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Abstract
Given n elements with nonnegative integer weights w = (w1, . . . , wn), an integer capacity C and
positive integer ranges u = (u1, . . . , un), we consider the counting version of the classic integer
knapsack problem: find the number of distinct multisets whose weights add up to at most C. We
give a deterministic algorithm that estimates the number of solutions to within relative error ε in
time polynomial in n, logU and 1/ε, where U = maxi ui. More precisely, our algorithm runs in
O(n

3 log2 U
ε log n logU

ε ) time. This is an improvement of n2 and 1/ε (up to log terms) over the best
known deterministic algorithm by Gopalan et al. [FOCS, (2011), pp. 817-826]. Our algorithm is
relatively simple, and its analysis is rather elementary. Our results are achieved by means of a
careful formulation of the problem as a dynamic program, using the notion of binding constraints.
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1 Introduction

In this paper we target at designing a deterministic fully polynomial time approximation
scheme (FPTAS) for one of the most basic #P-complete counting problems – counting the
number of integer knapsack solutions. Given n elements with nonnegative integer weights
w = (w1, . . . , wn), an integer capacity C, and positive integer ranges u = (u1, . . . , un), we
consider the counting version of the classic integer knapsack problem: find the size of the
set of feasible solutions KNAP(w,C, u) = {x |

∑
i≤n wixi ≤ C, 0 ≤ xi ≤ ui}. (We assume,

w.l.o.g., that wiui ≤ C for all i.) We give a deterministic FPTAS for this problem that
for any tolerance ε > 0 estimates the number of solutions within relative error ε in time
polynomial in the (binary) input size and 1/ε.

Our result. Our main result is the following theorem (the base of the logarithms in this
paper are all 2 unless otherwise specified).
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I Theorem 1. Given a knapsack instance KNAP(w,C, u) with U = maxi ui and ε > 0,
there is a deterministic O(n

3 log2 U
ε log n logU

ε ) algorithm that computes an ε-relative error
approximation for |KNAP(w,C, u)|.

Relevance to existing literature. The field of approximate counting is largely based on
Markov Chain Monte Carlo Sampling [6], a technique that is inherently randomized, and has
had remarkable success, see [10] and the references therein. The first approximation schemes
for counting integer knapsack solutions are fully polynomial randomized approximation
schemes (FPRASs). Given parameters ε > 0 for the error tolerance and 1 > δ > 0 for the
failure probability, the FPRAS returns a solution which is correct with probability at least
1− δ, and the running time is required to be polynomial in the (binary) input size, 1/ε and
in log(1/δ). To the best of our knowledge, the best FPRAS up to date is given by Dyer [1],
and is achieved by combining dynamic programming (DP, to be distinguished from dynamic
program by context) with simple rejection sampling. The complexity of the algorithm is
O(n5 + n4/ε2), so in fact the algorithm is strongly polynomial (see, e.g., [7]), that is, the
number of arithmetic operations is polynomial in n and independent of C,U .

To the best of our knowledge, the currently best (deterministic) FPTAS for this problem is
given by Gopalan et al. [3], and has complexity O(n

5

ε2 log2 U logW ), where W =
∑
i wiui +C

(see also [2]). We note that the real achievement of [2] is providing an FPTAS for the
multidimensional version of the problem. Because of this reason they use a somewhat more
sophisticated approach than ours, relying on read-once branching programs and insight from
Meka and Zuckerman [8].

We note in passing that the first (deterministic) FPTAS for counting 0/1 knapsack
solutions (i.e., our problem restricted to the case where u = (1, . . . , 1)) is given by Štefankovič
et al. [10] and runs in O(n3ε−1 log(n/ε)) time. The currently best (deterministic) FPTAS
runs in O(n3ε−1 log(1/ε)/ logn) time [9].

