such that απ,π′(y) =
ρcl(π),cl(π′)(y) for every y ∈ Y \ {0d}.

Moreover, our proof method yields the following proposition, by which the approximation
ratio and integrality gap are achieved by the same instance and (random) feasible solution:

I Proposition 17. Given a problem π = (V,X), a relaxation π′ = (V, Y ) and a relaxed
solution y ∈ Y \ {0d}, there exist an instance v ∈ C(V ) and a random feasible solution x ∈
C(X) of the problem cl(π) such that v·xv·y = ρcl(π),cl(π′)(y) = απ,π′(y), where the approximation
ratio is that of the best oblivious rounding scheme at y.

Proof. By Lemma 33. J

Two useful corollaries follow immediately from Theorem 16. First, we have already
observed that απ,π′ ≤ ρπ,π′ (Observation 11) and that ρcl(π),cl(π′) ≤ ρπ,π′ (Observation 6).
It follows from Theorem 16 that for the best oblivious rounding scheme in fact απ,π′ =
ρcl(π),cl(π′).

I Corollary 18. Given a problem π = (V,X) and a relaxation π′ = (V, Y ), there exists
an oblivious rounding scheme f : Y → C(X) that achieves an approximation ratio of
απ,π′ = ρcl(π),cl(π′), and this is the best possible approximation ratio of any oblivious rounding
scheme.

Proof. By Definitions 4 (integrality gap) and 10 (approximation ratio), if for an oblivious
rounding scheme f it holds that απ,π′(y) = ρcl(π),cl(π′)(y) for every y ∈ Y \ {0d}, then
απ,π′ = infy∈Y \{0d} απ,π′(y) = infy∈Y \{0d} ρcl(π),cl(π′) = ρcl(π),cl(π′). By Theorem 16 there
exists such an oblivious rounding scheme. J

I Corollary 19. Given a problem π = (V,X) whose instances form a convex set (i.e.,
π = cl(π)), for every relaxation π′ = (V, Y ), there exists an oblivious rounding scheme
f : Y → C(X) that is individually tight.

APPROX/RANDOM’16
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Proof. By Theorem 16 there exists an oblivious rounding scheme f such that απ,π′(y) =
ρcl(π),cl(π′)(y) for every y ∈ Y \{0d}, and by assumption, ρcl(π),cl(π′)(y) = ρπ,π′(y). The proof
follows from the definition of individual tightness (Definition 12). J

Unlike the statement in Corollary 18, Example 35 shows that the approximation ratio
for optimal solutions α∗π,π′ may surpass the integrality gap of the closure ρcl(π),cl(π′). See
Appendix B.2 for more details on oblivious rounding of optimal solutions.

3.1 Proof of Theorem 16 via Minimax
Our goal in this section is to prove Theorem 16 via our main lemma (Lemma 33), which is a
version of von Neumann’s minimax theorem. In the proof we shall use the classic minimax
theorem for non-finite zero-sum games:

I Theorem 20 ([26]). For every bipartite zero-sum game in which the players’ pure strategy
sets X and V are compact and the payoff function g : V × X → R is continuous, there exists
a unique minimax value µ∗ such that

µ∗ = max
x∈C(X)

min
v∈V

g(v, x) = min
v∈C(V )

max
x∈X

g(v, x). (2)

Moreover, there are equilibrium strategies x∗ ∈ C(X) and v∗ ∈ C(V ) such that x∗ maximizes
g(v∗, x), v∗ minimizes g(v, x∗), and µ∗ = g(v∗, x∗).

I Remark. Throughout this section we shall assume that every problem π = (V,X) has a
compact instance set V in which instances are normalized (i.e.,

∑
k vk = 1). This assumption

is without loss of generality, as we assumed in Section 2.1.1 that V = {v = cv′ | c ∈
R>0 and v′ ∈ V ′} where V ′ is compact and normalized. Since an instance v ∈ V appears
exclusively within the expressions v·x

v·y or v·f(y)
v·y , the multiplying constant c cancels out and

we may as well assume that V = V ′.
We begin with an intuitive (albeit imprecise) explanation of the connection between

the minimax theorem and the approximation ratio of an oblivious rounding scheme. Fix
a problem π = (V,X), a relaxation π′ = (V, Y ) and a relaxed solution y. We claim that
an oblivious rounding scheme f , which maximizes the approximation ratio απ,π′(y) at y, is
equivalent to an optimal mixed strategy in the following zero-sum game (the games used
in the actual proof are slightly different): Given y, the maximizing “rounding” player picks
a mixed strategy f(y) ∈ C(X) over feasible solutions in X, and the minimizing “instance”
player picks an instance v ∈ V as his pure strategy best-response to f(y). The expected
payoff of the rounding player is the ratio v·f(y)

v·y . By the minimax theorem (Theorem 20), the
resulting zero-sum game has a minimax value achieved by the optimal mixed strategy f(y)
and the worst case v for f(y). This value is thus precisely equal to the approximation ratio
απ,π′(y) of the optimal oblivious rounding scheme at y (recall Definition 10). Note that we
require the rounding to be oblivious, hence the rounding player does not know the strategy
v of the instance player when choosing her mixed strategy f(y) given y.

