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Abstract
A line of work initiated by Terhal and DiVincenzo [19] and Bremner, Jozsa, and Shepherd [6],
shows that restricted classes of quantum computation can efficiently sample from probability
distributions that cannot be exactly sampled efficiently on a classical computer, unless the PH
collapses. Aaronson and Arkhipov [3] take this further by considering a distribution that can be
sampled efficiently by linear optical quantum computation, that under two feasible conjectures,
cannot even be approximately sampled within bounded total variation distance, unless the PH
collapses.

In this work we use Quantum Fourier Sampling to construct a class of distributions that
can be sampled exactly by a quantum computer. We then argue that these distributions cannot
be approximately sampled classically, unless the PH collapses, under variants of the Aaronson-
Arkhipov conjectures.

In particular, we show a general class of quantumly sampleable distributions each of which
is based on an “Efficiently Specifiable” polynomial, for which a classical approximate sampler
implies an average-case approximation. This class of polynomials contains the Permanent but
also includes, for example, the Hamiltonian Cycle polynomial, as well as many other familiar
#P-hard polynomials.

Since our distribution likely requires the full power of universal quantum computation, while
the Aaronson-Arkhipov distribution uses only linear optical quantum computation with nonin-
teracting bosons, why is our result interesting? We can think of at least three reasons:
1. Since the conjectures required in [3] have not yet been proven, it seems worthwhile to weaken

them as much as possible. We do this in two ways, by weakening both conjectures to apply to
any “Efficiently Specifiable” polynomial, and by weakening the so-called Anti-Concentration
conjecture so that it need only hold for one distribution in a broad class of distributions.

2. Our construction can be understood without any knowledge of linear optics. While this may
be a disadvantage for experimentalists, in our opinion it results in a very clean and simple
exposition that may be more immediately accessible to computer scientists.

3. It is extremely common for quantum computations to employ “Quantum Fourier Sampling”
in the following way: first apply a classically efficient function to a uniform superposition of
inputs, then apply a Quantum Fourier Transform followed by a measurement. Our distribu-
tions are obtained in exactly this way, where the classically efficient function is related to
a (presumed) hard polynomial. Establishing rigorously a robust sense in which the central
primitive of Quantum Fourier Sampling is classically hard seems a worthwhile goal in itself.
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1 Introduction

It is a major goal of computational complexity theory to establish “quantum superiority”,
obtaining provable settings in which quantum algorithms attain speedups over classical
algorithms. Despite the importance of this endeavor, the best evidence that quantum
computers can efficiently solve decision problems outside NP comes from oracle results, see,
e.g., [1, 11, 10]. A line of work initiated by DiVincenzo and Terhal [19] and Bremner, Jozsa
and Shepherd [6] asks whether we can provide a theoretical basis for quantum superiority
by studying distribution sampling problems. Since then, there have been many other exact
sampling results, giving examples of distributions with quantum samplers, which cannot be
sampled exactly by classical randomized algorithms, see, e.g., [9, 12, 15]. These hardness
results are restrictive in that they do not hold in the approximate setting, whereby the
classical algorithm is allowed to sample from any distribution close in total variation distance
to the idealized quantum distribution.

Aaronson and Arkhipov took this a step further, by giving a distribution that can be
sampled efficiently by a restrictive form of quantum computation, that assuming the validity
of two feasible conjectures, cannot be approximately sampled classically1, unless the PH
collapses [3]. The equivalent result for decision problems, establishing BQP 6⊂ BPP unless
the PH collapses, would be a crowning achievement in quantum complexity theory. In
addition, this research has been very popular with experimentalists who hope to perform
this task, “Boson Sampling”, in their labs. Experimentally, it seems more relevent to analyze
the hardness of approximate quantum sampling, since it is unreasonable to expect that
any physical realization of a quantum computer can itself exactly sample from its idealized
distribution.

In addition to experimental motivation, it is also known that if we can find such a
quantumly sampleable distribution for which no classical approximate sampler exists, there
exists a “search” problem that can be solved by a quantum computer that cannot be solved
classically [2]. In a search problem we are given an input x ∈ {0, 1}n, and our goal is to
output an element in a nonempty set, Ax ⊆ {0, 1}poly(n) with high probability. Establishing
this separation, which is not known to follow from exact sampling hardness results, would
certainly be one of the strongest pieces of evidence to date that quantum computers can
outperform their classical counterparts.

In this work we use the same general algorithmic framework used in many quantum
algorithms, which we refer to as “Quantum Fourier Sampling”, to demonstrate the existence
of a general class of distributions that can be sampled exactly by a quantum computer. We
then argue that these distributions cannot be approximately sampled classically, unless the
PH collapses. Perhaps surprisingly, we obtain and generalize many of the same conclusions
as Aaronson and Arkhipov [3] with a completely different class of distributions.

Additionally, concurrently, and independent of us, an exciting result by Bremner, Mon-
tanaro and Shepherd [7] obtains similar quantum “approximate sampling” results under
related but different conjectures. While our construction has the advantage of a broader
class of hardness conjectures, their distribution can be sampled by a class of commuting
quantum computations known as Instantaneous Quantum Polynomial time, or IQP. This
is an advantage of their result, since our quantum sampler likely requires the full power of
universal quantum computation.

1 Indeed, this argument and ours hold even if the classical sampler is a randomized algorithm with access
to a PH oracle. Therefore it can be interpreted as further evidence that quantum computers can solve
problems outside the PH.
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2 Overview

Our goal is to find a class of distributions that can be sampled efficiently on a quantum
computer that cannot be approximately sampled classically. A natural methodology toward
showing this is to prove that the existence of a classical approximate sampler implies that a
#P-hard function can be computed in the PH. By Toda’s Theorem [20], this would imply a
collapse of the PH.

In this work, we demonstrate a class of distributions that can, at least in principle, be
sampled exactly on a quantum computer. We prove that the existence of an approximate
sampler for these distributions implies the existence of a procedure that approximates
an “Efficiently Specifiable” polynomial on average. Informally, an Efficiently Specifiable
polynomial is a sum of multilinear monomials in which the variables in each monomial can
be computed efficiently from the index of the monomial. This includes, among others, the
Permanent and Hamiltonian Cycle polynomial.

Computing a multiplicative approximation to the Permanent (or the square of Permanent)
with integer entries in the worst-case is #P-hard, and computing the Permanent on average
is #P-hard (see e.g., [3] for more details). The challenge to proving our conjectures is to put
these together to prove that an average-case multiplicative approximation to the Permanent
(or for that matter, any Efficiently Specifiable polynomial) is still a #P-hard problem. Since
we can’t prove these conjectures, and we don’t know the ingredients such a proof will require,
it seems worthwhile to attempt to generalize the class of distributions that can be sampled
quantumly.