Technique used. In this paper we give two FPTASs that are based upon formulating the
counting problem as a DP. Instead of deciding at once how many copies of item i to put in
the knapsack, we split the decision into a sequence of at most log ui binary sub-decisions
concerning (not necessarily all the) bundles of 1, 2, 4, . . . , 2bloguic copies of the item. In order
to translate this into a DP, we use the idea of what we call binding constraints, as explained
in detail below. The first FPTAS uses a primal DP formulation and approximates it via
the recent technique of K-approximation sets and functions introduced by [5], which we
overview in Section 3.1. The second FPTAS uses a dual DP formulation and approximates it
in a similar way [10] approximate the 0/1 knapsack problem. We overview their solution in
Section 4.1.

Our contribution. While not strongly polynomial, the running time of our solutions are
of order n and 1/ε (up to log terms) faster than the (randomized, but strongly-polynomial)
algorithm of Dyer [1]. The complexity of our solutions is also better by factors of n2 and
1/ε (up to log terms) than the (non strongly-polynomial, but deterministic) algorithm of
Gopalan et al. [3]. Moreover, our algorithms are relatively simple and their analysis is rather
elementary. A second contribution is our new DP technique – binding constraints, which
may be of independent interest.

Organization of the paper. In Section 2 we introduce the notion of binding constraints. In
Section 3 we design an FPTAS which is based upon a primal DP formulation of the problem.
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Figure 1 A list of feasible solutions for a knapsack of size 5 and a single item of weight 1 and
maximal number of copies 5, i.e., KNAP((1), 5, (5)).

Our second FPTAS, based upon a dual DP formulation, is given in Section 4. In this way we
showcase that the notion of binding constraints is useful for the primal as well as the dual
DP formulation.

2 Binding constraints and the integer knapsack problem

In this section we present the idea behind the notion of binding constraints. Instead of
deciding at once how many copies of item i to put in the knapsack, we split the decision into
blog uic+ 1 binary sub-decisions. If the values of the various ui are all powers of 2 (minus
one), then the binary sub-decisions j = 1, . . . , blog uic+1 for item i are equivalent to deciding
whether to put in the knapsack “bundles” of 2j−1 copies of item i. E.g., for u1 = 7 we split
the decision concerning item 1 into the 3 independent binary sub-descisions of whether to put
in the knapsack 1, 2, 4 more copies of item 1. In this case there is a simple DP formulation
which is equivalent to a 0/1 knapsack problem with exactly

∑n
i=1 log(ui + 1) items. But

when not all values of the various ui are powers of 2 (minus one), then splitting into binary
sub-decisions is more complicated as a binary sub-decision may not be independent on the
previous sub-decision. We demonstrate this in Example 2.

I Example 2. Suppose we have a knapsack of size 5 and at most 5 copies of a single item
of weight 1, i.e., the instance (w = (1); C = 5; u = (5)). We split the item into 3 different
subitems consisting of bundles of 4, 2, 1 copies of the original item, and decide sequentially
upon putting these subitems in the knapsack. Figure 1 shows that the 3 binary sub-decisions
are not pairwise independent: The decision tree has 3 levels, corresponding to the 3 subitems.
We denote a decision to put (not to put) an item in the knapsack by “+” (“-”), respectively.
The figure shows that if we decide to put the item of weight 4 (leftmost uppermost fork), we
cannot put the subitem of weight 2, so the constraint u1 = 5 becomes binding. On the other
hand, if we decide not to put the subitem of weight 4 in the knapsack (rightmost uppermost
fork), the remaining 2 sub-decisions are independent of each other.

In the DP formulations (2) and (7) we encode whether the constraint is or is not binding
in the third subscript of the variable (denoted by “r”).