Again by Theorem 20, the minimax value of the game απ,π′(y) is alternatively achieved by
first letting the instance player pick an optimal mixed strategy (a distribution v ∈ C(V ) over
instances), and then allowing the rounding player to pick a best-response feasible solution
x ∈ X. Notice that a mixed strategy v of the instance player is an instance of the closure
cl(π) of the original problem π. Given y and v, the feasible solution x that maximizes the
rounding player’s expected payoff v·x

v·y is precisely the same x that achieves the integrality
gap ρcl(π),cl(π′)(v, y) in Definition 4. Since the instance player is playing an optimal mixed
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strategy, we get that the value of the game απ,π′(y) is equal to ρcl(π),cl(π′)(y). We conclude
that the best approximation ratio at y and the integrality gap at y with respect to the closure
coincide.

Given the above paragraphs, it may seem that the proof of Theorem 16 should follow
directly by invoking Theorem 20. However, the classic minimax theorem is not immediately
applicable in our setting due to a technical difficulty: While we can set the payoff function
g in (2) to be v·x

v·y , the approximation ratio and integrality gap notions are defined with
infv∈V +

y
instead of minv∈V (to avoid division by zero). And while X and V +

y are bounded
and X is also closed, V +

y may not be closed, and therefore may not be compact (unlike V ).
Lemma 33 and its proof show how to circumvent this problem by defining an appropriate
series of zero-sum games. The lemma, its proof and the proof of Theorem 16 are deferred to
Appendix B.1.

4 Application: Welfare Maximization

In this section we demonstrate our framework and results by applying them to the optimization
problem of welfare maximization in combinatorial auctions. In Section 4.1 we state some
preliminaries regarding the problem. In Section 4.2 we show a fairness property of oblivious
rounding for welfare maximization. In Section 4.3 we bound the approximation ratio of
oblivious rounding schemes for welfare maximization with unit demand valuations. In Section
4.4 we use the particular structure of the welfare maximization problem to extend our
impossibility results to rounding of solutions that are guaranteed to be optimal (this is in
contrast to the general case, see, e.g., Example 35). In Section 4.5 we give an explicit example
of an instance that manages to “fool” oblivious rounding attempts.

4.1 Auction Preliminaries

A combinatorial auction involves a set N = [n] of players and a set M = [m] of indivisible
items. Each player i has a valuation νi, which is a function νi : 2M → R≥0 that assigns a real
value to every subset of items S ⊆M (also called a bundle). Valuations are routinely assumed
to be monotone (for every two bundles S ⊆ T , ν(S) ≤ ν(T )), and bounded (assigning values
up to some maximum value µ). An allocation (S1, . . . , Sn) of the items is a (partial) partition
of M into n bundles of items, one per player (some bundles may be empty). The welfare of a
given allocation is the sum of the players’ values for their allocated bundle, i.e.,

∑n
i=1 νi(Si).

The goal of the welfare maximization problem is to find an allocation of the items that
maximizes the welfare.

In the terminology of our framework, an instance of the welfare maximization problem is
a vector v of dimension n ·2m (indexed by pairs (i, S) of player and bundle) containing all the
players’ values for all the bundles, that is, vi,S = νi(S). A feasible solution is a {0, 1}-vector
x of the same length, n · 2m, that indicates which player receives which bundle (up to one
bundle per player), and does not over-allocate the items. Formally, xi,S ∈ {0, 1}, for every
player i,

∑
S xi,S ≤ 1, and for every item j,

∑
i,S:j∈S xi,S ≤ 1.

The welfare maximization problem can be formulated as an integer program, and its
standard relaxation is the associated linear program, called the configuration LP (see
Appendix C.1). A relaxed solution is a vector y with [0, 1]-entries, which can be thought
of as an allocation of fractional rather than indivisible items, via an allocation of fractions
of bundles. It must still hold that at most one of each item is allocated (

∑
i,S:j∈S yi,S ≤ 1

for every item j), and that each player receives at most one bundle (
∑
S yi,S ≤ 1 for every

APPROX/RANDOM’16
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player i). In other words, a relaxed solution is any (fractional) feasible solution to the
configuration LP.

A class of welfare maximization problems that has been extensively studied in the literature
is welfare maximization with gross substitutes valuations. Such valuations play a crucial role
in microeconomics [14] and in discrete convex optimization [19]; for a recent algorithmic
survey see [21]. There are many equivalent definitions of gross substitutes valuations, one of
which we give for completeness in Appendix C.1.

An important property of gross substitutes valuations is that the integrality gap of the
configuration LP is 1.

I Proposition 21 ([2]). The integrality gap of the configuration LP for gross substitutes
valuations is 1.

Moreover, if all valuations are gross substitutes, then the welfare maximization problem
can be solved optimally in polynomial time [17, 18].

A subclass of gross substitutes valuations is the class of unit-demand valuations. A
valuation ν is unit-demand if there exists a vector (ν1, . . . , νm) ∈ Rm≥0 such that for every
bundle S, ν(S) = maxj∈S(νj).

Also relevant to our study is the class of coverage valuations. A valuation ν is a coverage
function if it can be described by a tuple ν = 〈E,w, {Ej}j〉, where: (1) E is a ground set of
elements, (2) w : E → R≥0 is a weight function that assigns a weight w(e) for every element
e ∈ E, and (3) for every item j ∈ [m], Ej ⊆ E is the subset of elements covered by item j;
and for every bundle of items S ⊆M , it holds that ν(S) =

∑
e∈
⋃

j∈S
Ej
w(e). The class of

coverage valuations is a strict superset of unit-demand valuations (and is incomparable with
gross substitutes). Coverage valuations are well-studied, with a particular surge in attention
in the context of social networks (see, e.g., [1, 5]).

The convex hull of the class of unit-demand valuations is strictly larger than the class itself.
In particular, the following lemma asserts that the convex hull of unit-demand valuations is
precisely the class of coverage valuations (see Appendix C.2 for a proof).