The conjectures we need to prove hardness of approximate sampling are weakened
analogues of the conjectures in Aaronson and Arkhipov’s results [3]. They conjecture
that an additive approximate average-case solution to the Permanent with respect to the
Gaussian distribution with mean 0 and variance 1 is #P-hard. They further propose an
“Anti-concentration” conjecture which allows them to reduce the hardness of multiplicative
approximate average-case solutions to the Permanent over the Gaussian distribution to the
hardness of additive average case solutions to the Permanent over the Gaussian distribution.
The parameters of our conjectures match the parameters of theirs, but our conjectures are
broader, so that they need only hold for one such Efficiently Specifiable polynomial, (one of
which is the Permanent), and any one of a wider class of distributions.

3 Quantum Preliminaries

In this section we cover a few basic priciples of quantum computing needed to understand
the content in the paper. For a complete overview there are many references available, e.g.,
[13, 16].

We first recall the concept of quantum evaluation of an efficiently classically computable
function f : {0, 1}n → {0, 1}m, which in one quantum query to f maps:∑

x∈{0,1}n
|x〉|z〉 →

∑
x∈{0,1}n

|x〉|z ⊕ f(x)〉 .

Note that this is a unitary map and can be implemented efficiently as long as f is efficiently
computable.

We need the following lemma, which will be useful for our quantum sampler.

I Lemma 1. Let h : [m] → {0, 1}n be an efficiently computable one-to-one function, and
suppose its inverse can also be efficiently computed. Then the superposition 1√

m

∑
x∈[m]

|h(x)〉

can be efficiently prepared by a quantum algorithm.

TQC 2016
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Proof. Our quantum procedure with two quantum registers proceeds as follows:
1. Prepare 1√

m

∑
x∈[m]

|x〉|00...0〉

2. Query h using the first register as input and the second as output:

1√
m

∑
x∈[m]

|x〉|h(x)〉

3. Query h−1 using the second register as input and the first as output:

1√
m

∑
x∈[m]

|x⊕ h−1(h(x))〉|h(x)〉 = 1√
m

∑
x∈[m]

|00...0〉|h(x)〉

4. Discard first register J

Finally, we will frequently be dealing with the uniform distribution over {±1}n strings,
and a natural generalization:

I Definition 2 (T`). Given ` > 0, we define the set T` = {ω0
` , ω

1
` ..., ω

`−1
` } where ω` is a

primitive `-th root of unity.

We note that T` is just ` evenly spaced points on the unit circle, and T2 = {±1}.

4 Efficiently Specifiable Polynomial Sampling on a Quantum
Computer

In this section we describe a general class of distributions that can be sampled efficiently on
a Quantum Computer.

I Definition 3 (Efficiently Specifiable Polynomial). We say a multilinear homogenous n-variate
polynomial Q with coefficients in {0, 1} and m monomials is Efficiently Specifiable via an
efficiently computable, one-to-one function h : [m]→ {0, 1}n, with an efficiently computable
inverse, if:

Q(X1, X2..., Xn) =
∑
z∈[m]

X1
h(z)1X2

h(z)2 ...Xn
h(z)n .

I Definition 4 (DQ,`). Suppose Q is an Efficiently Specifiable polynomial with n variables
and m monomials. For fixed Q and `, we define the class of distributions DQ,` over `-ary
strings y ∈ [0, `− 1]n given by:

Pr
DQ,`

[y] = |Q(Zy)|2

`nm

where Zy ∈ Tn` is a vector of complex values encoded by the string y.

The encoding works by assigning each value j ∈ [0, `− 1] to ωj` . For example, notice that
when ` = 2 then y ∈ {0, 1}n and Zy is simply the corresponding {±1}n assignment with each
entry set to 1 if the corresponding entry in y is 0 and −1 if the corresponding entry in y is 1.

I Theorem 5 (Quantum Sampling Theorem). Given an Efficiently Specifiable polynomial, Q
with n variables, m monomials, relative to a function h, and ` 6 exp(n), the resulting DQ,`
can be sampled in poly(n) time on a Quantum Computer.
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Proof.
1. We start in a uniform superposition 1√

m

∑
z∈[m]

|z〉.

2. We then apply Lemma 1 to prepare 1√
m

∑
z∈[m]

|h(z)〉.

3. Apply Quantum Fourier Transform over Zn` to attain 1√
`nm

∑
y∈[0,`−1]n

∑
z∈[m]

ω
<y,h(z)>
` |y〉.

Notice that the amplitude of each y basis state in the final state after Step 3 is proportional
to the value of Q(Zy). A measurement in the computational basis will amount to sampling
from the distribution DQ,` as desired.

Why is each evaluation appearing in the amplitudes of this quantum state? To see this,
let’s analyze the simple case of DQ,2, in which we claim each amplitude of the state after
Step 3 is proportional to Q evaluated at a particular {±1}n assignment. Note that in this
case the Quantum Fourier Transform we apply in Step 2 is simply H⊗n, where H is the 2× 2
Hadamard matrix.

We can think of the Hadamard transform as having columns indexed by all 2n multilinear
monomials M1,M2, ...,M2n on n variables x1, x2, ..., xn, and the 2n rows of the transform
as indexed by all possible {±1}n assignments to the n variables. Then the unnormalized
(i, j)-th element of the matrix is Mj(yi), the evaluation of the j-th monomial on the i-th
assignment. To prove this, we first observe that the one qubit Hadamard matrix can be seen
in this way, where M1 = 1, the “empty monomial” that always evaluates to 1 irrespective of
the assignment, and M2 = x1. The rows of the transform can be indexed by assignments −1
and +1, and the unnormalized matrix entries simply correspond to the evaluations of each
monomial on the respective assignment, as mentioned earlier. Further, it is easy to see that
the tensor product respects this structure, giving rise to our claimed interpretation.

The state we prepare in Step 2, 1√
m

∑
z∈[m]

|h(z)〉, is simply the quantum state that is

uniformly supported over each of the m monomials in Q, and so after applying the Hadamard
transform in Step 3, we obtain a state with amplitudes equal to suitably normalized evaluations
of Q at each {±1}n assignment. It is not hard to further generalize this argument to the case
of DQ,`, in which case we apply a similar interpretation to the Quantum Fourier Transform
over Zn` . J

5 Classical Hardness of Efficiently Specifiable Polynomial Sampling

We are interested in demonstrating the existence of some distribution that can be sampled
exactly by a uniform family of quantum circuits, that cannot be sampled approximately
classically. Approximate here means close in Total Variation distance, where we denote the
Total Variation distance between two distributions X and Y by ‖X − Y ‖. Thus we define
the notion of a Sampler to be a classical randomized algorithm that approximately samples
from a given class of distributions:

I Definition 6 (Sampler). Let {Dn}n>0 be a class of distributions where each Dn is dis-
tributed over Cn. Let r(n) ∈ poly(n), ε(n) ∈ 1/poly(n). We say S is a Sampler with respect
to {Dn} if ‖S(0n, x ∼ U{0,1}r(n) , 01/ε(n))−Dn‖ 6 ε(n) in (classical) polynomial time.