APPROX/RANDOM’16
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3 Algorithm via a primal DP formulation

A pseudo-polynomial algorithm is achieved using the following recurrence:

si(j) =
∑mi(j)
k=0 si−1(j − kwi) 2 ≤ i ≤ n, j = 1, . . . , C,

s1(j) = m1(j) + 1 j = 1, . . . , C,
(1)

where function mi : [0, . . . , C]→Z+ is defined as mi(j) := max{x ∈ Z+ | x ≤ ui, xwi ≤ j}
and returns the maximum number of copies of item i that can be placed in a knapsack with
capacity j. Here si(j) is the number of integer knapsack solutions that use a subset of the
items {1, . . . , i} whose weights sum up to at most j. The solution of the counting problem
is therefore sn(C). The complexity of this pseudo-polynomial algorithm is O(nUC), i.e.,
exponential in both the (binary) sizes of U and C. We call such formulation primal because
the range of the functions in (1) is the number of solutions.

In order to get our FPTAS we give in Section 3.2 a more careful DP formulation which is
exponential only in the (binary) size of C. Before doing so, we briefly overview the technique
of K-approximation sets and functions in Section 3.1. We use this technique in order to get
our first FPTAS. In Section 2 we introduce the idea behind the notion of binding constraints.
We use this notion in order to get both FPTASs.

3.1 K-approximation sets and functions
Halman et al. [5] have introduced the technique of K-approximation sets and functions, and
used it to develop an FPTAS for a certain stochastic inventory control problem. Halman
et al. [4] have applied this tool to develop a framework for constructing FPTASs for a
rather general class of stochastic DPs. This technique has been used to yield FPTASs to
various optimization problems, see [4] and the references therein. In this section we provide
an overview of the technique of K-approximation sets and functions. In the next section
we use this tool to construct FPTASs for counting the number of solutions of the integer
knapsack problem. To simplify the discussion, we modify Halman et al.’s definition of the
K-approximation function by restricting it to integer-valued nondecreasing functions.

Let K ≥ 1, and let ϕ : {0, . . . , B} → Z+ be an arbitrary function. We say that
ϕ̃ : {0, . . . , B} → Z+ is a K-approximation function of ϕ if ϕ(x) ≤ ϕ̃(x) ≤ Kϕ(x) for
all x = 0, . . . , B. The following property of K-approximation functions is extracted from
Proposition 5.1 of [4], which provides a set of general computational rules of K-approximation
functions. Its validity follows directly from the definition of K-approximation functions.

I Property 3. For i = 1, 2 let Ki ≥ 1, let ϕi : {0, . . . , B} → Z+ and let ϕ̃i : {0, . . . , B} → Z+

be a Ki-approximation of ϕi. The following properties hold:
Summation of approximation: ϕ̃1+ϕ̃2 is a max{K1,K2}-approximation function of ϕ1+ϕ2.
Approximation of approximation: If ϕ2 = ϕ̃1 then ϕ̃2 is a K1K2-approximation function

of ϕ1.

LetK > 1. Let ϕ : {0, . . . , B} → Z+ be a nondecreasing function andW = {k1, k2, . . . , kr}
be a subset of {0, . . . , B}, where 0 = k1 < k2 < · · · < kr = B. We say that W is a K-
approximation set of ϕ if ϕ(kj+1) ≤ Kϕ(kj) for each j = 1, 2, . . . , r − 1 that satisfies
kj+1 − kj > 1. This means that the values of ϕ on consecutive points of the approximation
set essentially form a geometric progression with ratio of approximately K. (Consecutive
points of the approximation set itself do not necessarily form a geometric sequence.) It is
easy to see that given ϕ, there exists a K-approximation set of ϕ with cardinality O(logKM),
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Algorithm 1 Function Compress(ϕ,K) returns a step nondecreasing K-approximation
of ϕ
1: Function Compress(ϕ,K)
2: obtain a K-approximation set W of ϕ
3: return the K-approximation function of ϕ induced by W

where M is any constant upper bound of ϕ(·). Furthermore, this set can be constructed in
O
(
(1 + tϕ) logKM log2B

)
time, where tϕ is the amount of time required to evaluate ϕ (see

[4, Prop. 4.6] for a formal proof).
Given ϕ and a K-approximation set W = {k1, k2, . . . , kr} of ϕ, a K-approximation

function of ϕ can be obtained easily as follows [4, Def.4.4]: Define ϕ̂ : {0, . . . , B} → Z+ such
that

ϕ̂(x) = ϕ(kj) kj−1 < x ≤ kj and j = 2, . . . , r,

and that

ϕ̂(k1) = ϕ(k1).