I Lemma 22. The class of coverage valuations is the convex hull of unit-demand valuations.

4.2 A Fairness Property
In the context of welfare maximization, oblivious rounding with good approximation guaran-
tees also offers certain guarantees per player. The intuition is that a rounding scheme that is
ignorant to the instance has no way of telling which player contributes what to the welfare,
and so must approximately preserve the welfare contributions of all players from behind its
veil of ignorance. This can be viewed as a fairness property of oblivious rounding.

I Proposition 23. Consider an oblivious rounding scheme f for the welfare maximization
problem and its configuration LP relaxation, which has approximation ratio α. Then for
every instance v and fractional allocation y, f(y) guarantees for each player i, in expectation,
an α-fraction of the player’s value

∑
S vi,Syi,S in y.

Proof. Assume for contradiction that there is a player i for which this is not the case. Then
we can create a new instance v′ in which only player i’s valuation is non-zero, meaning that
all welfare comes from this player (note that while we do not allow an all zero valuation,
assigning zero valuations to all players other than player i is valid). Since f is oblivious, it
should achieve the approximation ratio α for v′, contradiction. J
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4.3 Impossibility Results
In this section we prove two impossibility results on the approximation ratios of oblivious
rounding schemes for unit-demand valuations. These bounds extend to gross substitutes
valuations.

I Proposition 24. The approximation ratio of any oblivious rounding scheme for welfare
maximization with two unit-demand players and the configuration LP relaxation is at most
5/6.

I Proposition 25. The approximation ratio of any oblivious rounding scheme for welfare
maximization with n unit-demand players and the configuration LP relaxation is at most
≈ 0.782.

These impossibility results are in stark contrast to Proposition 21. In particular, while
the integrality gap of the configuration LP is 1 even for a strict superclass of unit demand
(i.e., gross substitutes), oblivious rounding for unit-demand valuations is quite limited in its
performance.

Proof of Proposition 24. By Corollary 18 and Lemma 22, it is sufficient to show an instance
with two coverage valuations that has an integrality gap of 5/6. We claim that the instance in
[10] for two players with submodular valuations satisfies these conditions. Let us describe the
example explicitly using our notation, and showing in the process that the players’ valuations
are coverage functions.

There are four items and two players. For reasons that will become apparent shortly, it will
be convenient to name the items a11, a12, a21, a22. There are six elements {H1, H2, V1, V2, D1,

D2}. In both valuation functions, the coverage of elements by items is identical, but they
differ in the weights of the different elements. We first state the coverage structure. For
every element e, we denote the set of items that cover element e by ē. Let H̄1 = {a11, a12},
H̄2 = {a21, a22}, V̄1 = {a11, a21}, Similarly, let V̄2 = {a12, a22}, D̄1 = {a11, a22}, and
D̄2 = {a12, a21}.

We now state the weights of the elements according to ν1 and ν2. Let wi(e) denote the
weight of element e according to νi. For player 1, w1(H1) = w1(H2) = 0, w1(V1) = w1(V2) =
2, and w1(D1) = w1(D2) = 1. For player 2, w2(H1) = w2(H2) = 2, w2(V1) = w1(V2) = 0,
and w2(D1) = w2(D2) = 1.

For example, ν1({a11, a12}) = w1(H1) + w1(V1) + w1(V2) + w1(D1) + w1(D2) = 6, and
ν2({a11, a12}) = w2(H1) + w2(V1) + w2(V2) + w2(D1) + w2(D2) = 4.

One may verify that the following fractional solution has welfare 12: player 1 receives
a fraction 1/2 of bundle H̄1 and a fraction 1/2 of bundle H̄2. This gives player 1 value 6.
Player 2 receives a fraction 1/2 of bundle V̄1 and a fraction 1/2 of bundle V̄2. This gives
player 2 value 6. It can be verified that no integer assignment of items gives total welfare
above 10, establishing that the integrality gap is no better than 5/6. This establishes the
assertion of the proposition. J

Proof of Proposition 25. By Corollary 18 and Lemma 22, it is sufficient to show an instance
with n coverage valuations and an integrality gap of ≈ 0.782. We claim that the instance in
[10] for n players with submodular valuations satisfies these conditions.

Let us recall the instance. There are n players and nn items arranged in an n dimensional
cube. A line in direction i is a set of n points whose projection on the ith coordinate gives
all values from 0 to n− 1. There are nn(n−1) lines in direction i. The valuation function νi
is defined such that νi(S) equals the fraction of lines in direction i hit by set S. One can
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verify that the valuation of player i is the following coverage valuation: Associate an element
with every line in direction i, and let each item cover the elements corresponding to lines
that contain it. The weight of every element is 1/nn(n−1). As shown in [10], the integrality
gap of this instance is ≈ 0.782. This establishes the assertion of the proposition. J

4.4 Impossibility Results for Optimal Solutions
We now define a strong notion of per-player guarantee. Consider an instance of the welfare
maximization problem. A relaxed solution y = {yi,S} (a fractional solution of the configura-
tion LP) is said to be individually optimal for this instance if the fractional value of every
player in the solution x is his maximum possible value. Assuming that all valuations are
monotone, this means that

∑
S yi,Sνi(S) = νi(M) for every player i.

The significance of individual optimality lies in the following lemma. Consider a class of
valuations P . Let v be an instance with valuations ν1, . . . , νn ∈ C(P ), and let ρ(v) denote
its integrality gap (as defined in Definition 4; we omit here the problem and relaxation from
the notation). Let y = {yi,S} be an optimal relaxed solution for instance v, i.e., an optimal
fractional solution to the configuration LP, whose welfare (LP objective value) we denote by
LP(v, y).

