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Abstract
Although it is widely accepted that every system should be robust, in the sense that “small”
violations of environment assumptions should lead to “small” violations of system guarantees,
it is less clear how to make this intuitive notion of robustness mathematically precise. In this
paper, we address the problem of how to specify robustness in temporal logic. Our solution
consists of a robust version of the Linear Temporal Logic (LTL) fragment that only contains the
always and eventually temporal operators. We denote this new logic by rLTL( , ). Its formulas
are syntactically identical to LTL formulas but are endowed with a many-valued semantics that
encodes robustness. In particular, the semantics of the rLTL formula ϕ⇒ ψ is such that a “small”
violation of the environment assumption ϕ is guaranteed to only produce a “small” violation of
the system guarantee ψ. In addition, we study the verification and synthesis problems for this
logic. Similarly to LTL, we show that: both problems are decidable; the verification problem
can be solved in exponential time; the synthesis problem is solvable in doubly exponential time.
All the results for rLTL( , ) smoothly extend to full rLTL, the robust version of full LTL. For
reasons of space, such extension is not discussed but available in an extended version [21].
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1 Introduction

Specifications for open reactive systems are typically written as an implication

ϕ⇒ ψ, (1)

where ϕ is an environment assumption and ψ is a system guarantee. In Linear Temporal
Logic (LTL), this implication is equivalent to ¬ϕ ∨ ψ. Hence, whenever the assumption ϕ
is violated the system can behave arbitrarily. This is clearly inadequate since environment
assumptions will inevitably be violated: the real environment where the system will be
deployed is not completely known at design time and thus cannot be accurately described by
the formula ϕ.

We argue that a robust design satisfies the implication in (1) in a robust manner (i.e., a
“small” violation of ϕ results, at most, in a “small” violation of ψ). To make this intuitive
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10:2 Robust Linear Temporal Logic

notion of robustness mathematically precise, we introduce a fragment of a new logic termed
robust Linear Temporal Logic and simply denoted by rLTL. For reasons of space, we only
discuss the fragment of rLTL that contains the always and eventually temporal operators,
denoted by rLTL( , ). However, all the decidability and complexity results extend to
full rLTL as discussed in [21]. In developing rLTL, we were guided by two objectives: 1)
the syntax of rLTL should be similar to the syntax of LTL in order to make the transition
from LTL to rLTL as transparent as possible; 2) robustness should be intrinsic to the logic
rather than extrinsic (i.e., robustness should not rely on the ability of the designer to provide
quantitative information such as ranks, costs, or quantitative interpretations of atomic
propositions). This guarantees that verification and synthesis techniques for rLTL are widely
applicable as they only require an LTL specification.

The main conceptual question to be addressed when developing the semantics of rLTL
is how to give mathematical meaning to “small” violations of a formula ϕ. The approach
advocated in this paper can be intuitively explained by regarding LTL formulas of the form
p, p, p, and p, for an atomic proposition p, as requirements on the number of

times that p is satisfied over time. Under this interpretation, and for the formula ϕ = p,
there is a clear ordering among the possible temporal evolutions of p: p being satisfied at
every time instant is preferred to p being violated at finitely many time instants which, in
turn, is preferred to p being satisfied and violated at infinitely many time instants. The
latter case is preferred to p only being satisfied at finitely many time instants and this case
is preferred over p being satisfied at no time instant. A semantics that would distinguish
between these different five cases would then enable us to state that violating p while
satisfying p consists of a smaller violation of the formula ϕ = p than violating p

while satisfying p. Making these ideas mathematically rigorous requires a 5-valued
semantics that we develop in this paper. Interestingly, our specific interpretation of the five
different truth values leads to an intuitionistic semantics where negation is dualized and
to a corresponding algebraic structure, da Costa algebras, which were only very recently
investigated [18].

Contributions

The first contribution of this paper (Section 3) is the fragment rLTL( , ) of our new
logic rLTL, which enables reasoning about robustness of LTL specifications. The syntax of
rLTL( , ) is almost identical to the syntax of LTL with the only notable difference being
dotted temporal operators. The 5-valued semantics of rLTL( , ) is, however, different in
many regards (e.g., it precludes several LTL identities to hold on rLTL). For that reason,
we carefully motivate the need for a many-valued semantics and provide several examples
illustrating how rLTL can be used to reason about robustness.