Note that ϕ(x) ≤ ϕ̂(x) ≤ Kϕ(x) for x = 0, . . . , B. Therefore, ϕ̂ is a nondecreasing K-
approximation function of ϕ. We say that ϕ̂ is the K-approximation function of ϕ induced
by W .

The procedure for the construction of a K-approximation function ϕ̃ for ϕ is stated as
Algorithm 11. By applying approximation of approximation in Property 3 and the discussion
above we get the following result (see also [4, Prop. 4.5]).

I Proposition 4. Let K1,K2 ≥ 1 be real numbers, M > 1 be an integer, and let ϕ :
[0, . . . , B]→[0, . . . ,M ] be a nondecreasing function. Let ϕ̄ be a nondecreasing K2-approxima-
tion function of ϕ. Then Function Compress(ϕ̄,K1) returns in O((1 + tϕ̄)(logKM logB))
time a nondecreasing step function ϕ̃ with O(logK1 M) steps which K1K2-approximates ϕ.
The query time of ϕ̃ is O(log logK1 M) if it is stored in a sorted array {(x, ϕ̃) | x ∈W}.

Halman et al. have designed a framework that yields FPTASs for DPs that posses a
certain monotone structure [4]. (We say that a DP has depth T if it consists of T sequential
recursive equations. In our case the state space of the DP consists of all possible remaining
capacities in the knapsack and the action space is binary – to put or not to put a certain
(sub)item in the knapsack.)

I Theorem 5. (Adapted from [4, Thm. 8.2]) A monotone DP with depth T , |action space| ≤
A, |state space| ≤ S and bound M on the maximal value of the solution admits an
O(T

2

ε A logS logM log T logM
ε ) time FPTAS.

We note in passing that the original result [4, Thm. 8.2] is stated for very large (expo-
nential) action spaces. Theorem 5 is a version modified for action spaces of size polynomial
in the input size and is achieved by performing the minimization in [4, equation (7.1)] over
the entire action space. See the proof of [4, Thm. 8.2] for detail about algorithm analysis.

1 The author thanks Jim Orlin for suggesting the presentation of this function, as well as the term
“Compress”.

APPROX/RANDOM’16
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3.2 A more efficient DP formulation
In this section we reformulate (1) as a DP that can be solved in time pseudo-polynomial
in the (binary) size of C only. As explained above, instead of deciding at once how many
copies of item i to put in the knapsack, we break the decision into blog+mi(j)c+ 1 binary
sub-decisions. Sub-decision ` = 1, . . . , blog+mi(j)c+ 1 checks the possibility of putting 2`−1

copies of item i in the knapsack. We do so using, what we call, the idea of binding constraints.
For ` ≥ 1 let zi,`,0(j) be the number of solutions for a knapsack of capacity j that use a
subset of the items {1, . . . , i}, put no more than 2` − 1 copies of item i, and no more than
uk copies of item k, for k = 1, . . . , i− 1. For ` ≥ 1 let zi,`,1(j) be the number of solutions
for a knapsack of capacity j that use a subset of the items {1, . . . , i}, put no more than ui
mod 2` copies of item i, and no more than uk copies of item k, for k = 1, . . . , i− 1. In this
way, considering the third index of zi,`,r(j), if r = 0 then the constraint x ≤ ui is assumed
to be non binding. If, on the other hand, r = 1 then the constraint x ≤ ui may be binding.
Before giving the formal recurrences we need a few definitions. Let log+ x := max{0, log x}.
Let msb(x, i) := blog(x mod 2i)c+ 1. msb(x, i) is therefore the most significant 1-digit of (x
mod 2i) if (x mod 2i) > 0, and is −∞ otherwise. E.g., msb(5, 2) = 1 and msb(4, 1) = −∞.
Our recurrences are as follows:

