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Abstract
Die-rolling is the cryptographic task where two mistrustful, remote parties wish to generate a
random D-sided die-roll over a communication channel. Optimal quantum protocols for this task
have been given by Aharon and Silman (New Journal of Physics, 2010) but are based on optimal
weak coin-flipping protocols which are currently very complicated and not very well understood.
In this paper, we first present very simple classical protocols for die-rolling which have decent (and
sometimes optimal) security which is in stark contrast to coin-flipping, bit-commitment, oblivious
transfer, and many other two-party cryptographic primitives. We also present quantum protocols
based on the idea of integer-commitment, a generalization of bit-commitment, where one wishes
to commit to an integer. We analyze these protocols using semidefinite programming and finally
give protocols which are very close to Kitaev’s lower bound for any D ≥ 3.
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1 Introduction

Die-rolling is the two-party cryptographic primitive in which two spatially separated parties,
Alice and Bob, wish to agree upon an integer d ∈ [D] := {1, . . . , D}, generated uniformly at
random, over a communication channel. When designing die-rolling protocols, the security
goals are:
1. Completeness: If both parties are honest, then their outcomes are the same, uniformly

random, and neither party aborts.
2. Soundness against cheating Bob: If Alice is honest, then a dishonest (i.e., cheating) Bob

cannot influence her protocol outcome away from uniform.
3. Soundness against cheating Alice: If Bob is honest, then a dishonest (i.e., cheating) Alice

cannot influence his protocol outcome away from uniform.
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4:2 Simple, Near-Optimal Quantum Protocols for Die-Rolling

We note here that Alice and Bob start uncorrelated and unentangled. Otherwise, Alice
and Bob could each start with half of the following maximally entangled state

1√
D

∑
d∈[D]

|d〉A |d〉B

and measure in the computational basis to obtain a perfectly correlated, uniformly random
die-roll. Thus, such a primitive would be trivial if they were allowed to start entangled.

Die-rolling is a generalization of a well-studied primitive known as coin-flipping [5] which
is the special case of die-rolling when D = 2. In this paper, we analyze die-rolling protocols
in a similar fashion that is widely adopted for coin-flipping protocols [3, 17, 13, 16, 8, 18, 19].
That is, we assume perfect completeness and calculate the soundness in terms of the cheating
probabilities, as defined by the symbols:

P ∗
B,d: The maximum probability with which a dishonest Bob can force an honest Alice to accept

the outcome d ∈ [D] by digressing from protocol.
P ∗

A,d: The maximum probability with which dishonest Alice can force an honest Bob to accept
the outcome d ∈ [D] by digressing from protocol.

We are concerned with designing protocols which minimize the maximum of these 2D
quantities since a protocol is only as good as its worst cheating probability. Coincidentally,
all the protocols we consider in this paper have the property that all of Alice’s cheating
probabilities are equal and similarly for a cheating Bob. Therefore, for brevity, we introduce
the following shorthand notation:

P ∗A := max{P ∗A,1, . . . , P ∗A,D} and P ∗B := max{P ∗B,1, . . . , P ∗B,D}.

When D = 2, the security definition for die-rolling above aligns with that of strong coin-
flipping. For strong coin-flipping, it was shown by Kitaev [14] that any quantum protocol
satisfies P ∗A,1P ∗B,1 ≥ 1/2 and P ∗A,2P

∗
B,2 ≥ 1/2, implying that at least one party can cheat

with probability at least 1/
√

2. It was later shown by Chailloux and Kerenidis [8] that all
four cheating probabilities can be made arbitrarily close to 1/

√
2 by using optimal quantum

protocols for weak coin-flipping as discovered by Mochon [16].
As pointed out in [1], Kitaev’s proof for the lower bound on coin-flipping extends naturally

to die-rolling; it can be shown that for any quantum die-rolling protocol, we have

P ∗A,dP
∗
B,d ≥

1
D

for any d ∈ [D]. This implies the lower bound max{P ∗A, P ∗B} ≥ 1/
√
D. In fact, extending the

optimal coin-flipping protocol construction in [8], it was shown by Aharon and Silman [1]
that for D > 2, it is possible to find quantum protocols where the maximum of the 2D
probabilities is at most 1/

√
D + δ, for any δ > 0.