The second contribution (Section 4) is the study of several computational questions related
to rLTL( , ). We first show that rLTL( , ) is as expressive as the LTL( , ) fragment
by providing effective translations between both logics. However, the translation from
rLTL( , ) to LTL( , ) involves an exponential blow-up, leaving open the possibility of
improved complexity bounds for the rLTL( , ) verification and synthesis problems. Indeed,
the exponential blow-up can be avoided by a carefully generalization of the construction that
associates with each LTL formula ϕ a Büchi automaton Aϕ recognizing all infinite words
satisfying ϕ. Critical to this new construction are the properties of the da Costa algebra,
used to define the rLTL( , ) semantics, which can be leveraged to keep the size of Aϕ in
O(|cl(ϕ)| · 5|cl(ϕ)|) where cl(ϕ) denotes the set of subformulas of ϕ. Note that this is the
same complexity bound as for LTL where we replace 2 (LTL has a 2-valued semantics) with
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5 (rLTL( , ) has a 5-valued semantics). Additional consequences of the construction of
Aϕ include: 1) rLTL( , ) specifications can be verified in time exponential in the size of
specification and polynomial in the size of the system being verified; 2) the time complexity
of synthesizing reactive controllers for rLTL( , ) specifications is doubly exponential in the
size of the specification and polynomial in the size of the underlying game graph.

Finally, we show in Section 5 that by dualizing the semantics of rLTL in a specific sense
one obtains a logic that is adequate to reason about quality.

Related efforts

Several efforts to robustify the implication in (1) have been reported in the literature. Bloem
et al. [5] formalized robustness by comparing how often the system violates its assumptions
with how often the environment violates its assumptions. Counting the number of violations
requires the designer to provide quantitative information in the form of error functions. In
contrast, when working with rLTL, the designer only needs to provide an LTL specification. A
different notion of robustness appeared in [8] and requires the effect of a sporadic disturbance
to disappear in finite time. The semantics of rLTL was built so as to naturally encode this
as well as other requirements expressing how a weakening of the system assumptions should
lead to a weakening of the system guarantees. Previous work by one of the authors, reported
in [22], provided a single notion of robustness encompassing the notion in [8] but requiring
the designer to provide quantitative information in the form of a cost. Such cost implicitly
specifies how guarantees and assumptions are to be weakened in a robust design and was
inspired by the work of Alur et al. [2]. A different formalization of robustness appeared in [9],
which considered a specific class of violations of safety assumptions defined by the frequency
of violations. In contrast to all the previously described approaches, the results in this paper
do not require any additional assumptions or input from a designer beyond an LTL formula.

Robustness for liveness specifications was discussed by Bloem et al. [4], who considered
specifications of the form ∧i∈I ϕi ⇒ ∧j∈J ψj , where ϕi and ψj are formulas of the form

p for some atomic proposition p (depending on i and j). Robustness is then measured
by comparing the number of violated environment assumptions ϕi with the number of
violated guarantees ψj . This approach is incomparable with ours since the rLTL( , )
semantics does not distinguish between the violation of one or multiple assumptions. It
does, however, distinguish between the different ways in which ϕi and ψj can be violated.
Although robustness is formalized differently, rLTL( , ) can be used to reason about the
robustness of both safety and liveness specifications. Also incomparable with rLTL( , ) is
the work by Chaudhuri et al. [6] and by Majumdar et al. [14], which considers continuity
properties of software expressed by the requirement that a deviation in a program’s input
causes a proportional deviation in its output. Although natural, these notions of robustness
only apply to the Turing model of computation and not to the reactive model employed
in this paper. Robustness was also investigated in the context of systems biology (e.g.,
Rizk et al. [19] and Česka et al. [23]) although the considered models are quite different as
they require continuity and stochasticity.

There exists a large body of work on many-valued logics that we will not attempt to
review here since it does not directly address questions of robustness. We do, however, allow
for one exception: the work by Fainekos and Pappas [10] on robustness of temporal logic
over continuous signals and its extensions (e.g., by Donzé and Maler [7]). These results,
however, require continuous-valued signals whereas rLTL is to be used in the classical setting
of discrete-time and finite valued signals (e.g., as in transition systems).

The last body of work related to the contents of this paper is the work on lattice automata
and lattice LTL [13, 1]. The syntax of lattice LTL is similar to the syntax of LTL except that
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10:4 Robust Linear Temporal Logic

atomic propositions assume values on a finite lattice. Lattice LTL derives its many-valued
character from the atomic propositions, whereas atomic propositions in rLTL( , ) are
interpreted classically (i.e., they only assume two truth values). Therefore, the many-valued
character of rLTL( , ) arises from the temporal evolution of the atomic propositions and
not from the nature of the atomic propositions or their interpretation. In fact, if we only
allow two truth values for the atomic propositions in lattice LTL, this logic specializes to
LTL. Hence, these two logics capture orthogonal considerations, and results on lattice LTL
and lattice automata do not shed light on how to address similar problems for rLTL( , ).