zi,`,0(j) = zi,`−1,0(j) + zi,`−1,0(j − 2`−1wi) ` = 2, . . . , blog+mi(j)c+ 1 , (2a)
zi,`,1(j) = zi,`−1,0(j) + zi,msb(ui,`−1),1(j − 2`−1wi) ` = 2, . . . , blog+mi(j)c+ 1 , (2b)

zi,1,r(j) = zi−1,blog+ mi−1(j)c+1,1(j)+
+zi−1,blog+ mi−1(j−wi)c+1,1(j − wi) ,

(2c)

zi,−∞,1(j) = zi−1,blog+ mi−1(j)c+1,1(j) , (2d)
z1,`,r(j) = m1(j) + 1 ` = 1, . . . , blog+m1(j)c+ 1 , (2e)
zi,`,r(j) = 0 j < 0, (2f)

where r = 0, 1 , i = 2, . . . , n , and j = 0, . . . , C , unless otherwise specified. The solution of
the counting problem is therefore zn,blogunc+1,1(C). The time needed to solve this program
is only O(nC logU).

We now explain the six equations in formulation (2) in more detail. Equation (2a) deals
with the case where the constraint x ≤ ui is non binding, so putting 2` − 1 more copies of
item i in a knapsack of remaining capacity j is a feasible possibility. Clearly, in the following
steps the constraint x ≤ ui remains non binding. As for equation (2b), it deals with the
case where the constraint x ≤ ui may be binding when putting 2`−1 copies of item i in the
knapsack. If we do put this number of copies, the constraint may be binding, otherwise it
is assured to be non binding. Equation (2c) deals with the possibility of putting an odd
number of copies of item i in the knapsack. Equation (2d) is only called by equation (2b),
when exactly ui copies of item i are put in the knapsack. Equation (2e) deals with the initial
condition of one element only, and the last equation deals with the boundary condition that
there is not enough capacity in the knapsack.

In order to design an FPTAS to our problem, we first extend the DP formulation (2)
to any integer positive index ` by letting zi,`,r(j) = 0 for i = 1, . . . , n , r = 0, 1 and
` > blog+mi(j)c+1. (Note that without this extension zi,`,r(·) is not necessarily defined over
the entire interval (−∞, . . . , C]. Moreover, this extended formulation assures that zi,`,r(·) is
monotone nondecreasing.) We denote this extended set of recurrences by (3). The solution
of the counting problem via (3) remains zn,blogunc+1,1(C).

From the fact that zi,`,r(·) are monotone nondecreasing functions and that the action is
binary, one can apply Theorem 5 with parameters set to T ∼ O(n logU), A = 2, S = C and
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Algorithm 2 FPTAS for counting integer knapsack.
1: Function CountIntegerKnapsackPrimal(w,C, u, ε)
2: K ← (n−1)(blog Uc+1)+1√1 + ε

3: for ` := 1 to blog u1c+ 1 and r = 0, 1 do z̃1,`,r ← Compress(z1,`,r,K) /* z1,`,r as defined in
(3) */

4: for i := 2 to n do
5: z̃i,−∞,1(·)← z̃i−1,blog+ mi−1(·)c+1,1(·)
6: for r = 0, 1 do z̃i,1,r(·)← Compress(z̃i−1,blog+ mi−1(·)c+1,1(·) + z̃i−1,blog+ mi−1(·−wi)c+1,1(· −

wi),K)
7: for ` := 2 to blog uic+ 1 do
8: z̃i,`,0(·)← Compress(z̃i,`−1,0(·) + z̃i,`−1,0(· − 2`−1wi),K)
9: z̃i,`,1(·)← Compress(z̃i,`−1,0(·) + z̃

i,msb(ui,`−1),1(· − 2`−1wi),K)
10: end for
11: end for
12: return z̃n,blogunc+1,1(C)

M = Un and get an O(n
3

ε log3 U logC log n logU
ε ) time FPTAS. For the sake of completeness,

in the next section we explicitly state the FPTAS for our problem and sketch its analysis.