The optimal protocols in [8] and [1] are not explicit as they rely on using Mochon’s
optimal weak coin-flipping protocols as subroutines. Moreover, Mochon’s protocols are very
complicated and not given explicitly, although they have been simplified [2].

The best known explicit quantum protocol for die-rolling1 of which we are aware is given
in [1]. It uses three messages and has cheating probabilities

P ∗A := D + 1
2D and P ∗B := 2D − 1

D2 .

1 The protocols considered in this paper have a much different form than these protocols.
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These probabilities have the attractive property of approximating Kitaev’s lower bound in
the limit, but since P ∗A → 1/2 as D →∞, the maximum cheating probability is quite large.

This motivates the work in this paper which is to find simple and explicit protocols for
die-rolling that approximate Kitaev’s lower bound on the maximum cheating probability

max{P ∗A, P ∗B} ≥ 1/
√
D.

1.1 Simple classical protocols
We first show that simple classical protocols exist with decent security.

I Protocol 1 (Classical protocol).
Bob chooses a subset S ⊆ [D] with |S| = m, uniformly at random, and sends S to Alice.
If |S| 6= m, Alice aborts.
Alice selects d ∈ S uniformly at random and tells Bob her selection. If d 6∈ S, Bob aborts.
Both parties output d.

We see that this is a valid die-rolling protocol as each party outputs the same value
d ∈ [D] and each value occurs with equal probability. As for the cheating probabilities, it is
straightforward to see that

P ∗A = m

D
and P ∗B = 1

m
.

Besides being extremely simple, this protocol has the following interesting properties:
The product P ∗A,dP ∗B,d = 1/D, for any d ∈ [D], saturates Kitaev’s lower bound for every
d ∈ [D].
For D square and m =

√
D, we have P ∗A = P ∗B = 1/

√
D, yielding an optimal protocol!

If D is not square, then one party has a cheating advantage, i.e., P ∗A 6= P ∗B .

Note that to minimize max{P ∗A, P ∗B}, it does not make sense to choose large m (greater
than d

√
De) or small m (less than b

√
Dc). We can see that for D = 3, D = 7, or D = 8, for

example, that choosing the ceiling is better while for D = 5 or D = 10 choosing the floor
is better. Thus, we keep both the cases and summarize the overall security of the above
protocol in the following lemma.

I Lemma 2. For D ≥ 2, there exists a classical die-rolling protocol satisfying

1√
D
≤ max{P ∗A, P ∗B} = min

{
d
√
De
D

,
1

b
√
Dc

}
(1)

which is optimal when D is square.

Note that the special case of D = 2 has either Alice or Bob able to cheat perfectly, which
is the case for all classical coin-flipping protocols. However, Kitaev’s bound on the product of
cheating probabilities is still (trivially) satisfied. For D = 3, we can choose m = 2 to obtain
max{P ∗A, P ∗B} = 2/3 proving that even classical protocols can have nontrivial security, which
is vastly different than the D = 2 case. The values from (1) for D ∈ {2, . . . , 10} are later
presented in Table 1.

We are not aware of other lower bounds for classical die-rolling protocols apart from those
implied by Kitaev’s bounds above. We see that sometimes classical protocols can be optimal,
for example when D is square. We now consider how to design (simple) quantum protocols
and see what levels of security they can offer.

TQC 2016
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1.2 Simple quantum protocols
Many of the best known explicit protocols for strong coin-flipping are based on the idea of
bit-commitment [4, 20, 13, 19]. Optimal protocols are known for bit-commitment as well [9],
but are again based on weak coin-flipping and are thus very complicated.