2 Notations and Review of LTL

Let N = {0, 1, . . .} be the set of natural numbers and B = {0, 1} be the set of Boolean values
(0 interpreted as false and 1 as true). For a set S, let 2S be the powerset of S and Sω be
the set of all infinite sequences of elements of S. An alphabet, usually denoted by Σ, is a
finite, nonempty set whose elements are called symbols. An infinite sequence σ = a0a1 . . . of
symbols with ai ∈ Σ, i ∈ N, is called an infinite word. For an infinite word σ = a0a1 . . . ∈ Σω
and i ∈ N, let σ(i) = ai denote the i-th symbol of σ and σi.. the (infinite) suffix of σ starting
at position i (i.e., σi.. = σiσi+1 . . . ∈ Σω). In particular, we have the equality σ0.. = σ.

Next, we recapitulate the syntax and semantics of a fragment of Linear Temporal Logic
(LTL), abbreviated as LTL( , ), that is restricted to the always and eventually modalities.

I Definition 1 (LTL( , ) syntax). Let P be a nonempty, finite set of atomic propositions.
LTL( , ) formulas are inductively defined as follows: (a) each p ∈ P is an LTL formula
and (b) if ϕ and ψ are LTL formulas, so are ¬ϕ, ϕ ∨ ψ, ϕ, and ϕ.

We also allow the formulas true, false, ϕ ∧ ψ, and ϕ⇒ ψ with their usual meaning.
In the following, we define the semantics of LTL( , ) by a mapping W that maps an

infinite word σ ∈ Σω, Σ = 2P , and an LTL( , ) formula ϕ to the element W (σ, ϕ) ∈ B.
Although the semantics of LTL is usually defined by a satisfaction relation, we here define it
in terms of a function so as to be consistent with our definition of the rLTL( , ) semantics.

I Definition 2 (LTL( , ) semantics). The LTL( , ) semantics is a mapping W , called
valuation, defined as follows:

W (σ, p) =
{

0 p /∈ σ(0); and
1 p ∈ σ(0)

(2)

W (σ, ϕ ∨ ψ) = max {W (σ, ϕ),W (σ, ψ)} (3)

W (σ,¬ϕ) = 1−W (σ, ϕ) (4)
W (σ, ϕ) = infi≥0 W (σi.., ϕ) (5)
W (σ, ϕ) = supi≥0 W (σi.., ϕ) (6)

We often use a compact notation when referring to infinite words over sets of atomic
propositions: instead of writing the set of atomic propositions corresponding to a symbol, we
use simple propositional formulas, such as p, ¬p, and p ∧ q, to denote all the sets of atomic
propositions where these formulas hold true according to the LTL semantics. For instance,
given P = {p, q, r}, we write ¬p to denote the sets ∅, {q}, {r}, {q, r} ∈ Σ, and we write p ∧ q
to denote the sets {p, q}, {p, q, r} ∈ Σ.

3 The Syntax and Semantics of rLTL( , )

In this section we introduce the fragment rLTL( , ) that intrinsically provides a robust
interpretation of LTL( , ) formulas. On the one hand, rLTL( , ) is simple enough
that we can provide a lucid intuitive explanation for its semantics. On the other hand,
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rLTL( , ) already illustrates most of the technical difficulties brought by robustness. Full
rLTL, including all technical results, is presented in [21].

3.1 The Syntax of rLTL( , )
The syntax of rLTL( , ) closely mirrors the syntax of LTL( , ) with the only noticeable
difference being the use of dotted temporal operators.

I Definition 3 (rLTL( , ) syntax). Let P be a nonempty, finite set of atomic propositions.
rLTL( , ) formulas are inductively defined as follows: (a) each p ∈ P is an rLTL formula
and (b) if ϕ and ψ are rLTL formulas, so are ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ϕ⇒ ψ, ϕ, and ϕ.

In LTL, we can derive the conjunction and implication operators from negation and
disjunction. This is no longer the case in rLTL( , ) since it has a many-valued semantics.
For this reason, conjunction and implication occur explicitly in Definition 3.