We first recall a theorem due to Stockmeyer [17] on the ability to “approximate count”
in the PH.

TQC 2016
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I Theorem 7 (Stockmeyer). Given as input an efficiently computable function f : {0, 1}n →
{0, 1}m and y ∈ {0, 1}m, there is a procedure that outputs α such that:

(1− ε) Pr
x∼U{0,1}n

[f(x) = y] 6 α 6 (1 + ε) Pr
x∼U{0,1}n

[f(x) = y] .

In randomized time poly(n, 1/ε) with access to an NP oracle.

In this section we use Theorem 7, together with the assumed existence of a Sampler for
DQ,` to obtain hardness consequences.

In particular, we show that a Sampler would imply the existence of an efficient approxi-
mation to an Efficiently Specifiable polynomial in the following two contexts:

I Definition 8 (ε−additive δ-approximate solution). Given a distribution D over Cn and
P : Cn → C we say T : Cn → C is an ε−additive approximate δ−average case solution with
respect to D, to P , if Prx∼D[|T (x)− P (x)| 6 ε] > 1− δ.

I Definition 9 (ε−multiplicative δ-approximate solution). Given a distribution D over Cn and
a function P : Cn → C we say T : Cn → C is an ε−multiplicative approximate δ−average
case solution with respect to D, to P , if Prx∼D[|T (x)− P (x)| 6 ε|P (x)|] > 1− δ.

These definitions formalize a notion that we will need, in which an efficient algorithm
computes a particular hard function approximately only on most inputs, and can act
arbitrarily on a small fraction of remaining inputs.

Now we prove our main theorem, which informally states that the existence of a Sampler
for DQ,` would imply a solution to Q2 in the following sense: the solution gives a good
additive error approximation to Q2(X) with probability 1− δ over the choice of assignments
X. That is, on a δ-fraction of assignments the output of the solution may not even be
additively-close to the desired value of Q2.

The proof of this theorem is somewhat technical, but the intuition is very clear. If we
have access to a classical randomized algorithm that samples from a distribution close in
Total Variation distance to DQ,`, we would like to use Stockmeyer’s Algorithm (Theorem 7)
to get a multiplicative estimate to the probability of a particular outcome of the Sampler.
After accounting for normalization, this would amount to a multiplicative estimate to the
desired evaluation of the Efficiently Specifiable polynomial. Of course, if the Sampler sampled
from exactly the distribution DQ,` we’d be able to do this. Unfortunately though, we only
know that the distribution sampled by our Sampler is close to the ideal distribution DQ,`.
Therefore, we can’t trust that the probability of any particular outcome of the Sampler is
exactly the same as the probability of this outcome according to DQ,`. One thing we do know,
however, is that most of the probabilities of the distribution sampled by the Sampler must
be additively close to the probabilities of DQ,`, since the two distributions are close in Total
Variation distance. This will be enough to guarantee that if we use Stockmeyer’s algorithm to
estimate the probability of a uniformly chosen outcome, with high probability over choice of
assignment, we get a decent additive estimate to the evaluation of the Efficiently Specifiable
polynomial. Note that our analysis can be thought of as a simplified version of the analysis
in [3].

I Theorem 10 (Complexity consequences of Sampler). Given an Efficiently Specifiable poly-
nomial Q with n variables and m monomials, and a Sampler S with respect to DQ,`, there is
a randomized procedure computing an (ε ·m)−additive approximate δ−average case solution
with respect to the uniform distribution over Tn` , to the Q2 function, in randomized time
poly(n, 1/ε, 1/δ) with access to an NP oracle.



B. Fefferman and C. Umans 1:7

Proof. We need to give a procedure that outputs an εm-additive estimate to the Q2 function
evaluated at a uniform setting of the variables, with probability 1− δ over choice of setting.
Setting ν = εδ

16 , suppose S samples from a distribution D′ such that ‖DQ,` −D′‖ 6 ν. We
let py be PrDQ,` [y] and qy be PrD′ [y].

Our procedure picks a uniformly chosen encoding of an assignment y ∈ [0, `− 1]n, and
outputs an estimate q̃y. Note that py = |Q(Zy)|2

`nm . Thus our goal will be to output a q̃y that
approximates py within additive error ε m

`nm = ε
`n , in time polynomial in n, 1

ε , and
1
δ .

We need:

Pr
y

[|q̃y − py| >
ε

`n
] 6 δ .

First, define for each y, ∆y = |py − qy|, which by definition gives us ‖DQ,` −D′‖ = 1
2
∑
y

[∆y].

Now:

Ey[∆y] =

∑
y

[∆y]

`n
= 2ν
`n
.

And applying Markov’s inequality, ∀k > 1,

Pr
y

[∆y >
k2ν
`n

] < 1
k
.

Setting k = 4
δ and recalling that ν = εδ

16 , we have:

Pr
y

[∆y >
ε

2 ·
1
`n

] < δ

4 .

Then use approximate counting (with an NP oracle), using Theorem 7 on the randomness
of S to obtain an output q̃y so that, for all γ > 0, in time polynomial in n and 1

γ :

Pr[|q̃y − qy| > γ · qy] < 1
2n .

Because we can amplify the failure probability of Stockmeyer’s algorithm to be inverse
exponential. Now because the qy’s are probabilities that sum to 1:

Ey[qy] =

∑
y
qy

`n
= 1
`n
⇒ Pr

y
[qy >

k

`n
] < 1

k
.

Now, applying the union bound with γ set to εδ
8 :

Pr
y

[|q̃y − py| >
ε

`n
] 6 Pr

y
[|q̃y − qy| >

ε

2 ·
1
`n

] + Pr
y

[|qy − py| >
ε

2 ·
1
`n

]

6 Pr
y

[qy >
k

`n
] + Pr[|q̃y − qy| > γ · qy] + Pr

y
[∆y >

ε

2 ·
1
`n

]

6
1
k

+ 1
2n + δ

4 = δ

2 + 1
2n 6 δ. J

Now, as will be proven in Appendix A, the variance, Var [Q(X)], of the distribution
over C induced by an Efficiently Specifiable Q with m monomials, evaluated at uniformly
distributed entries over Tn` is m, and so the preceeding Theorem 10 promised us we can
achieve an εVar [Q(X)]-additive approximation to Q2, given a Sampler. We now show that,
under a conjecture, this approximation can be used to obtain a good multiplicative estimate
to Q2. This conjecture effectively states that the Chebyshev inequality for this random
variable is tight.