In this paper, we generalize the above simple, explicit protocols such that Alice commits
to an integer instead of a bit. More precisely, our quantum protocols have the following form.

I Protocol 3 (Quantum protocol). A quantum die-rolling protocol based on the idea of
integer-commitment, denoted here as DRIC, is defined as follows:

Alice chooses a random a ∈ [D] and creates the state

|ψa〉 ∈ A ⊗ B

and sends the subsystem B to Bob.
Bob sends a uniformly random b ∈ [D] to Alice.
Alice reveals a to Bob and sends him the subsystem A.
Bob checks if A⊗ B is in state |ψa〉 using the measurement

{Πa := |ψa〉 〈ψa| , Πabort := I −Πa}.

Bob accepts/rejects a based on his measurement outcome.
If Bob does not abort, Alice and Bob output

d := (a+ b) mod D + 1 ∈ [D].

The special case of D = 2 yields the structure of the simple, explicit coin-flipping protocols
mentioned above. Indeed, these protocols are very easy to describe, one needs only the
knowledge of the D states |ψa〉 and, implicitly, the systems they act on, A and B.

We start by formulating the cheating probabilities of a DRIC-protocol using semidefinite
programming. Once we have established the semidefinite programming cheating strategy
formulations, we are able to analyze the security of DRIC-protocols. Furthermore, we are
able to analyze modifications to such protocols and the corresponding changes in security.

In this paper, we present a DRIC-protocol with near-optimal security. We develop this
protocol in several steps described below.

The first step is to start with a protocol with decent security. To do this, we show how
to create a DRIC-protocol with the same cheating probabilities as Protocol 1.

I Proposition 4. There exists a DRIC-protocol with the same cheating probabilities as in
Protocol 1.

The second step is to give a process which (approximately) balances the maximum
cheating probabilities of Alice and Bob. We accomplish this by modifying the protocol in
order to decrease the overall maximum cheating probability (while possibly increasing lesser
cheating probabilities).

I Proposition 5. If there exists a DRIC-protocol with cheating probabilities P ∗A = α and
P ∗B = β, then there exists a DRIC-protocol with maximum cheating probability

max{P ∗A, P ∗B} ≤
Dmax{β, α} −min{β, α}

D|β − α|+D − 1 ≤ max{β, α}.

Moreover, the last inequality is strict when α 6= β yielding a strictly better protocol.
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Table 1 Values of our bounds (as truncated percentages) for various protocols and values of D.
We see that the quantum protocol performs very well, even for D as small as 3.

D 2 3 4 5 6 7 8 9 10
Explicit Protocol in [1] 75% 66% 62% 60% 58% 57% 56% 55% 55%
Our Classical Protocol 100% 66% 50% 50% 50% 42% 37% 33% 33%

Our Quantum Protocol 75% 60% 50% 46% 44% 40% 36% 33% 32%
Kitaev’s lower bound 70% 57% 50% 44% 40% 37% 35% 33% 31%

By combining the above two propositions, we are able to obtain the main result of this
paper.

I Theorem 6. For any D ≥ 2, there exists a (quantum) DRIC-protocol satisfying

1√
D
≤ max{P ∗A, P ∗B} ≤ min

{
D + b

√
Dc

D(b
√
Dc+ 1)

,
1 + d

√
De

D + d
√
De

}
which is strictly better than Protocol 1 when D is not square.

Since min
{

D + b
√
Dc

D(b
√
Dc+ 1)

,
1 + d

√
De

D + d
√
De

}
≈ 1√

D
for large D, this bound is very close to

optimal. To compare numbers, we list the values for D ∈ {2, . . . , 10}, below.

1.3 Related literature
Quantum protocols for a closely related cryptographic task known as string-commitment
have been considered [12, 21, 22, 7, 11]. Technically, this is the case of integer-commitment
when D = 2n (if the string has n bits). It is worth noting that the quantum protocols
considered in this paper are quite similar, but the security definitions are very different.
Roughly speaking, the references above are concerned with quantum protocols where Alice is
able to “cheat” on a bits and Bob is able to “learn” b bits of information about the n bit
string. Multiple protocols and security trade-offs are given in the above references.