3.2 Robustness and Counting
Consider the LTL formula p where p is an atomic proposition. There is only one way in
which this formula can be satisfied: p holds at every time step. In contrast, there are several
ways in which this formula can be violated, and we seek a semantics that distinguishes them.

It seems intuitively clear to the authors that the worst manner in which p fails to be
satisfied occurs when p fails to hold at every time step. Although still violating p, we
would prefer a situation where p holds for at most finitely many time instants. Better yet
would be that p holds at infinitely many instants while it fails to hold also at infinitely
many instants. Finally, among all the possible ways in which p can be violated, we would
prefer the case where p fails to hold for at most finitely many time instants. Consequently,
our robust semantics is designed to distinguish between satisfaction and these four possible
different ways to violate p. However, as convincing as this argument might be, a question
persists: in which sense can we regard these five alternatives as canonical?

We answer this question by interpreting satisfaction of p as a counting problem.
The previously discussed five different cases, satisfaction and four different types of vi-
olation, can be seen as the result of counting the number of 0s and 1s in the word
α = W (σ0.., p)W (σ1.., p) . . . ∈ Bω rather than using the inf-operator in (5). From this per-
spective, satisfaction corresponds to the number of occurrences of 0 being zero. Among all
the possible ways in which p can be violated, the most preferred occurs when p only fails
to hold at finitely many time instants. This corresponds to a finite number of 0s in α. All
the other ways in which p can be violated are similarly identified by the number of 0s and
1s in α.

We say that an LTL( , ) formula ϕ is a counting formula if its valuation W (σ, ϕ) only
depends on the number of occurrences of each atomic proposition but not on its order. Such
formula ϕ is essentially counting how many times each atomic proposition appears along the
word σ. Formally, we say that ϕ is a counting formula if for every infinite word σ ∈ Σω, seen
as a map σ : N→ Σ, and for every bijection f : N→ N we haveW (σ, ϕ) = W (σ◦f, ϕ). Recall
that by composing a sequence of permutations (bijections) one again obtains a bijection.
Hence, by permuting the elements of σ, we obtain the word σ ◦ f where f is the composition
of the employed permutations. If we now assume P = {p}, then we can always permute
the elements of σ so that the permuted word σ ◦ f is of the form (¬p p)kpω, (¬p p)ω, or
(¬p p)k (¬p)ω, where k ∈ N. We further recall that formulas in LTL( , ) can only define
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stutter-invariant properties [15]. Therefore, the semantics of LTL( , ) cannot distinguish1
between the words (¬p p)k1 pω and (¬p p)k2 pω for k1 6= k2, and k1, k2 > 0, although it can
distinguish between the case k1 = 0 and k2 > 0. The same argument applies to the words
(¬p p)k1 (¬p)ω and (¬p p)k2 (¬p)ω and shows that there are only five canonical forms that
can be distinguished by LTL( , ):

pω, (¬p p)+
pω, (¬p p)ω , (¬p p)+ (¬p)ω , and (¬p)ω . (7)

It should be no surprise that these are exactly the five cases we previously discussed.
The considerations in this section suggest the need for a semantics that is 5-valued rather

than 2-valued so that we can distinguish between the aforementioned five cases. Therefore,
we need to replace Boolean algebras by a different type of algebraic structure that can
accommodate a 5-valued semantics for each rLTL( , ) formula.

3.3 da Costa Algebras
According to our motivating example p, the desired semantics should have one truth value
corresponding to true and four truth values corresponding to different shades of false. It
is instructive to think of truth values as the elements of B4 (i.e., the four-fold Cartesian
product of B) that arise as the possible values of the 4-tuple of LTL formulas:

( p, p, p, p). (8)

To ease notation, we denote such values interchangeably by b = b1b2b3b4 and b = (b1, b2, b3, b4)
with bi ∈ B for i ∈ {1, 2, 3, 4}. The value 1111 then corresponds to true since p is satisfied.
The most preferred violation of p (p fails to hold at only finitely many time instants)
corresponds to 0111, followed by 0011 (p holds at infinitely many instants and also fails to
hold at infinitely many instants), 0001 (p holds at most at finitely many instants), and 0000
(p fails to hold at every time instant). Such preferences can be encoded in the linear order

0000 ≺ 0001 ≺ 0011 ≺ 0111 ≺ 1111 (9)

that renders the set B4 = {0000, 0001, 0011, 0111, 1111} a (bounded) distributive lattice with
top element > = 1111 and bottom element ⊥ = 0000. In B4, the meet u can be interpreted
as minimum and the join t as maximum with respect to the order in (9). We use u and t
when discussing lattices in general and use min and max for the specific lattice B4 or the
Boolean algebra B.