I Lemma 26. If y is individually optimal for v, then the approximation ratio for optimal
solutions of any oblivious rounding scheme at y is at most ρ(v).

Proof. By definition, for every i, there exist valuations νik ∈ P such that νi =
∑
k λikνik.

For valuation νi and a fractional solution y, let νi(y) =
∑
S yi,Sνi(S). Let α∗(y) denote the

approximation ratio for optimal solutions of an oblivious rounding of y with respect to P ,
and let f be the oblivious rounding scheme achieving α∗(y). Consider random instances
with valuations in P , where in every instance player i has valuation νik with probability λik
(independently). For every random instance, the expected welfare obtained by f is at least
α∗(y) ·

∑
i νik(y) (Proposition 23).

We claim that the individual optimality of y implies that y is also individually optimal
for every random instance (i.e., νik(y) = νik(M) for every i, k). Suppose otherwise, i.e.,
suppose there exist i, k such that νik(y) < νik(M). Then, for that player i it follows (by
monotonicity of the valuation) that

∑
k λikνik(y) <

∑
k λikνij(M). On the other hand,∑

k λikνik(y) = νi(y) = νi(M), so we get νi(M) >
∑
k λikνik(M), contradiction.

Substituting νik(y) = νij(M), and taking a weighted average over all instances, we get
that the expected value obtained by f is at least α∗(y)

∑
ik λikνik(M) = α∗(y)

∑
i νi(M) =

α∗(y) LP(v, y). Now observe that f obtains the same ratio α∗(y) on the original instance v;
therefore, α(y) ≤ ρ(v) (otherwise, it contradicts the integrality gap of v). J

The following proposition follows directly from Lemma 26.

I Proposition 27. Consider the problem of welfare maximization with valuations from P

and its configuration LP relaxation. Let v be an instance attaining the integrality gap for
C(P ), and let y = {yi,S} be an optimal solution of the configuration LP for instance v. If y
is individually optimal, then the approximation ratio for optimal solutions α∗ of any oblivious
rounding scheme is at most the integrality gap of C(P ).

Proof. Follows directly from Lemma 26, and from the definition of the approximation ratio
for optimal solutions. Recall that this ratio is the infimum over the approximation ratios for
optimal solutions of all y ∈ Y for which V ∗y is nonempty (Definition 14). J
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I Corollary 28. The impossibility results in Propositions 24 and 25 apply also to the approx-
imation ratio of oblivious rounding of optimal solutions of the configuration LP.

Proof. The proof is by applying Proposition 27 and verifying that the instances in the proofs
of Propositions 24 and 25 admit an individually optimal fractional solution. In the instance
used in the proof of Proposition 24, the optimal fractional solution is individually optimal
since this solution gives agent 1 a fraction 1/2 of each of H̄1, H̄2, and agent 2 a fraction 1/2
of each of V̄1, V̄2. In the instance used in the proof of Proposition 25, the optimal fractional
solution is individually optimal since the solution gives a player i the n level sets with respect
to coordinate i, each with probability 1/n. J

4.5 How to Fool Oblivious Rounding

To gain intuition as to why oblivious rounding fails to round optimally, we now describe a
two-player instance related to the instance in the proof of Proposition 24, and show why no
oblivious rounding can succeed in rounding it with an approximation ratio better than 5/6.
The instance is simple, including two players with unit-demand valuations and {0, 1} values.

I Example 29. There are four items and two players. The items are a11, a12, a21, a22. Recall
that a unit-demand function νi can be expressed by {νij}j∈M , where ν(S) = maxj∈S νij .
In our example, νij ∈ {0, 1} for every i, j. We adopt the following notation used in the
proof of Proposition 24: H̄1 = {a11, a12}, H̄2 = {a21, a22}, V̄1 = {a11, a21}, V̄2 = {a12, a22},
D̄1 = {a11, a22}, and D̄2 = {a12, a21}. We denote by Si the items j such that νij = 1. The
valuation functions are as follows: S1 is V̄1 or V̄2, each with probability 1/3, and is D̄1 or
D̄2, each with probability 1/6. S2 is H̄1 or H̄2, each with probability 1/3, and is D̄1 or D̄2,
each with probability 1/6.

Observe that for every realization of the valuations there exists an integral solution with
social welfare 2. In addition, for every realization it holds that ν1(H̄1) = ν1(H̄2) = 1 and
ν2(V̄1) = ν2(V̄2) = 1. Therefore, a fractional solution that assigns a fraction 1/2 of each of
H̄1 or H̄2 to player 1, and a fraction 1/2 of each of V̄1 or V̄2 to player 2, obtains optimal
welfare of 2.

We next show that for every integral solution the expected social welfare is at most 5/3.
Assigning H̄1 to player 1 and H̄2 to player 2, or vice versa, grants player 1 value 1 and player
2 an expected value of 2/3. An analogous argument holds for the assignment of V̄1 and V̄2;
and the assignment of D̄1 and D̄2 grants every player an expected value of 5/6. Each of
these assignments gives welfare 5/3. Finally, it is easy to see that assigning a single item to
one player and a triplet to the other derives even less welfare (3/2).

We conclude that any oblivious rounding obtains welfare at most 5/3, which is 5/6 of the
optimal solution.