The use of semidefinite programming has been very valuable in the study of quantum
cryptographic protocols, see for example [14, 15, 16, 10, 18, 19]. Roughly speaking, if one
is able to formulate cheating probabilities as semidefinite programs, then the problem of
analyzing cryptographic security can be translated into a concrete mathematical problem.
Moreover, one then has the entire theory of semidefinite programming at their disposal. This
is the approach taken in this work, to shine new light on a cryptographic task using the lens
of semidefinite programming.

2 Semidefinite programming cheating strategy formulations

In this section, we use the theory of semidefinite programming to formulate Alice and Bob’s
maximum cheating probabilities for a DRIC-protocol. The formulations in this section are a
generalization of those for bit-commitment, see [19] and the references therein for details
about this special case.

2.1 Semidefinite programming
Semidefinite programming is the theory of optimizing a linear function over a positive
semidefinite matrix variable subject to finitely many affine constraints. A semidefinite

TQC 2016



4:6 Simple, Near-Optimal Quantum Protocols for Die-Rolling

program (SDP) can be written in the following form without loss of generality:

p∗ := sup{〈C,X〉 : A(X) = B, X � 0} (2)

where A is a linear transformation, C and B are Hermitian, and X � Y means that X − Y
is (Hermitian) positive semidefinite.

Associated with every SDP is a dual SDP:

d∗ := inf{〈B, Y 〉 : A∗(Y ) = C + S, S � 0, Y is Hermitian} (3)

where A∗ is the adjoint of A.
We refer to the optimization problem (2) as the primal or primal SDP and to the

optimization problem (3) as the dual or dual SDP. We say that the primal is feasible if there
exists an X satisfying the (primal) constraints

A(X) = B and X � 0

and we say the dual is feasible if there exists (Y, S) satisfying the (dual) constraints

A∗(Y ) = C + S, S � 0, and Y is Hermitian.

If further we have X positive definite, then the primal is said to be strictly feasible. If further
we have S positive definite, then the dual is said to be strictly feasible.

Semidefinite programming has a rich and powerful duality theory. In particular, we use
the following:

Weak duality: If the primal and dual are both feasible, then p∗ ≤ d∗.
Strong duality: If the primal and dual are both strictly feasible, then p∗ = d∗ and both attain

an optimal solution.

For more information about semidefinite programming and its duality theory, the reader is
referred to [6].

2.2 Cheating strategy formulations
To study a fixed DRIC-protocol, it is convenient to define the following reduced states

ρa := TrA(|ψa〉 〈ψa|)

for all a ∈ [D]. We show that they appear in both the case of cheating Alice and cheating
Bob.

2.2.1 Cheating Bob
To see how Bob can cheat, notice that he only has one message he sends to Alice. Thus, he
must send b ∈ [D] to force the outcome he wishes. For example, if he wishes to force the
outcome d, he would send b such that d = (a+ b) mod D + 1. Therefore, he must extract
the value of a from B to accomplish this. Suppose he measures B with the measurement

{M1, . . . ,MD}

where the outcome of the measurement corresponds to Bob’s guess for a. If Alice chose
a ∈ [D], he succeeds in cheating if his guess is correct, which happens with probability

〈Ma, ρa〉.
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Since the choice of Alice’s integer a is uniformly random, we can calculate Bob’s optimal
cheating probability as

P ∗B = max

 1
D

∑
a∈[D]

〈Ma, ρa〉 :
∑
a∈[D]

Ma = IB, Ma � 0,∀a ∈ [D]

 (4)

noting that the variables being optimized over correspond to a POVM measurement. Note
that the maximum is attained since the set of feasible (M1, . . . ,MD) forms a compact set.

Now that Bob’s optimal cheating probability is stated in terms of an SDP, we can examine
its dual as shown in the lemma below. Note that the lemma below follows from strong duality
(details in the full version).