The first choice to be made in using the lattice B4 to define the semantics of rLTL( , )
is the choice of an operation on B4 modeling conjunction. Consider the formula p ∧ q

and the word σ = ¬(p ∧ q)(p ∧ q)ω. As introduced above, the value of p on σ corresponds
to 0111 and the value of q on σ corresponds to 0111 since on both cases we have the most
preferred violation of the formulas. Therefore, the value of p∧ q on σ should also be 0111
since the formula p ∧ q is only violated a finite number of times. It thus seems natural2

1 To see why this is the case, note that any word (¬p p)k pω with k ∈ N can be permuted to the form
(¬p)k pkpω and by stutter invariance can be reduced to ¬p p pω.

2 Note that there are situations where it is convenient to model conjunction differently. In the related work,
we referenced the work of Bloem et al. [4], where the specific way in which robustness is modeled requires
distinguishing between the number of conjuncts that are satisfied in the assumption ∧i∈Iϕi. This
cannot be accomplished if conjunction is modeled by min and a different triangular-norm would have to
be used for this purpose. Note that both Łukasiewicz’s conjunction as well as Goguen’s conjunction
have the property that their value decreases as the number of conjuncts that are true decreases.
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to model conjunction in B4 by min and, for similar reasons, to model disjunction in B4 by
max.

As in intuitionistic logic3, our implication is defined as the residue of u. In other words,
we define the implication a→ b by requiring that c � a→ b if and only if c u a � b for every
c ∈ B4. This leads to

a→ b =
{

1111 if a � b; and
b otherwise.

However, we now diverge from intuitionistic logic (and most many-valued logics) where
negation of a is defined by a→ 0000. Such negation is not compatible with the interpretation
that all the elements of B4, except for 1111, represent (different shades of) false and thus their
negation should have the truth value 1111. To make this point clear, the table below presents
the intuitionistic negation in B4 and the desired negation compatible with our interpretation
of the truth values in B4.

Desired Intuitionistic
Value negation negation

1111 0000 0000
0111 1111 0000
0011 1111 0000
0001 1111 0000
0000 1111 1111

What is then the algebraic structure on B4 that supports the desired negation? This very
same problem was recently investigated by Priest [18], and the answer is da Costa algebras.

I Definition 4 (da Costa algebra). A da Costa algebra is a 6-tuple (A,u,t,�,→, · ) where
1. (A,u,t,�) is a distributive lattice where � is the ordering derived from u and t;
2. → is the residual of u (i.e., a � b→ c if and only if a u b � c for every a, b, c ∈ A);
3. a � b t b for every a, b ∈ A; and
4. a � b whenever c t c � a t b for every a, b, c ∈ A.

Indeed, B4 is a da Costa algebra if we use the desired negation defined in the table above.
It should be mentioned that working with a 5-valued semantics has its price. The law

of non-contradiction fails in B4 (i.e., a u a may not equal ⊥ = 0000 as evidenced by taking
a = 0111). However, since a u a ≺ 1111, a weak form of non-contradiction still holds as
a u a is to be interpreted as a shade of false but not necessarily as the least preferred way of
violating a u a, which corresponds to ⊥. Contrary to intuitionistic logic, the law of excluded
middle is valid (i.e., a t a = > = 1111). Finally, a = 0111 shows that a 6= a although it is
still true that a→ a.

3 This is also done in context of residuated lattices that is more general than the Heyting algebras used
in intuitionistic logic. Recall that a residuated lattice is a lattice (A,u,t), satisfying same additional
conditions, and equipped with a commutative monoid (A,⊗,1) satisfying some additional compatibility
conditions. Since we chose the lattice meet u to represent conjunction, we have a residuated lattice
where ⊗ = u and 1 = >.
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3.4 Semantics of rLTL( , ) on da Costa Algebras
The semantics of rLTL( , ) is given by a mapping V , called valuation as in the case of
LTL( , ), that maps an infinite word σ ∈ Σω and an rLTL( , ) formula ϕ to an element
of B4. In defining V , we judiciously use the algebraic operations of the da Costa algebra B4
to give meaning to the logical connectives in the syntax of rLTL( , ). In the following, let
Σ = 2P for a finite set of atomic propositions P.

On atomic propositions p ∈ P, V is defined “classically” by

V (σ, p) =
{

0000 if p /∈ σ(0); and
1111 if p ∈ σ(0).