5 Oblivious Rounding in the Literature

We list here several examples of rounding schemes which are oblivious, as well as schemes which
are not oblivious. It is interesting to notice that for welfare maximization with budget additive
valuations, which is not closed under convex combinations, the best known approximation is
not oblivious, whereas for welfare maximization with submodular valuations, which is closed
under convex combinations, the best-known approximation is oblivious. Additional examples
appear in [7].
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Examples of Oblivious Rounding

Threshold rounding for vertex cover [13].
Randomized rounding for set cover [22].
Random hyperplane rounding for max cut [11].
Welfare maximization for fractionally subadditive (XOS) and submodular valuations
[8, 10].
Randomized metarounding for congestion [3].

Examples of Non-Oblivious Rounding

Rounding of semidefinite programs (SDPs) for the constraint satisfaction problem (CSP)
[23].
Welfare maximization with budget-additive valuations [25, 4].
Facility location [16].

6 Conclusion and Open Questions

In this work we have systematically studied the notion of oblivious rounding and its approx-
imation guarantees, with applications to the welfare maximization problem. We mention
several directions for future research. First, are there optimization problems that are not
closed under convex combinations, where the best known approximation is achieved by an
oblivious rounding scheme, and can potentially be improved by considering non-oblivious
rounding schemes? For which problems are there polynomial-time computable oblivious
rounding schemes that are comparable to the integrality gap? Finally, what else can we hope
to learn about the most promising rounding techniques from properties of the combinatorial
problem?
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A Appendix for Section 2

A.1 Missing Proofs
Proof of Observation 5. Since X is compact, there exist x∗ ∈ X and v∗ ∈ V such that
x∗ = arg maxx∈X v∗ · x (and thus in particular v∗ ∈ V +

x∗). Set the relaxed solution y to be x∗
(this is a valid choice since x∗ ∈ Y ). Then ρπ,π′(y) ≤ 1, since 1 can be achieved by choosing
the instance v in the definition of ρπ,π′(y) to be v = v∗. The observation follows. J

Proof of Observation 6. For every y ∈ Y \ {0d}, the set of instances v such that v · y > 0
expands when we replace v ∈ V by v ∈ C(V ). Thus for every y, ρcl(π),cl(π′)(y) ≤ ρπ,π′(y),
and the observation follows. J
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Proof of Observation 7. Let y ∈ Y \ ∂(Y ) be a point not on the boundary, and let δ > 1 be
a scalar such that δy ∈ ∂(Y ). For every v ∈ V +

y , v ·y ≤ v ·δy, and so ρπ,π′(v, y) ≥ ρπ,π′(v, δy).
It follows that ρπ,π′(y) ≥ ρπ,π′(δy), proving the observation. J

Proof of Observation 11. This follows from Definitions 4 (integrality gap) and 10 (approx-
imation ratio), and by noticing that even if f(y) ∈ C(X) \X, for every v ∈ V there must be
some x ∈ X with v · x ≥ v · f(y). J

Proof of Observation 30. Fix y and v ∈ V +
y . Let f ′ be the oblivious rounding scheme that

rounds y to f(δy). So f ′ is reasonable by definition, and achieves v·f ′(y)
v·y = v·f(δy)

v·y ≥ v·f(δy)
v·δy .

Taking the infimum over v maintains these relations, and so the observation holds. J

Proof of Observation 31. Let y ∈ Y \ ∂(Y ), y 6= 0d be a point not on the boundary, and
let δ > 1 be a scalar such that δy ∈ ∂(Y ). Since f is reasonable, απ,π′(y) ≥ απ,π′(δy), and
since απ,π′ is achieved by taking the infimum over Y \ {0d}, the observation follows. J

Proof of Observation 13. Let y ∈ Y \ ∂(Y ) be a point not on the boundary, and let δ > 1
be a scalar such that δy ∈ ∂(Y ). Then for every v ∈ V such that v · y > 0, v · y < v · δy and
so v /∈ V ∗y . If v · y = 0, then by positivity of π′, again v /∈ V ∗y . We conclude that V ∗y is empty,
completing the proof. J

A.1.1 Approximation Ratio of Reasonable Oblivious Rounding
We recall our assumption that π′ is a convex relaxation. We say that an oblivious rounding
scheme f is reasonable if it guarantees, for every relaxed solution y ∈ Y \ {0d}, at least the
approximation ratio απ,π′(δy) that it achieves for δy ∈ ∂(Y ) (where δ ≥ 1 is the scaler by
which y needs to be multiplied to reach the boundary). Assuming reasonability is without
loss of generality as the following observation shows (see Appendix A for a proof):

I Observation 30. For every oblivious rounding scheme f there is a reasonable oblivious
rounding scheme f ′ such that for every y ∈ Y ′ \ {0d}, the approximation ratio of f ′ at y is
at least the approximation ratio of f at δy ∈ ∂(Y ), and so the overall approximation ratio of
f ′ is at least that of f .

For reasonable rounding schemes, the approximation ratios matter only on the boundary
(see Appendix A for a proof):

I Observation 31. The overall approximation ratio of any reasonable oblivious rounding
scheme is not affected by the approximation ratios at relaxed solutions that lie strictly within
the boundary: απ,π′ = miny∈∂(Y ) απ,π′(y).

By Observations 7 and 31, if f is a reasonable oblivious rounding scheme and απ,π′(y) =
ρπ,π′(y) for every y ∈ ∂(Y ), then f is tight (Definition 12).