3.3 Algorithm statement

The idea behind our approximation algorithm is to compute an approximation for
zn,blogunc+1,1(C) by using the recurrences in (3). This is done by recursively comput-
ing K-approximation functions for the O(

∑n
i=1blog uic) different functions in (3). Due to

summation of approximation coupled with approximation of approximation (Property 3)
there is a deterioration of at most factor K between the ratio of approximation of zi,`,r and
that of zi,`−1,r (for ` > 1), as well as between the ratio of approximation of zi,1,r and that of
zi−1,blogui−1c+1,r. Therefore, by choosing K = (n−1)(blog Uc+1)+1

√
1 + ε one gets that the total

accumulated multiplicative error over the entire algorithm does not exceed 1 + ε. For a
given instance (w,C, u) of the integer knapsack problem and a tolerance parameter ε ∈ (0, 1],
our approximation algorithm is formally given as Function CountIntegerKnapsackPri-
mal(w,C, u, ε), see Algorithm 2. (From hereon after we use the notation z(·), where the
“·” stands for the argument of function z. E.g., the value of z(· − w) for variable value 2 is
z(2− w). Put it differently, the function z is shifted by −w.)

The proof that CountIntegerKnapsackPrimal(w,C, u, ε) returns an approximated
number of solutions that varies from the exact number of solutions by relative error of at most
ε is done by double induction over i and `, and shows that z̃i,`,r is a K(i−2)(blogUc+1)+`+1-
approximation of zi,`,r for i = 2, . . . , n, ` = 0, . . . , blog uic + 1 and r = 0, 1. See the full
version of this paper for a formal proof.

We next analyze the complexity of the algorithm. Clearly, the running time of the
algorithm is dominated by the operations done in the inner for-loop, i.e., steps 8-9, which are
executed O(n logU) times. We analyze, w.l.o.g., a single execution of step 8. By Proposition 4,
the query time of each of the z̃i,`−1,0(·) and z̃i,`−1,0(·) is O(log logKM), where M is an upper
bound on the counting problem, e.g., M = Un. Therefore, applying again Proposition 4,
each call to Compress runs in O(logKM logC log logKM) time. Using the inequality
(1 + x

n )n ≤ 1 + 2x which holds for 0 ≤ x ≤ 1 we get that K ≥ 1 + ε

2
(

(n−1)(blogUc+1)+1
) . Using

the inequality log(1+y) ≥ y which holds for y ∈ [0, 1], and changing the bases of the logarithms
to two, we get that the overall running time of the algorithm is O(n

3

ε log3 U logC log n logU
ε ).

APPROX/RANDOM’16
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4 Algorithm via a dual DP formulation

In this section we provide an FPTAS to counting integer knapsack solutions using the analysis
of [10] for counting 0/1 knapsack solutions. Our FPTAS will be faster than the one presented
in the previous section by a factor of logU logC.

4.1 The 0/1 knapsack

In this section we present the main ideas used to derive the FPTAS to counting 0/1 knapsack
solutions [10, Sec. 2]. Štefankovič et al. [10] begin by defining a dual DP formulation as
follows. For i = 1, . . . , n let τi(a) be the smallest capacity C such that there exist at least
a solutions to the knapsack problem with items 1, 2, . . . , i and capacity C. Using standard
conventions, the value of τ0 is given by

τ0(a) =


−∞ if a = 0 ,
0 if 0 < a ≤ 1 ,
∞ otherwise.