I Lemma 7. For any DRIC-protocol, we have

P ∗B = min
{

Tr(X) : X � 1
D
ρa,∀a ∈ [D]

}
. (5)

We refer to the optimization problem (4) as Bob’s primal SDP and to the optimization
problem (5) as Bob’s dual SDP. The utility of having dual SDP formulations is that any
feasible solution yields an upper bound on the maximum cheating probability. Proving upper
bounds on cheating probabilities would otherwise be a very hard task.

2.2.2 Cheating Alice
If Alice wishes to force Bob to accept outcome d ∈ [D], she must convince him that the state
in A⊗B is indeed |ψa〉 where a is such that d = (a+ b) mod D+ 1. Note that this choice of
a is determined after learning b from Bob, which occurs with uniform probability.

To quantify the extent to which Alice can cheat, we examine the states Bob has during
the protocol. We know that Bob measures and accepts a with the measurement operator
Πa := |ψa〉 〈ψa|. Let (a,A) be Alice’s last message. Then Bob’s state at the end of the
protocol is given by a density operator σa acting on A⊗B which is accepted with probability
〈σa, |ψa〉 〈ψa|〉. Note that Alice’s first message B is in state σ := TrA(σa) which is independent
of a (since Alice’s first message does not depend on a when she cheats). Thus, the states
under Bob’s control are subject to the constraints

TrA(σa) = σ, ∀a ∈ [D], Tr(σ) = 1, σ, σ1 . . . , σD � 0. (6)

(Note that Tr(σa) = 1, for all a ∈ [D], is implied by the constraints above, and is thus
omitted.) On the other hand, if Alice maintains a purification of the states above, then using
Uhlmann’s Theorem [23] she can prepare any set of states satisfying conditions (6).

Thus, we have

P ∗A = max

 1
D

∑
a∈[D]

〈σa, |ψa〉 〈ψa|〉 : TrA(σa) = σ, ∀a ∈ [D], Tr(σ) = 1, σ, σ1 . . . , σD � 0

 .

(7)

Again, since the set of feasible (σ, σ1, . . . , σD) is compact, the above SDP attains an optimal
solution.

Similar to the case of cheating Bob, we can view the dual of Alice’s cheating SDP above
as shown in the lemma below. Again, the lemma below follows by strong duality (details in
the full version).

TQC 2016
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I Lemma 8. For any DRIC-protocol, we have

P ∗A = min

s : sIB �
∑
a∈[D]

Za, IA ⊗ Za �
1
D
|ψa〉 〈ψa| , ∀a ∈ [D], Za is Hermitian

 . (8)

We refer to the optimization problem (7) as Alice’s primal SDP and the optimization
problem (8) as Alice’s dual SDP.

Note that every solution feasible in Alice’s dual SDP has Za being positive semidefinite,
for all a ∈ [D]. We can further assume that each Za is positive definite if we sacrifice
the attainment of an optimal solution. This is because we can take an optimal solution
(s, Z1, . . . , ZD) and consider (s+ εD,Z1 + εIB, . . . , ZD + εIB) which is also feasible for any
ε > 0, and s+ εD approaches s = P ∗A as ε decreases to 0.

Next, we use an analysis similar to one found in [15] and [24] to simplify the constraint

IA ⊗ Za � |ψa〉 〈ψa|

when Za is positive definite. Since X → ZXZ−1 is an automorphism of the set of positive
semidefinite matrices for any fixed positive definite Z, we have

IA ⊗ Za �
1
D
|ψa〉 〈ψa| ⇐⇒ IA⊗B � (IA ⊗ Z−1/2

a )
(

1
D
|ψa〉 〈ψa|

)
(IA ⊗ Z−1/2

a ). (9)

Note that since the quantity on the right is positive semidefinite with rank at most 1, its
largest eigenvalue is equal to its trace which is equal to

1
D
〈IA ⊗ Z−1

a , |ψa〉 〈ψa|〉 = 1
D
〈Z−1

a ,TrA(|ψa〉 〈ψa|)〉 = 1
D
〈Z−1

a , ρa〉.