B Appendix for Section 3

B.1 Proof of Theorem 16: Missing Details
We now formally state and prove our main lemma. We use (C(V ))+

y to denote the set of
instances v ∈ C(V ) such that v · y > 0 (recall that V +

y is the set of such instances in V rather
than in C(V )). We also use the following simple observation:

I Observation 32. There exists ε > 0 and x′ ∈ C(X) such that for every v ∈ V , v · x′ ≥ ε.
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Proof. Every feasible solution in X is a vector assigning nonnegative values to d variables
x1, . . . , xd. We may assume without loss of generality that for every coordinate 1 ≤ j ≤ d,
there is some solution xj ∈ X for which the variable xj has strictly positive value. (Otherwise
the variable xj has value 0 in all feasible solutions and hence is redundant.) Consider a
solution x′ = 1

d

∑d
j=1 x

j ∈ C(X). All its coordinates are strictly positive. Recall that every
v ∈ V is nonnegative and not identically 0d. Consequently x′ · v > 0 for every v ∈ C(v).
Moreover, our assumption that V is compact (see Section 2.1.1) together with the continuity
of the inner product function implies that the function f(v) = x′ · v attains a minimum over
v ∈ V . Let ε = minv∈V [x′ · v] and note that ε > 0. J

I Lemma 33. Fix y ∈ Y \ {0d}. There exists a value µ∗ such that

µ∗ = max
x∈C(X)

inf
v∈V +

y

v · x
v · y

= inf
v∈(C(V ))+

y

max
x∈X

v · x
v · y

. (3)

Moreover, there is a choice of x∗ ∈ C(X) and v∗ ∈ (C(V ))+
y such that x∗ maximizes v∗·x

v∗·y ,
v∗ minimizes v·x∗

v·y , and µ
∗ = v∗·x∗

v∗·y .

Proof. Given y ∈ Y \ {0d}, consider a series of two-player zero-sum games parameterized by
µ ∈ R≥0. In each such game, the rounding player has strategy set X, the instance player has
strategy set V , and the payoff to the rounding player for choices x ∈ X, v ∈ V is v ·x−µ(v ·y)
(i.e., we use the difference as payoff instead of the ratio). Since X and V are both compact
by assumption (see Section 2.1.1 and Remark 3.1), then Theorem 20 applies, and the unique
minimax value pµ of the game with parameter µ is

pµ = max
x∈C(X)

min
v∈V
{v · x− µ(v · y)} = min

v∈C(V )
max
x∈X
{v · x− µ(v · y)}.

Let xµ ∈ C(X), vµ ∈ C(V ) be equilibrium strategies that achieve the minimax value pµ (by
Theorem 20, such strategies are guaranteed to exist).

We now observe some properties of pµ as a function of µ:
pµ is bounded: This is by the assumption that X and V are bounded.
For sufficiently small µ, pµ is positive: By Observation 32, maxx∈c(X) minv∈V {v · x} ≥
minv∈C(V )[x′ · v] ≥ ε. Taking µ to be sufficiently small we can ensure that µ(v · y) ≤ ε

2
for every v ∈ V , because both y and V are bounded.
For every µ such that pµ ≤ 0 we have that vµ · y > 0 for every equilibrium strategy
vµ (otherwise pµ = vµ · xµ and the rounding player can choose xµ ∈ C(X) such that
vµ · xµ > 0). Hence vµ ∈ (C(V ))+

y .
For large enough µ, pµ is negative: Fix v+ ∈ C(V )+

y . Since C(X) is bounded, we can set
µ > (v+ · x)/(v+ · y) for every x ∈ C(X). In particular, v+ · xµ − µ(v+ · y) < 0, and so
since vµ is an equilibrium strategy, pµ = vµ · xµ − µ(vµ · y) ≤ v+ · xµ − µ(v+ · y) < 0.
pµ is monotone (weakly) decreasing in µ: Let µ̄ > µ. Then

pµ̄ = vµ̄ · xµ̄ − µ̄(vµ̄ · y)
≤ vµ · xµ̄ − µ̄(vµ · y) (4)
≤ vµ · xµ − µ(vµ · y), (5)

where (4) holds since vµ̄, xµ̄ are equilibrium strategies, and (5) holds since vµ, xµ are
equilibrium strategies and −µ̄ < −µ.
Let µ′ be the smallest µ such that pµ′ ≤ 0, then pµ is monotone strictly decreasing for
µ ≥ µ′: For every µ ≥ µ′, by monotonicity pµ ≤ 0, and so vµ · y > 0. Thus for every
µ ≥ µ′, we can replace “≤” by “<” in (5).
pµ is continuous when µ > 0.

APPROX/RANDOM’16



8:20 Oblivious Rounding and the Integrality Gap

Given the above properties of pµ, there is a unique µ∗ > 0 for which pµ∗ = 0. We know
that vµ∗ · y > 0, or equivalently, vµ∗ ∈ (C(V ))+

y . The condition vµ∗ · xµ∗ − µ∗(vµ∗ · y) = 0
with positive vµ∗ · y implies that µ∗ = v∗·x∗

v∗·y . This completes the proof. J

Proof of Theorem 16. Fix y ∈ Y \ {0d}. On the one hand, for every oblivious rounding
scheme f , recall from Definition 10 that the approximation ratio of f at y is απ,π′(y) =
infv∈V +

y

v·f(y)
v·y . Hence the oblivious rounding scheme with the optimal approximation ratio at

y is the one that rounds y to f(y) = arg maxx∈C(X) infv∈V +
y

v·x
v·y , achieving an approximation

ratio of

απ,π′(y) = max
x∈C(X)

inf
v∈V +

y

v · x
v · y

. (6)

On the other hand, recall from Definition 4 that the integrality gap at y with respect to the
closure is

ρcl(π),cl(π′)(y) = inf
v∈(C(V ))+

y

max
x∈X

v · x
v · y

. (7)

So both parts of the theorem follow from Lemma 33, which states that (6) and (7) are
equal. J

B.2 Rounding Optimal Solutions
A corollary of Theorem 16 applies to the approximation guarantees of oblivious rounding
for solutions known to be optimal. The corollary follows directly from the observation in
Section 2.2.2 that for every y ∈ Y with nonempty V ∗y , απ,π′(y) ≤ α∗π,π′(y).