(4)

It follows that the number of knapsack solutions satisfies Z = max{a | τn(a) ≤ C}. [10, Lem.
2.1] states that τi(a) satisfies the following recurrence:

τi(a) = min
α∈[0,1]

max
{
τi−1(αa),
τi−1((1− α)a) + wi .

(5)

Intuitively, to obtain a solutions that consider the first i items, we need to have, for some
α ∈ [0, 1], αa solutions that consider the first i− 1 items and (1− α)a solutions that contain
the ith item and consider the first i− 1 items. The recursion tries all possible values of α
and take the one that yields the smallest (optimal) value for τi(a). We call such formulation
dual because the range of the functions in (4)-(5) is the capacity of the knapsack.

[10] then move to an approximation of τ that can be computed efficiently and define
function T : {0, . . . , s}→R+ ∪ {∞} which only considers a small subset of values a for the
argument in τ(·), these values form a geometric progression. Let

T0(a) =


−∞ if a = 0 ,
0 if 0 < a ≤ 1 ,
∞ otherwise,

and let

Q := 1 + ε

n+ 1 , s := dlogQ 2ne = O(n2/ε).

The functions Ti(·) are defined via the recurrence (5) that the function τ satisfies. Namely,
T is defined by the following recurrence:

Ti(j) = min
α∈[0,1]

max
{
Ti−1(j + logQ α),
Ti−1(j + logQ(1− α)) + wi .

(6)

The FPTAS computes all Ti(·) exhaustively and returns Qj′+1, where j′ := max{j | Tn(j)) ≤
C}, see [10] for the analysis of the FPTAS.



N. Halman 9:9

4.2 The dual DP formulation
In what follows we show that even if the values of the ui are not all powers of 2 (minus one)
we can still give a recurrence using, what we call, the idea of binding constraints. For ` ≥ 1
let τi,`,0(a) be the minimal knapsack capacity needed so that there are at least a solutions
that use a subset of the items {1, . . . , i}, put no more than 2` − 1 copies of item i, and no
more than uk copies of item k, for k = 1, . . . , i − 1. For ` ≥ 1 let τi,`,1(a) be the minimal
knapsack capacity needed so that there are at least a solutions that use a subset of the items
{1, . . . , i}, put no more than ui mod 2` copies of item i, and no more than uk copies of
item k, for k = 1, . . . , i − 1. In this way, considering the third index of τi,`,r(a), if r = 0
then the constraint x ≤ ui is assumed to be non binding. If, on the other hand, r = 1 then
the constraint x ≤ ui may be binding. Our recurrences are as follows (for simplicity we set
u0 = 1. Recall that the definition of msb(·) is given in Section 3.2):

τi,`,0(a) = min
α∈[0,1]

max
{
τi,`−1,0(αa),
τi,`−1,0((1− α)a) + 2`−1wi

` = 2, . . . , blog uic+ 1 (7a)

τi,`,1(a) = min
α∈[0,1]

max
{

τi,`−1,0(αa),
τi,msb(ui,`−1),1((1− α)a) + 2`−1wi

` = 2, . . . , blog uic+ 1 (7b)

τi,1,r(a) = min
α∈[0,1]

max
{
τi−1,blogui−1c+1,1(αa),
τi−1,blogui−1c+1,1((1− α)a) + wi

r = 0, 1 (7c)

τi,−∞,1(a) = τi−1,blogui−1c+1,1(a) (7d)

τ0,1,1(a) =


−∞ if a = 0 ,
0 if 0 < a ≤ 1 ,
∞ otherwise.

(7e)

where i = 1, . . . , n. The number of knapsack solutions satisfies

Z = max{a | τn,blog+ unc+1,1(a) ≤ C}.