TQC 2016
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I Conjecture 11 (Anti-Concentration Conjecture relative to an n-variate polynomial Q and
distribution D over Cn). There exists a polynomial p such that for all n and δ > 0,

Pr
X∼D

[
|Q(X)|2 < Var [Q(X)]

p(n, 1/δ)

]
< δ .

I Theorem 12. Assuming Conjecture 11, relative to an Efficiently Specifiable polynomial Q
and a distribution D, an εVar [Q(X)]-additive approximate δ-average case solution with respect
to D, to the Q2 function can be used to obtain an ε′ 6 poly(n)ε-multiplicative approximate
δ′ = 2δ-average case solution with respect to D to Q2.

Proof. Suppose λ is, with high probability, an εVar [Q(X)]-additive approximation to
|Q(X)|2, as guaranteed in the statement of the Theorem. This means:

Pr
X∼D

[∣∣∣λ− |Q(X)|2
∣∣∣ > εVar [Q(X)]

]
< δ .

Now assuming Conjecture 11 with polynomial p, we will show that λ is also a multiplicative
estimate to |Q(X)|2 with high probability. By the union bound,

Pr
X∼D


∣∣∣λ− |Q(X)|2

∣∣∣
εp(n, 1/δ) > |Q(X)|2

 6 Pr
X∼D

[∣∣∣λ− |Q(X)|2
∣∣∣ > εVar [Q(X)]

]
+

Pr
X∼D

[
εVar [Q(X)]
εp(n, 1/δ) > |Q(X)|2

]
6 2δ

where the second line comes from Conjecture 11. To attain multiplicative error bounds ε′
and δ′ we can set δ = δ′/2 and ε = ε′/p(n, 1/δ). J

For the results in this section to be meaningful, we simply need the Anti-Concentration
conjecture to hold for some Efficiently Specifiable polynomial that is #P-hard to compute,
relative to any distribution we can sample from (either U{±1}n , or B(0, k)n). We note that
Aaronson and Arkhipov [3] conjectures the same statement as Conjecture 11 for the special
case of the Permanent function relative to matrices with entries distributed independently
from the complex Gaussian distribution of mean 0 and variance 1.

Additionally, we acknowledge a result of Tao and Vu [18] who show:

I Theorem 13 (Tao & Vu). For all ε > 0 and sufficiently large n,

Pr
X∼U{±1}n×n

[
|Permanent[X]| <

√
n!

nεn

]
<

1
n0.1 .

Which comes quite close to our conjecture for the case of the Permanent function and
uniformly distributed {±1}n×n = Tn×n2 matrix. More specifically, for the above purpose of
relating the hardness of additive solutions to the hardness of multiplicative solutions, we
would need an upper bound of any inverse polynomial δ, instead of a fixed n−0.1.

6 Sampling from Distributions with Probabilities Proportional to
[−k, k] Evaluations of Efficiently Specifiable Polynomials

In the prior sections we discussed quantum sampling from distributions in which the prob-
abilities are proportional to evaluations of Efficiently Specifiable polynomials evaluated
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at points in Tn` . In this section we show how to generalize this to quantumly sampling
from distributions in which the probabilities are proportional to evaluations of Efficiently
Specifiable polynomials evaluated at polynomially bounded integer values. In particular, we
show a simple way to take an Efficiently Specifiable polynomial with n variables and create
another Efficiently Specifiable polynomial with kn variables, in which evaluating this new
polynomial at {−1,+1}kn is equivalent to evaluation of the old polynomial at [−k, k]n.

I Definition 14 (k-valued equivalent polynomial). For every Efficiently Specifiable polynomial
Q with m monomials and every fixed k > 0 consider the polynomial Q′k : Tkn2 → R defined
by replacing each variable xi in Q with the sum of k new variables x(1)

i + x
(2)
i + ...+ x

(k)
i .

We will call Q′k the k-valued equivalent polynomial with respect to Q.

Note that a uniformly chosen {±1} assignment to the variables in Q′k induces an assign-
ment to the variables in Q, distributed from a distribution we call B(0, k):

I Definition 15 (B(0, k)). For k a positive integer, we define the distribution B(0, k) sup-
ported over the odd integers in the range [−k, k] (if k is odd), or even integers in the range
[−k, k] (if k is even), so that:

Pr
B(0,k)

[y] =

 ( k
k+y

2
)

2k if y and k are both odd or both even
0 otherwise

I Theorem 16. Given an Efficiently Specifiable polynomial Q with n variables and m

monomials, let Q′k be its k-valued equivalent polynomial. For all ` < exp(n), we can
quantumly sample from the distribution DQ′

k
,` in time poly(n, k).

Proof. Our proof follows from the following lemma, which proves that Q′k is Efficiently
Specifiable.

I Lemma 17. Suppose Q is an n-variate, homogeneous degree d Efficiently Specifiable
polynomial with m monomials relative to a function h : [m] → {0, 1}n. Let k 6 poly(n)
and let Q′k be the k-valued equivalent polynomial with respect to Q. Then Q′k is Efficiently
Specifiable with respect to an efficiently computable function h′ : [m]× [k]d → {0, 1}kn.

Proof. We first define and prove that h′ is efficiently computable. We note that if there
are m monomials in Q, there are mkd monomials in Q′k. As above, we’ll think of the new
variables in Q′k as indexed by a pair of indices, a “top index” in [k] and a “bottom index”
in [n]. Equivalently we are labeling each variable in Q′k as x(j)

i , the j-th copy of the i-th
variable in Q.

We can think of each monomial in Q′k (and hence the input to h′) as being indexed by a
value r ∈ [m] and y1, y2, ..., yd ∈ [k]d. We can obtain the variables in any particular monomial
of Q′k by simply using the output of h(r) to obtain the “bottom” indices of the variables,
and use the values of y1, y2, ..., yd to obtain the “top” indices for each of the d variables.

We will now show that h′−1 is efficiently computable. As before we will think of
z ∈ {0, 1}kn as being indexed by a pair, a “top index” in [k] and a “bottom index” in
[n]. Then we compute h′−1(z) by first obtaining from z the bottom indices j1, j2, ..., jd and
the corresponding top indices, i1, i2, ..., id. Then obtain from the bottom indices the string
x ∈ {0, 1}n corresponding to the variables used in Q and output the concatenation of h−1(x)
and j1, j2, ..., jd. J
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1:10 On the Power of Quantum Fourier Sampling

Theorem 16 now follows from Lemma 17, where we established that Q′k is Efficiently
Specifiable, and Theorem 5, where we established that we can sample from DQ′

k
,` quantumly.