I Corollary 34. Given a problem π = (V,X) and a relaxation π′ = (V, Y ), there exists
an oblivious rounding scheme f : Y → C(X) that achieves an approximation ratio of
α∗π,π′(y) ≥ ρcl(π),cl(π′)(y) at every point y with nonempty V ∗y . The overall approximation
ratio of f is α∗π,π′ ≥ ρcl(π),cl(π′).

If π = cl(π) then there exists an oblivious rounding scheme f : Y → C(X) that is
individually tight for optimal solutions.

Proof. By Definitions 4 (integrality gap) and 14 (approximation ratio for optimal solutions),
if for an oblivious rounding scheme f it holds that απ,π′(y) = ρcl(π),cl(π′)(y) for every
y ∈ Y \ {0d}, then α∗π,π′(y) ≥ απ,π′(y) = ρcl(π),cl(π′)(y) for every y with nonempty V ∗y . By
Theorem 16 there exists such an oblivious rounding scheme. It follows that α∗π,π′ ≥ ρcl(π),cl(π′).
If ρcl(π),cl(π′)(y) = ρπ,π′(y) for every y with nonempty V ∗y , then α∗π,π′(y) ≥= ρπ,π′(y), which
by definition implies individual tightness for optimal solutions (Definition 15). J

The next example shows that, unlike the case in Corollary 18, there may be oblivious
rounding schemes whose approximation ratio for optimal solutions α∗π,π′ surpasses the
integrality gap of the closure ρcl(π),cl(π′). The reason for this difference is that α∗π,π′ only
takes into account relaxed solutions that are guaranteed to be optimal for some instance of
the relaxation.

I Example 35. Consider a problem π = (V,X) of dimension 2, where the instances
are V = {v1, v2} = {(1, 0), (0, 1)} and the feasible solutions are X = {x1, x2, x3} =
{(0, 0), (1, 0), (0, 1)}. (For concreteness this example can be thought of as a welfare maximiz-
ation problem with a single item and two buyers, where either: the first buyer has value 1 for
the item and the other has value 0 – this is the first instance; or vice versa – this is the second
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instance. See Section 4 for more on welfare maximization.) Consider a relaxation π′ = (V, Y )
where Y is a quadrilateral “kite” with vertices {(0, 0), (1, 0), ( 3

4 ,
3
4 ), (0, 1)}. The closures

cl(π), cl(π′) have an instance set C(V ) which is the set of vectors {(λ, 1− λ) | λ ∈ [0, 1]}.
Oblivious rounding of the point y = ( 3

4 ,
3
4 ) gives a point f(y) that belongs to C(X), i.e.,

to the triangle with vertices {(0, 0), (1, 0), (0, 1)}. For any such point f(y), min{v1 · f(y), v2 ·
f(y)} ≤ 1

2 whereas v1 ·y = v2 ·y = 3
4 , and so the approximation ratio απ,π′(y) of any oblivious

rounding scheme at y is ≤ 1
2/

3
4 = 2

3 . By rounding y to ( 1
2 ,

1
2 ) we get απ,π′(y) = 2

3 . It also
follows that the overall approximation ratio of the best oblivious rounding scheme is ≤ 2

3 .
Consider now the integrality gap ρcl(π),cl(π′)(y) at y with respect to the closure. For

every (λ, 1 − λ) ∈ C(V ), max{( 1
2 ,

1
2 ) · x1, ( 1

2 ,
1
2 ) · x2, ( 1

2 ,
1
2 ) · x3} = max{λ, 1 − λ} ≥ 1

2
whereas (λ, 1 − λ) · y = 3

4 , and so the integrality gap is ≤ 2
3 . Since ( 1

2 ,
1
2 ) ∈ C(V ) we get

ρcl(π),cl(π′)(y) = 2
3 . This is equal to the approximation ratio απ,π′(y) of the best oblivious

rounding scheme at y, as known from Theorem 16. It also follows that the overall integrality
gap ρcl(π),cl(π′) is ≤ 2

3 .
However, the point y = ( 3

4 ,
3
4 ) is not an optimal solution of the relaxation with respect to

either of the instances in V . The set of optimal solutions {y ∈ Y | V ∗y 6= ∅} includes only x2
and x3, and so the identity function is an oblivious rounding scheme with approximation
ratio of 1 for optimal solutions. We conclude that 1 = α∗π,π′ > ρcl(π),cl(π′) = 2

3 .

C Appendix for Section 4

C.1 Gross Substitutes and the Configuration LP

I Definition 36. A valuation ν is gross substitutes if the following holds. Consider any two
item-price vectors p, q ∈ Rm such that q ≥ p. Let S be a bundle such that ν(S)−

∑
j∈S pj ≥

ν(T )−
∑
j∈T pj for every bundle T . Let S′ = {j ∈ S | qj = pj}. Then there exists a bundle

U such that S′ ⊆ U and ν(U)−
∑
j∈U qj ≥ ν(T )−

∑
j∈T qj for every bundle T .

In words, a valuation is gross substitutes if for every bundle that maximizes the player’s
utility (value for the bundle minus the aggregate price of its items) given a price vector p,
when prices of some of the items are raised, the items whose prices were not raised still
participate in a bundle that maximizes the player’s utility given the new price vector q.
Intuitively, this monotonicity property facilitates the greedy approach in a similar way to
matroid properties.