Thus, we can rewrite (9) as

IA ⊗ Za �
1
D
|ψa〉 〈ψa| ⇐⇒

1
D
〈Z−1

a , ρa〉 ≤ 1 ⇐⇒ 〈Z−1
a , ρa〉 ≤ D.

Therefore, we have the following lemma.

I Lemma 9. For any DRIC-protocol, we have

P ∗A = inf

s : sIB �
∑
a∈[D]

Za, 〈Z−1
a , ρa〉 ≤ D,∀a ∈ [D], Za is positive definite, ∀a ∈ [D]

 .

(10)

We also refer to the optimization problem (10) as Alice’s dual SDP and we distinguish
them by equation number.

3 Finding a decent DRIC-protocol

In this section, we exhibit a DRIC-protocol which has the same cheating probabilities as
Protocol 1:

P ∗B = 1
m

and P ∗A = m

D
.
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To do this, define Tm to be the subsets of [D] of cardinality m and note that |Tm| =
(
D
m

)
.

Consider the following states

|ψa〉 := 1√(
D − 1
m− 1

) ∑
S∈Tm : a∈S

|S〉 |S〉 ∈ A ⊗ B,

for a ∈ [D], where A = B = C|Tm|. Notice that

ρa := TrA (|ψa〉 〈ψa|) = 1(
D − 1
m− 1

) ∑
S∈Tm : a∈S

|S〉 〈S| .

We now use the cheating SDPs developed in the previous section to analyze the cheating
probabilities of this protocol.

3.1 Cheating Bob
To prove that Bob can cheat with probability at least 1/m, suppose he measures his message
from Alice in the computational basis. He then obtains a random subset S ∈ Tm such that
a ∈ S. He then guesses which integer is a and responds with the appropriate choice for b to
get his desired outcome. He succeeds if and only if his guess for a (from the m choices in S)
is correct. This strategy succeeds with probability 1/m. Thus, P ∗B ≥ 1/m.

To prove Bob cannot cheat with probability greater than 1/m, notice that

X = 1
D
(
D − 1
m− 1

)IB
satisfies

X � 1
D
ρa, ∀a ∈ [D],

and thus is feasible in Bob’s dual (5). Therefore, P ∗B ≤ Tr(X) = 1/m, as desired.

3.2 Cheating Alice
Alice can cheat by creating the maximally entangled state

|Tm〉 := 1√
|Tm|

∑
S∈Tm

|S〉 |S〉 ∈ A ⊗ B

and sending B to Bob. After learning b, she sends a such that (a + b) mod D + 1 is her
desired outcome. She also sends A to Bob (without altering it in any way). Thus, her
cheating probability is precisely the probability of her passing Bob’s cheat detection which is

〈Πa, |Tm〉 〈Tm|〉 = 〈|ψa〉 〈ψa| , |Tm〉 〈Tm|〉 = |〈Tm|ψa〉|2 = m

D
.

Therefore, this cheating strategy succeeds with probability m/D, proving P ∗A ≥ m/D.
To prove this strategy is optimal, we use Alice’s dual (10). Define

Za := 1
D

∑
S∈Tm : a∈S

|S〉 〈S|+ ε
∑

S∈Tm : a 6∈S
|S〉 〈S|

TQC 2016
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where ε is a small positive constant. Za is invertible and we can write

Z−1
a := D

∑
S∈Tm : a∈S

|S〉 〈S|+ 1
ε

∑
S∈Tm : a6∈S

|S〉 〈S| .

We see that each Za satisfies 〈Z−1
a , ρa〉 = D, for all a ∈ [D]. Also,

Za �
1
D

∑
S∈Tm : a∈S

|S〉 〈S|+ εIB

thus∑
a∈[D]

Za �
1
D

∑
a∈[D]

∑
S∈Tm : a∈S

|S〉 〈S|+ εD IB =
(m
D

+ εD
)
IB.