J

I Theorem 18. Let Var [Q(X)] = Var [Q(X1, X2, ..., Xn)] denote the variance of the distri-
bution over R induced by Q with assignments distributed from B(0, k)n. Given a Sampler S
with respect to DQ′

k
,2, we can find a randomized procedure computing an εVar [Q(X)]-additive

approximate δ-average case solution to Q2 with respect to B(0, k)n in time poly(n, 1/ε, 1/δ)
with access to an NP oracle.

Proof. We begin by noting that Q′k is a polynomial of degree d that has kn variables and
m′ = mkd monomials. By Theorem 10 we get that a Sampler with respect to DQ′

k,2
implies

there exists A, an εm′-additive approximate δ-average case solution to Q′k
2 with respect to

U{±1}kn that runs in time poly(n, 1/ε, 1/δ) with access to an NP oracle. We need to show
the existence of an A′, an εm′-additive approximate δ-average case solution to Q′k

2 with
respect to the B(0, k)n distribution.

We think of A′ as receiving an input, z ∈ [−k, k]n drawn from B(0, k)n. A′ picks y
uniformly from the orbit of z over {±1}kn and outputs A(y). Now:

Pr
z∼B(0,k)n

[∣∣A′(z)−Q2(z)
∣∣ 6 εm′

]
= Pr
z∼B(0,k)n,y∼Rorbit(z)

[∣∣A(y)−Q2(z)
∣∣ 6 εm′

]
(1)

= Pr
y∼U{±1}kn

[|A(y)−Q′k(y)| 6 εm′] > 1− δ (2)

(3)

Thus, because a uniformly chosen {±1}kn assignment to the variables in Q′k induces
a B(0, k)n distributed assignment to the variables in Q, this amounts to an εm′-additive
approximate δ-average case solution to Q2 with respect to B(0, k)n. In Appendix A we prove
that Var [Q(X)] is m′ as desired. J

7 The “Compressed” QFT

In this section we begin to prove that quantum algorithms can sample efficiently from distri-
butions with probabilities proportional to evaluations of Efficiently Specifiable polynomials
at points in [−k, k]n for k ∈ exp(n). Note that in the prior quantum algorithm of Section 4
we would need to invoke the QFT over Zkn2 , of dimension doubly-exponential in n. Thus
we need to define a new Polynomial Transform that can be obtained from the standard
Quantum Fourier Transform over Zn2 , which we refer to as the “Compressed QFT”. Now we
describe the unitary matrix which implements the Compressed QFT.

Consider the 2k× 2k matrix Dk, whose columns are indexed by all possible 2k multilinear
monomials of the variables x1, x2, ..., xk and the rows are indexed by the 2k different {−1,+1}
assignments to the variables. The (i, j)-th entry is then defined to be the evaluation of the
j-th monomial on the i-th assignment. As we noted earlier, defining D̄k to be the matrix
whose entries are the entries in Dk normalized by 1/

√
2k gives us the Quantum Fourier

Transform matrix over Zk2 . It is clear, by the unitarity of the Quantum Fourier Transform,
that the columns (and rows) in Dk are pairwise orthogonal.

Now we define the “Elementary Symmetric Polynomials”:
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I Definition 19 (Elementary Symmetric Polynomials). We define the j-th Elementary Sym-
metric Polynomial on k variables for j ∈ [0, k] to be:

pj(X1, X2, ..., Xk) =
∑

16`1<`2<...<`j6k

X`1X`2 ...X`j .

In this work we will care particularly about the first two elementary symmetric polynomials,
p0 and p1 which are defined as p0(X1, X2, ..., Xk) = 1 and p1(X1, X2, ..., Xk) =

∑
16`6k

X`.

Consider the (k+1)×(k+1) matrix, D̃k, whose columns are indexed by elementary symmetric
polynomials on k variables and whose rows are indexed by equivalence classes of assignments
in Zk2 under Sk symmetry. We obtain D̃k from Dk using two steps.

First obtain a 2k× (k+1) rectangular matrix D̃(1)
k whose rows are indexed by assignments

to the variables x1, x2, ..., xk ∈ {±1}k and columns are the entry-wise sum of the entries in
each column of Dk whose monomial is in each respective elementary symmetric polynomial.
Then obtain the final (k + 1) × (k + 1) matrix D̃k by taking D̃(1)

k and keeping only one
representative row in each equivalence class of assignments under Sk symmetry. We label
the equivalence classes of assignments under Sk symmetry o0, o1, o2, ..., ok and note that
for each i ∈ [k], |oi| =

(
k
i

)
. Observe that D̃k is precisely the matrix whose (i, j)-th entry

is the evaluation of the j-th symmetric polynomial evaluated on an assignment in the i-th
symmetry class.

I Theorem 20. The columns in the matrix D̃(1)
k are pairwise orthogonal.

Proof. Note that each column in the matrix D̃(1)
k is the sum of columns in Dk each of which

are orthogonal. We can prove this theorem by observing that if we take any two columns in
D

(1)
k , called c1, c2, where c1 is the sum of columns {ui} of Dk and c2 is the sum of columns
{vi} of Dk. The inner product, 〈c1, c2〉 can be written:

〈
∑
i

ui,
∑
j

vj〉 =
∑
i,j

〈ui, vj〉 = 0 . J

I Theorem 21. Let L be the (k + 1)× (k + 1) diagonal matrix with i-th entry equal to √oi.
Then the columns of L · D̃k are orthogonal.

Proof. Note that the value of the symmetric polynomial at each assignment in an equivalence
class is the same. We have already concluded the orthogonality of columns in D̃(1)

k . Therefore
if we let a and b be any two columns in the matrix D̃k, and their respective columns be ā, b̄
in D̃(1)

k , we can see:

k∑
i=0

(aibi|oi|) =
2k∑
i=0

āib̄i = 0 .

From this we conclude that the columns of the matrix L · D̃k, in which the i-th row of
D̃k is multiplied by √oi, are orthogonal. J

I Theorem 22. We have just established that the columns in the matrix L ·D̃k are orthogonal.
Let the k + 1× k + 1 diagonal matrix R be such that so that the columns in L · D̃k ·R are
orthonormal, and thus L · D̃k ·R is unitary. Then the first two nonzero entries in R, which
we call r0, r1, corresponding to the normalization of the column pertaining to the zero-th and
first elementary symmetric polynomial, are 1/

√
2k and 1√

k∑
i=0

[(ki)(k−2i)2]
.
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Proof. First we calculate r0. Since we wish for a unitary matrix, we want the `2 norm of
the first column of D̃k to be 1, and so need:

r2
0

k∑
i=0

(
√
oi)2 = r2

0

k∑
i=0

(
k

i

)
= 1 .