I Definition 37. The integer programming formulation of the welfare maximization problem
is the following:

max
∑
i,S xi,Svi,S

s. t. ∑
S xi,S ≤ 1 ∀i ∈ N (8)∑

i,S:j∈S xi,S ≤ 1 ∀j ∈M (9)
xi,S ∈ {0, 1} ∀i ∈ N,S ⊆M.

Constraint (8) corresponds to the requirement that no more than one bundle be allocated
per player, and Constraint (9) corresponds to the requirement that no item is over-allocated.
Note that the welfare maximization instance v appears only in the objective and does not
affect X.

APPROX/RANDOM’16
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I Definition 38. The relaxed solution set Y of the configuration LP relaxation to the welfare
maximization problem is the set of vectors y that are feasible solutions to the following LP:

max
∑
i,S yi,Svi,S

s. t. ∑
S yi,S ≤ 1 ∀i ∈ N (10)∑

i,S:j∈S yi,S ≤ 1 ∀j ∈M (11)
yi,S ≥ 0 ∀i ∈ N,S ⊆M.

Constraints (10) and (11) correspond to the same requirements as in the integer program-
ming formulation above. However, the variables yi,S can now take any value in the interval
[0, 1], unlike the integral constraint in the IP problem.

C.2 Proof of Lemma 22: Coverage is the Closure of Unit-Demand

In this section we provide a proof of Lemma 22 for completeness (cf., [6], Appendix A.1).

Proof of Lemma 22. Let UD and COV be the classes of unit-demand and coverage valu-
ations, respectively. To prove the proposition we show that C(UD) ⊆ COV and COV ⊆
C(UD). To show that C(UD) ⊆ COV, it is shown, in Lemma 39, that every unit-demand
valuation is a coverage valuation (i.e., UD ⊆ COV and thus C(UD) ⊆ C(COV)), and, in
Lemma 40, we show that the C(COV) ⊆ COV. The fact that COV ⊆ C(UD) is established
in Lemma 41, and this completes the proof. J

I Lemma 39. Every unit-demand valuation is a coverage valuation.

Proof. Let v be a unit-demand valuation. We describe a coverage valuation v′ satisfying
v′(S) = v(S) for every set S ⊆M . Assume, by renaming, that v1 ≤ v2 ≤ · · · ≤ vm, and let
∆j = vj − vj−1. Let D be the set of indices of distinct values; i.e., D = {j ∈ [m]|∆j > 0}
(with the convention that v0 = −1). Associate an element with every distinct value vj and
set its weight to ∆j . For every item j, Ej (i.e., the set of elements covered by j) is the set of
elements corresponding to items up to item j. For example, if there are 4 items with values
v1 = 1, v2 = 1, v3 = 3, v4 = 8, then there would be three elements, corresponding to items
1, 3, 4 with weights 1, 2, 5, respectively. For every S ⊆M it holds that

v′(S) =
∑

e∈
⋃

j∈S
Ej

w(e) = max
j∈S

∑
e∈Ej

w(e) = max
j∈S

∑
k∈D∧k≤j

∆k = max
j∈S

vj = v(S),

as desired. J

I Lemma 40. A convex combination of coverage functions is a coverage function.

Proof. Let v1 = 〈E1, w1, {E1
j }j〉 and v2 = 〈E2, w2, {E2

j }j〉 be two coverage functions. It
is sufficient to show that for every λ ∈ [0, 1], v(S) = λv1(S) + (1 − λ)v2(S) is a coverage
function, where S ranges over all subsets of M . Let E = E1⊎E2, and let w : E → R≥0

be a weight function defined as w(e) = λw1(e) for every e ∈ E1, and w(e) = (1 − λ)w2(e)
for every e ∈ E2. Finally, for every item j ∈M , let Ej = E1

j

⊎
E2
j . Consider the coverage
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function v = 〈E,w, {Ej}j〉. For every set S ⊆M it holds that

v(S) =
∑

e∈
⋃

j∈S
E1

j

⊎
E2

j

w(e)

=
∑

e∈
⋃

j∈S
E1

j

w(e) +
∑

e∈
⋃

j∈S
E2

j

w(e)

=
∑

e∈
⋃

j∈S
E1

j

λw1(e) +
∑

e∈
⋃

j∈S
E2

j

(1− λ)w2(e)

= λv1(S) + (1− λ)v2(S),

as desired. J

I Lemma 41. Every coverage valuation can be expressed as a convex combination of unit-
demand valuations.

Proof. Let v = 〈E,w, {Ej}j〉 be a coverage valuation, and let k = |E| be the number of
elements in E. We show that there exist k unit-demand valuations, whose average valuation
for any set S equals v(S). Associate a unit-demand function with every element as follows.
For every element e ∈ E, let Se = {j ∈M : e ∈ Ej} be the set of items that cover element e.
The unit-demand valuation ve associated with element e is defined by

vej =
{
k · w(e), if j ∈ Se
0, otherwise.

For every set of items S ⊆ M , let ES =
⋃
j∈S Ej , and let 1{e ∈ ES} be a binary function

that returns 1 iff e ∈ ES . We show that v(S) can be written as a convex combination of the
unit-demand functions described above. Indeed, for every set S ⊆M ,

1
k

∑
e∈E

ve(S) = 1
k

∑
e∈E

1{e ∈ ES}k · w(e)

= 1
k

∑
e∈ES

k · w(e)

=
∑
e∈ES

w(e) = v(S). J
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