We now explain the five equations in formulation (7) in more detail. Equation (7a) deals
with the case where the constraint x ≤ ui is non binding, so placing in the knapsack 2` − 1
more copies of item i is a feasible possibility. Clearly, in the following steps the constraint
x ≤ ui remains non binding. As for equation (7b), it deals with the case where the constraint
x ≤ ui may be binding when putting 2`−1 copies of item i in the knapsack. If we do put this
number of copies, the constraint may be binding and at most ui mod 2`−1 more copies can
be placed in the knapsack. Otherwise it is assured to be non binding. Equation (7c) deals
with the possibility of placing in the knapsack an odd number of copies of item i. As for
equation (7d), note that it is called by equation (7b) when exactly ui copies of item i are
put in the knapsack. Equation (7e) is a boundary condition similar to (4).

We now define an approximation Ti,`,r of τi,`,r similarly to the 0/1-knapsack case, but
where

Q := 1 + ε

(n+ 1) logU , s := dlogQ(Un)e = O(n
2 log2 U

ε
).

The function Ti,`,r is defined using the recurrence (7). E.g., using (7a) we define:

Ti,`,0(j) = min
α∈[0,1]

max
{
Ti,`−1,0(j + logQ α),
Ti,`−1,0(j + logQ(1− α)) + 2`−1wi .

(8)

APPROX/RANDOM’16
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Algorithm 3 FPTAS for counting integer knapsack via dual DP formulation.
1: Function CountIntegerKnapsackDual(w,C, u, ε)
2: Q← 1 + ε

(n+1) logU , s← dlogQ(Un)e, T0,1,1(0)← 0, T0,1,1(j)←∞ for j > 0
3: for i := 1 to n do
4: By convention, Ti,`,r(k)← 0 for ` ≥ 1, r = 0, 1 and k < 0
5: Calculate Ti,−∞,1(·) via the analogue of equation (7d)
6: for r = 0, 1 do Calculate Ti,1,r(·) via the analogue of equation (7c)
7: for ` := 2 to blog uic+ 1 do
8: Calculate Ti,`,0(·) via the analogue of equation (7a), i.e., via equation (8)
9: Calculate Ti,`,1(·) via the analogue of equation (7b)

10: end for
11: end for
12: j′ ← max{j | Tn,blogunvc,1(j) ≤ C}
13: return Qj

′+1

4.3 Algorithm statement

Similarly to the algorithm given in [10], also our algorithm computes all Ti,`,r(·) exhaustively
and returns Qj′+1, where j′ := max{j | Tn,blogunvc,1(j)) ≤ C}. For a given instance (w,C, u)
of the integer knapsack problem and a tolerance parameter ε ∈ (0, 1], our approximation
algorithm is stated as Algorithm 3.
We now outline an analysis of the running time of Algorithm 3. Since the arguments of
function Ti,`,r in (8) and alike are step functions of α, it suffices to consider a discrete set of α
which yields all possible values of the arguments. Such set is of cardinality O(s). Because the
various Ti,`,r are nondecreasing functions of α, the minima in (8) and alike can be computed
in time O(log s) via binary search. Note that there are O(ns) entries of the various functions.
As explained in the analysis in [10], the algorithm can be implemented in O(ns log s) time.
Since we have s = O(n

2 log2 U
ε ), the algorithm can be implemented in O(n

3 log2 U
ε log n logU

ε )
time, as indicated in Theorem 1. We note that the running time of the algorithm differs
from the one of [10] because in the latter case we have a different value of s, i.e., s = O(n

2

ε ).

5 Concluding remarks

In this paper we present two deterministic FPTASs for counting integer knapsack solutions,
each of which improves upon the best known results. Both FPTASs relay on clever DP
formulations and the new DP technique of binding constraints. The only strongly polynomial
approximation scheme for this problem is a (randomized) FPRAS [1]. It is an open problem
to design an FPTAS that is both strongly-polynomial and deterministic. It is also an open
problem to design an FPTAS for the multidimensional knapsack problem that is more efficient
than the one of [2].
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