And so r0 is 1/
√

2k as desired.
Now we calculate r1, the normalization in the column of D̃k corresponding to the first

elementary symmetric polynomial. Note that in i-th equivalence class of assignments we
have exactly i negative ones and k − i positive ones. Thus the value of the first symmetric
polynomial is the sum of these values, which for the i− th equivalence class is precisely k−2i.
Then we note the normalization in each row is

√(
k
i

)
. Thus we have

r2
1

k∑
i=0

[√(
k

i

)
(k − 2i)

]2

= 1 .

Thus r1 = 1√
k∑
i=0

[(ki)(k−2i)2]
as desired. J

8 Using our “Compressed QFT” to Quantumly Sample from
Distributions of Efficiently Specifiable Polynomial Evaluations and
Hardness Consequences

In this section we use the unitary matrix developed in Section 7 to quantumly sample distri-
butions with probabilities proportional to evaluations of Efficiently Specifiable polynomials
at points in [−k, k]n for k ∈ exp(n). Here we assume that we have an efficient quantum
circuit decomposition for this unitary. The prospects for this efficient decomposition are
discussed in Section 9.

For convenience, we’ll define a map ψ : [−k, k]→ [0, k], for k even, with

ψ(y) =
{ k+y

2 if y is even
0 otherwise

I Definition 23. Suppose Q is an Efficiently Specifiable polynomial Q with n variables
and m monomials, and, for k 6 exp(n), let Q′k be its k-valued equivalent polynomial. Let
Var [Q(X)] be the variance of the distribution over R induced by Q with assignments to the
variables distributed over B(0, k)n (or equivalently, this is Var [Q′k] where each variable in
Q′k is independently uniformly chosen from {±1}), as calculated in Appendix A. Then we
define the of distribution DQ′k over n tuples of integers in [−k, k] by:

Pr
DQ′k

[y] =
Q(y)2( k

ψ(y1)
)(

k
ψ(y2)

)
...
(

k
ψ(yn)

)
2knVar [Q(X)] .

I Theorem 24. By applying (L · D̃k ·R)⊗n in place of the Quantum Fourier Transform over
Zn2 in Section 4 we can quantumly sample from DQ′k .

Proof. Since we are assuming Q is Efficiently Specifiable, let h : [m] → {0, 1}n be the
invertible function describing the variables in each monomial. We start by producing the
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state over k + 1 dimensional qudits:

1√
m

∑
z∈[m]

|h(z)〉

which we prepare via the procedure described in Lemma 1.
Instead of thinking of h as mapping an index of a monomial from [m] to the variables in

that monomial, we now think of h as taking an index of a monomial in Q to a polynomial
expressed in the {1, x(1) + x(2) + ...+ x(k)}n basis.

Now take this state and apply the unitary (which we assume can be realized by an efficient
quantum circuit) (L · D̃k ·R)⊗n. Notice each y ∈ [−k, k]n has an associated amplitude:

αy =
rn−d0 rd1Q(y)

√(
k

ψ(y1)
)(

k
ψ(y2)

)
...
(

k
ψ(yn)

)
√
m

.

Letting py = PrDQ′k [y], note that, by plugging in r0, r1 from Section 7:

α2
y =

Q(y)2( k
ψ(y1)

)(
k

ψ(y2)
)
...
(

k
ψ(yn)

)
r

2(n−d)
0 r2d

1

m

=
Q(y)2( k

ψ(y1)
)(

k
ψ(y2)

)
...
(

k
ψ(yn)

)
m2k(n−d)

(
k∑
i=0

[(
k
i

)
(k − 2i)2

])d
=
Q(y)2( k

ψ(y1)
)(

k
ψ(y2)

)
...
(

k
ψ(yn)

)
2kn−kdVar [Q(X)]2kd =

Q(y)2( k
ψ(y1)

)(
k

ψ(y2)
)
...
(

k
ψ(yn)

)
2knVar [Q(X)] = py J

Furthermore, using a similar argument to Theorem 10 we can obtain the following theorem,
which now gives our hardness result for the existence of Sampler for this class of distributions,
whose proof we give in Appendix C:

I Lemma 25. Given an Efficiently Specifiable polynomial Q with n variables and m monomi-
als, let Q′k be its k-valued equivalent polynomial, for some fixed k 6 exp(n). Suppose we have a
Sampler S with respect to our quantumly sampled distribution class, DQ′k , and let Var [Q(X)]
denote the variance of the distribution over R induced by Q with assignments distributed
from B(0, k)n. Then we can find a randomized procedure computing an εVar [Q(X)]-additive
approximate δ-average case solution to Q2 with respect to B(0, k)n in time poly(n, 1/ε, 1/δ)
with access to an NP oracle.

9 Putting it All Together

In this section we put our results in perspective and conclude. As mentioned before, our
goal is to find a class of distributions {Dn}n>0 that can be sampled exactly in poly(n) time
on a Quantum Computer, with the property that there does not exist a (classical) Sampler
relative to that class of distributions, {Dn}n>0. Using the results in Sections 5 and 6 we
can quantumly sample from a class of distributions {DQ′k}n>0, where k ∈ poly(n) with the
property that, if there exists a classical Sampler relative to this class of distributions, there
exists an εVar [Q(X)]-additive δ-average case solution to the Q2 function with respect to
the B(0, k)n distribution. If we had an efficient decomposition for the “Compressed QFT”
unitary matrix, we could use the results from Sections 8 and Appendix C to make k as large
as exp(n). We would like this to be an infeasible proposition, and so we conjecture:
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I Conjecture 26. There exists some Efficiently Specifiable polynomial Q on n variables,
so that εVar [Q(X)]-additive δ-average case solutions with respect to B(0, k)n, for any fixed
k 6 exp(n), to Q2, cannot be computed in (classical) randomized poly(n, 1/ε, 1/δ) time with
a PH oracle.

At the moment we don’t know of such a decomposition for the “Compressed QFT”.
However, we do know that we can classically evaluate a related fast (time n log2 n) polynomial
transform by a theorem of Driscoll, Healy, and Rockmore [8]. We wonder if there is some
way to use intuition gained by the existence of this fast polynomial transform to show the
existence of an efficient decomposition for our “Compressed QFT”.

Additionally, if we can prove the Anti-Concentration Conjecture (Conjecture 11) relative
to some Efficiently Specifiable polynomial Q and the B(0, k)n distribution, we appeal to
Theorem 12 to show that it suffices to prove:

I Conjecture 27. There exists some Efficiently Specifiable polynomial Q with n variables,
so that Q satisfies Conjecture 11 relative to B(0, k)n, for some fixed k 6 exp(n), and ε-
multiplicative δ-average case solutions, with respect to B(0, k)n, to Q2 cannot be computed in
(classical) randomized poly(n, 1/ε, 1/δ) time with a PH oracle.