Thus, s = m

D
+ εD satisfies

s IB �
∑
a∈[D]

Za

proving P ∗A ≤ s = m

D
+ εD, for all ε > 0. Therefore, P ∗A = m/D, as desired.

4 Balancing Alice and Bob’s cheating probabilities

This section is comprised of two parts. We first focus on reducing Bob’s cheating probabilities,
then Alice’s.

4.1 Building new protocols that reduce Bob’s cheating
We start with a lemma.

I Lemma 10. If there exists a DRIC-protocol with cheating probabilities P ∗A = α and P ∗B = β,
then there exists another DRIC-protocol with cheating probabilities P ∗A = α′ and P ∗B = β′

where

β′ ≤ (1− t)β + t

D
and α′ ≤ (1− t)α+ t

for any t ∈ (0, 1).

We sketch the proof here. Fix a DRIC-protocol with cheating probabilities P ∗A = α and
P ∗B = β defined by the states |ψa〉 ∈ A⊗B, for a ∈ [D]. Extend each of the Hilbert spaces A
and B by another basis vector |⊥〉 and denote these Hilbert spaces by A′ and B′, respectively.
In short, A′ := A⊕ span{|⊥〉} and B′ := B ⊕ span{|⊥〉}. Note that

〈⊥,⊥|ψa〉 = 0, for all a ∈ [D].

We now analyze the cheating probabilities of Alice and Bob in the new DRIC-protocol
defined by the states

|ψ′a〉 :=
√

1− t |ψa〉+
√
t |⊥,⊥〉 ∈ A′ ⊗ B′, for all a ∈ [D]

as a function of t ∈ (0, 1). For this, note that

ρ′a := TrA (|ψ′a〉 〈ψ′a|) = (1− t) ρa + t |⊥〉 〈⊥| ,

where ρa := TrA (|ψa〉 〈ψa|).
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To show how Bob’s cheating probability changes, consider an optimal solution X to Bob’s
dual SDP (5) corresponding to the original protocol. Then one can show that

X ′ := (1− t)X + t

D
|⊥〉 〈⊥|

is feasible in Bob’s dual SDP after the protocol has been modified. This proves that

P ∗B ≤ (1− t)β + t/D

for the new protocol.
Concerning cheating Alice, let (s, Z1, . . . , ZD) be a feasible solution for Alice’s dual (10)

for the original protocol. Then one can show that

s′ := s(1− t) + t

Z ′1 := ((1− t) + t/s)Z1 +
(
s(1− t) + t

D

)
|⊥〉 〈⊥|

...

Z ′D := ((1− t) + t/s)ZD +
(
s(1− t) + t

D

)
|⊥〉 〈⊥|

is feasible for Alice’s dual for the new protocol. Thus,

P ∗A ≤ s′ = s(1− t) + t

and since s can be taken arbitrarily close to α, the result follows.

Intuitively, Alice can cheat more if the states ρa are “close” to each other and Bob can
cheat more if they are “far apart”. What this protocol modification does is make all the
states closer together to increase Alice’s cheating probability but to decrease Bob’s.

Note that this lemma is useful when β > α. In this case, one can choose

t = β − α
(1− 1/D) + (β − α) ∈ (0, 1)

to equate the upper bounds. If α > β, then no choice of t ∈ (0, 1) will make the two upper
bounds in Lemma 10 equal. We summarize in the following corollary.

I Corollary 11. If there exists a DRIC-protocol with cheating probabilities P ∗A = α and
P ∗B = β, with β > α, then there exists another DRIC-protocol with maximum cheating
probability

max{P ∗A, P ∗B} ≤
Dβ − α

Dβ −Dα+D − 1 < β.

4.2 Building new protocols that reduce Alice’s cheating
In this subsection, we show how to reduce Alice’s cheating probabilities in a DRIC-protocol.

I Lemma 12. If there exists a DRIC-protocol with cheating probabilities P ∗A = α and P ∗B = β,
then there exists another DRIC-protocol with cheating probabilities P ∗A = α′ and P ∗B = β′

where

β′ ≤ (1− t)β + t and α′ ≤ (1− t)α+ t

D
,

for t ∈ (0, 1).

TQC 2016
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We sketch the proof here. Fix a DRIC-protocol with cheating probabilities P ∗A = α and
P ∗B = β defined by the states |ψa〉 ∈ A⊗B, for a ∈ [D]. Extend each of the Hilbert spaces A
and B by the set of orthogonal basis vectors {|⊥a〉 : a ∈ [D]}, and denote these new Hilbert
spaces by A′ and B′, respectively. In other words,

A′ := A⊕ span{|⊥1〉 , . . . , |⊥D〉} and B′ := B ⊕ span{|⊥1〉 , . . . , |⊥D〉}.

Note that

〈⊥a′′ ,⊥a′ |ψa〉 = 0, for all a, a′, a′′ ∈ [D].

Again, we analyze the cheating probabilities of Alice and Bob in the new DRIC-protocol
defined by the states

|ψ′a〉 :=
√

1− t |ψa〉+
√
t |⊥a〉 |⊥a〉 ∈ A′ ⊗ B′

for a ∈ [D]. The reduced states are

ρ′a := (1− t) ρa + t |⊥a〉 〈⊥a|

for a ∈ [D], recalling that ρa := TrA(|ψa〉 〈ψa|). We now analyze the cheating probabilities
of this new protocol as a function of t ∈ (0, 1).

To show how Bob’s cheating probability changes, we can use a similar argument. Consider
an optimal solution X to Bob’s dual (5) for the original protocol. Then one can show that

X ′ := (1− t)X + t

D

∑
a∈[D]

|⊥a〉 〈⊥a|

is feasible for Bob’s dual for the modified protocol. This shows that

P ∗B ≤ (1− t)β + t.

Concerning cheating Alice, let (s, Z1, . . . , ZD) be a feasible solution for Alice’s dual (10)
for the original protocol. Then one can show that

s′ := (1− t)s+ t/D + ζ(D − 1)

Z ′1 :=
(

(1− t) + t

Ds

)
Z1 +

(
(1− t)s+ t

D

)
|⊥1〉 〈⊥1|+ ζ

∑
c∈[D],c 6=1

|⊥c〉 〈⊥c|

...

Z ′D :=
(

(1− t) + t

Ds

)
ZD +

(
(1− t)s+ t

D

)
|⊥D〉 〈⊥D|+ ζ

∑
c∈[D],c6=D

|⊥c〉 〈⊥c|

is feasible for Alice’s dual for the new protocol for ζ > 0 a small constant. Thus,

P ∗A ≤ (1− t)s+ t/D

and since s can be taken arbitrarily close to α, the result follows.

Intuitively, this protocol modification works in the opposite manner of the last. Here,
we are making the states farther apart as to decrease Alice’s cheating at the expense of
increasing Bob’s.

As opposed to Lemma 10, the above lemma is useful when α > β. Similarly, if β > α,
then no choice of t ∈ (0, 1) will make the two upper bounds in Lemma 12 equal.

By symmetry, we have the following corollary.
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I Corollary 13. If there exists a DRIC-protocol with cheating probabilities P ∗A = α and
P ∗B = β, with α > β, then there exists another DRIC-protocol with maximum cheating
probability

max{P ∗A, P ∗B} ≤
Dα− β

Dα−Dβ +D − 1 < α.

Note that if α = β, the quantity Dα−β
Dα−Dβ+D−1 is equal to α(= β). Thus, we still have

max{P ∗A, P ∗B} ≤
Dα− β

Dα−Dβ +D − 1

holding, although no protocol modification is necessary. Therefore, Proposition 5 now follows
from combining Corollaries 11 and 13 and the comment above.
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