We would be happy to prove that either of these two solutions (additive or multiplicative)
are #P-hard. In this case we can simply invoke Toda’s Theorem [20] to show that such
a randomized classical solution would collapse PH to some finite level. We note that at
present, both of these conjectures seem out of reach, because we do not have an example
of a polynomial that is #P-hard to approximate (either multiplicatively or additively) on
average, in the sense that we need.
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A Computation of the Variance of Efficiently Specifiable Polynomial

In this section we compute the variance of the distribution induced by an Efficiently Specifiable
polynomial Q with assignments to the variables chosen independently from the B(0, k)
distribution. We will denote this throughout the section by Var [Q(X)]. Recall, by the
definition of Efficiently Specifiable, we have that Q is an n variate homogenous multilinear
polynomial with {0, 1} coefficients. Assume Q is of degree d and has m monomials. Let each
[−k, k] valued variable Xi be independently distributed from B(0, k).

We adopt the notation whereby, for j ∈ [m], l ∈ [d], xjl is the l-th variable in the j-th
monomial of Q.

Using the notation we can express Q(X1, ..., Xn) =
m∑
j=1

d∏
l=1

Xjl . By independence of these

random variables and since they are mean 0, it suffices to compute the variance of each
monomial and multiply by m:

Var [Q(X)] = Var [Q(X1, ..., Xn)] = E

 m∑
j=1

d∏
l=1

X2
jl

 =
m∑
j=1

E
[
d∏
l=1

X2
jl

]
(4)

= mE
[
d∏
l=1

X2
1l

]
= m

d∏
l=1

E
[
X2

1l
]

(5)

= m
(
E
[
X2

11

])d (6)
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Now since these random variables are independent and identically distributed, we can
calculate the variance of an arbitrary Xjl for any j ∈ [m] and l ∈ [d]:

E [X2
jl

] = 1
2k

k∑
i=0

[
(k − 2i)2

(
k

i

)]
(7)

(8)

Thus, the variance of Q is:

m
1

2kd

(
k∑
i=0

[
(k − 2i)2

(
k

i

)])d
.

It will be useful to calculate this variance in a different way, and obtain a simple closed
form. In this way we will consider the k-valued equivalent polynomial Q′k : Tnk2 → R which
is a sum of m′ = mkd multilinear monomials, each of degree d. As before we can write

Q′k(X1, ..., Xnk) =
m′∑
j=1

d∏
l=1

Xjl . Note that the uniform distribution over assignments in Tkn2

to Q′k induces B(0, k)n over [−k, k]n assignments to Q. By the same argument as above,
using symmetry and independence of random variables, we have:

Var [Q(X)] = Var [Q(X1, X2, ..., Xn)] =Var [Q′k(X1, X2, ..., Xnk)] (9)

= m′
d∏
l=1

E
[
X2

1l
]

(10)

= m′E
[
X2

11

]d = 1dm′ = m′ = kdm (11)

B Examples of Efficiently Specifiable Polynomials

In this section we give two examples of Efficiently Specifiable polynomials.

I Theorem 28. Permanent (x1, ..., xn2) =
∑
σ∈Sn

n∏
i=1

xi,σ(i) is Efficiently Specifiable.

Proof. We note that it will be convenient in this section to index starting from 0. The
theorem follows from the existence of an hPermanent : [0, n!− 1]→ {0, 1}n2 that efficiently
maps the i-th permutation over n elements to a string representing its obvious encoding as
an n× n permutation matrix. We will prove that such an efficiently computable hPermanent
exists and prove that its inverse, h−1

Permanent is also efficiently computable.

The existence of hPermanent follows from the so-called “factorial number system” [14],
which gives an efficient bijection that associates each number in [0, n!−1] with a permutation
in Sn. It is customary to think of the permutation encoded by the factorial number system
as a permuted sequence of n numbers, so that each permutation is encoded in n logn bits.
However, it is clear that we can efficiently transform this notation into the n×n permutation
matrix.

To go from an integer j ∈ [0, n!− 1] to its permutation we:
1. Take j to its “factorial representation”, an n number sequence, where the i-th place value

is associated with (i− 1)!, and the sum of the digits multiplied by the respective place
value is the value of the number itself. We achieve this representation by starting from
(n − 1)!, setting the leftmost value of the representation to j′ = b j

(n−1)!c, letting the
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next value be b j−j
′·(n−1)!

(n−2)! c and continuing until 0. Clearly this process can be efficiently
achieved and efficiently inverted, and observe that the largest each value in the i-th place
value can be is i.

2. In each step we maintain a list ` which we think of as originally containing n numbers in
ascending order from 0 to n− 1.

3. Repeat this step n times, once for each number in the factorial representation. Going
from left to right, start with the left-most number in the representation and output the
value in that position in the list, `. Remove that position from `.

4. The resulting n number sequence is the encoding of the permutation, in the standard
n logn bit encoding. J

Now we show that the Hamiltonian Cycle Polynomial is Efficiently Specifiable.
Given a graph G on n vertices, we say a Hamiltonian Cycle is a path in G that starts at

a given vertex, visits each vertex in the graph exactly once and returns to the start vertex.
We define an n-cycle to be a Hamiltonian cycle in the complete graph on n vertices. Note

that there are exactly (n− 1)! n-cycles.

I Theorem 29. HamiltonianCycle (x1, ..., xn2) =
∑

σ: n−cycle

n∏
i=1

xi,σ(i) is Efficiently Speci-

fiable.

Proof. We can modify the algorithm for the Permanent above to give us an efficiently
computable hHC : [0, (n− 1)!− 1]→ {0, 1}n2 with an efficiently computable h−1

HC .
To go from a number j ∈ [0, (n− 1)!− 1] to its n-cycle we:

1. Take j to its factorial representation as above. Now this is an n− 1 number sequence
where the i-th place value is associated with (i− 1)!, and the sum of the digits multiplied
by the respective place value is the value of the number itself.

2. In each step we maintain a list ` which we think of as originally containing n numbers in
ascending order from 0 to n− 1.

3. Repeat this step n− 1 times, once for each number in the factorial representation. First
remove the smallest element of the list. Then going from left to right, start with the
left-most number in the representation and output the value in that position in the list, `.
Remove that position from `.

4. We output 0 as the n-th value of our n-cycle.
To take an n-cycle to a factorial representation, we can easily invert the process:
1. In each step we maintain a list ` which we think of as originally containing n numbers in

order from 0 to n− 1.
2. Repeat this step n− 1 times. Remove the smallest element of the list. Going from left

to right, start with the left-most number in the n-cycle and output the position of that
number in the list ` (where we index the list starting with the 0 position). Remove the
number at this position from `. J

C The Hardness of Classical Sampling from the Compressed
Distribution

In this section, we use the same ideas used in the analysis of Section 5, to invoke Stockmeyer’s
Theorem (Theorem 7), together with the assumed existence of a Sampler for DQ′k to obtain
hardness consequences for classical sampling with k 6 exp(n).

I Lemma 30. Given an Efficiently Specifiable polynomial Q with n variables and m monomi-
als, let Q′k be its k-valued equivalent polynomial, for some fixed k 6 exp(n). Suppose we have a
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Sampler S with respect to our quantumly sampled distribution class, DQ′k , and let Var [Q(X)]
denote the variance of the distribution over R induced by Q with assignments distributed
from B(0, k)n. Then we can find a randomized procedure computing an εVar [Q(X)]-additive
approximate δ-average case solution to Q2 with respect to B(0, k)n in time poly(n, 1/ε, 1/δ)
with access to an NP oracle.

Proof. Setting ν = εδ/16, suppose S samples from a distribution D′ so that ‖DQ′k−D
′‖ 6 ν.

Let py = PrDQ′k [y] and qy = PrD′ [y].
We define φ : {±1}kn → [−k, k]n to be the map from each {±1}kn assignment to its

equivalence class of assignments, which is n blocks of even integral values in the interval
[−k, k]. Note that, given a uniformly random {±1}kn assignment, φ induces the B(0, k)
distribution over [−k, k]n.

Our procedure picks a y ∈ [−k, k]n distributed2 via B(0, k)n, and outputs an estimate q̃y.
Equivalently, we analyze this procedure by considering a uniformly distributed x ∈ {±1}kn
and then returning an approximate count, q̃φ(x) to qφ(x). We prove that our procedure runs
in time poly(n, 1/ε, 1/δ) with the guarantee that:

Pr
x

[
|q̃φ(x) − pφ(x)|(

k
ψ(φ(x)1)

)(
k

ψ(φ(x)2)
)
...
(

k
ψ(φ(x)n)

) > ε

2kn

]
6 δ .

And by our above analysis of the quantum sampler:

pφ(x) =
Q(φ(x))2( k

ψ(φ(x)1)
)(

k
ψ(φ(x)2)

)
...
(

k
ψ(φ(x)n)

)
2knVar [Q(X)] .

Note that: 1
2

∑
y∈[−k,+k]n

|py − qy| 6 ν, which, in terms of x, because we are summing over

all strings in the orbit under (Sk)n symmetry, can be written:

1
2

∑
x∈{±1}kn

∣∣pφ(x) − qφ(x)
∣∣(

k
ψ(φ(x)1)

)(
k

ψ(φ(x)2)
)
...
(

k
ψ(φ(x)n)

) 6 ν .

First we define for each x, ∆x = |pφ(x)−qφ(x)|
( k
ψ(φ(x)1))( k

ψ(φ(x)2))...( k
ψ(φ(x)n))

and so ‖DQ′k − D
′‖ =

1
2
∑
x

∆x.

Note that:

E x[∆x] =

∑
x

∆x

2kn = 2ν
2kn .

And applying Markov, ∀j > 1,

Pr
x

[∆x >
j2ν
2kn ] < 1

j
.

Setting j = 4
δ and recalling that ν = εδ

16 , we have,

Pr
x

[∆x >
ε

2 ·
1

2kn ] < δ

4 .

2 We can do this when k = exp(n) by approximately sampling from the Normal distribution, with only
poly(n) bits of randomness, and using this to approximate B(0, k) to within additive error 1/poly(n)
e.g., [5, 4].



B. Fefferman and C. Umans 1:19

Then use approximate counting (with an NP oracle), using Theorem 7 on the randomness
of S to obtain an output q̃y so that, for all γ > 0, in time polynomial in n and 1

γ :

Pr[|q̃y − qy| > γ · qy] < 1
2n .

Because we can amplify the failure probability of Stockmeyer’s algorithm to be inverse
exponential.

Equivalently in terms of x:

Pr
x

[
|q̃φ(x) − qφ(x)|(

k
ψ(φ(x)1)

)(
k

ψ(φ(x)2)
)
...
(

k
ψ(φ(x)n)

) > γ ·
qφ(x)(

k
ψ(φ(x)1)

)(
k

ψ(φ(x)2)
)
...
(

k
ψ(φ(x)n)

)] < 1
2n .

And we have:

E x

[
qφ(x)(

k
ψ(φ(x)1)

)(
k

ψ(φ(x)2)
)
...
(

k
ψ(φ(x)n)

)] 6

∑
x

qφ(x)

( k
ψ(φ(x)1))( k

ψ(φ(x)2))...( k
ψ(φ(x)n))

2kn = 1
2kn .

Thus, by Markov,

Pr
x

[
qφ(x)(

k
ψ(φ(x)1)

)(
k

ψ(φ(x)2)
)
...
(

k
ψ(φ(x)n)

) > j

2kn ] < 1
j
.

Now, setting γ = εδ
8 and applying the union bound:

Pr
x

[ ∣∣q̃φ(x) − pφ(x)
∣∣(

k
ψ(φ(x)1)

)(
k

ψ(φ(x)2)
)
...
(

k
ψ(φ(x)n)

) > ε

2kn

]

6 Pr
x

[ ∣∣q̃φ(x) − qφ(x)
∣∣(

k
ψ(φ(x)1)

)(
k

ψ(φ(x)2)
)
...
(

k
ψ(φ(x)n)

) > ε

2 ·
1

2kn

]

+ Pr
x

[ ∣∣qφ(x) − pφ(x)
∣∣(

k
ψ(φ(x)1)

)(
k

ψ(φ(x)2)
)
...
(

k
ψ(φ(x)n)

) > ε

2 ·
1

2kn

]

6 Pr
x

[
qφ(x)(

k
ψ(φ(x)1)

)(
k

ψ(φ(x)2)
)
...
(

k
ψ(φ(x)n)

) > j

2kn

]

+ Pr
[

|q̃φ(x) − qφ(x)|(
k

ψ(φ(x)1)
)(

k
ψ(φ(x)2)

)
...
(

k
ψ(φ(x)n)

) > γ ·
qφ(x)(

k
ψ(φ(x)1)

)(
k

ψ(φ(x)2)
)
...
(

k
ψ(φ(x)n)

)]

+ Pr
x

[
∆x >

ε

2 ·
1

2kn

]
6

1
j

+ 1
2n + δ

4

6
δ

2 + 1
2n 6 δ.
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