(10)

Since we are using a 5-valued semantics, we provide a separate definition for all the four
logical connectives:

V (σ, ϕ ∧ ψ) = V (σ, ϕ) u V (σ, ψ) (11)

V (σ,¬ϕ) = V (σ, ϕ) (12)
V (σ, ϕ ∨ ψ) = V (σ, ϕ) t V (σ, ψ) (13)
V (σ, ϕ⇒ ψ) = V (σ, ϕ)→ V (σ, ψ) (14)

Note how the semantics mirrors the algebraic structure of da Costa algebras. This is no
accident since valuations are typically algebra homomorphisms. Unfortunately, da Costa
algebras are not equipped4 with operations corresponding to and , the robust versions of

and , respectively. Therefore, we resort to the counting interpretation in Section 3.2 to
motivate the semantics of . Formally, we have

V (σ, ϕ) =
(
inf
i≥0

V1(σi.., ϕ), sup
j≥0

inf
i≥j

V2(σi.., ϕ), inf
j≥0

sup
i≥j

V3(σi.., ϕ), sup
i≥0

V4(σi.., ϕ)
)

(15)

where Vk(σ, ϕ) = πk ◦ V (σ, ϕ) for k ∈ {1, 2, 3, 4} and πk : B4 → B are mappings defined by

πk(a1, a2, a3, a4) = ak. (16)

To illustrate the semantics of , consider the simple case where ϕ is an atomic proposition
p. This means that one can express V (σ, p) in terms of the LTL valuation W by

V (σ, p) =
(
W (σ, p),W (σ, p),W (σ, p),W (σ, p)

)
(17)

thus connecting the semantics of to the counting problems described in Section 3.2 and to
the 4-tuple of LTL formulas in (8).

The last operator is and its semantics is given by

V (σ, ϕ) =
(
sup
i≥0

V1(σi.., ϕ), sup
i≥0

V2(σi.., ϕ), sup
i≥0

V3(σi.., ϕ), sup
i≥0

V4(σi.., ϕ)
)
. (18)

According to the counting problems of Section 3.2, there is only one way in which the LTL
formula p, for an atomic proposition p, can be violated, namely p never holds. Hence,
V (σ, ϕ) is one of only two possible truth values: 1111 or 0000. We further note that is
not dual to , as expected in a many-valued logic.

Having defined the semantics of rLTL( , ), let us now see if the formula p ⇒ q,
where p is an environment assumption and q is a system guarantee with p, q ∈ P, lives
to the expectations set in the introduction and to the intuition provided in Section 3.2.

4 One could consider developing a notion of da Costa algebras with operators in the spirit of Boolean
algebras with operators [12]. We leave such investigation for future work.
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1. According to (17), if p holds, then p evaluates to 1111 and the implication p⇒ q

is true (i.e., the value of p ⇒ q is 1111) if q evaluates to 1111 (i.e., if q holds).
Hence, the desired behavior of p ⇒ q, when the environment assumptions hold, is
retained.

2. Consider now the case where p fails but the weaker assumption p holds. In this
case p evaluates to 0111 and the implication p⇒ q is true if q evaluates to 0111
or higher. This means that q needs to hold.

3. A similar argument shows that we can also conclude the following consequences whenever
p⇒ q evaluates to 1111: q follows whenever the environment satisfies p and
q follows whenever the environment satisfies p.

We thus conclude that the semantics of p⇒ q captures the desired robustness property
by which a weakening of the assumption p leads to a weakening of the guarantee q. The
following example further motivates the usefulness of the proposed semantics.

3.5 Examples
The usefulness of implications that are not true: We argued in the previous section that
rLTL( , ) captures the intended robustness properties for the specification p ⇒ q

whenever this formula is true (i.e., evaluates to 1111). But does the formula p ⇒ q

still provide useful information when its valuation is lower than 1111? It follows from the
semantics of implication that V (σ, p⇒ q) = b, for b ≺ 1111, occurs when V (σ, q) = b

(i.e., whenever a value of b can be guaranteed despite b being smaller than V (σ, p)). The
value V (σ, p⇒ q) thus describes which weakened guarantee follows from the environment
assumption whenever the intended system guarantee does not. This can be seen as another
measure of robustness: despite q not following from p, the behavior of the system is not
arbitrary, a value of b is still guaranteed.

Non-counting formulas: Consider the non-counting formula (p⇒ q), which requires
each occurrence of p to be followed by an occurrence of q. This formula is routinely used
in the literature to illustrate LTL and, hence, constitutes a litmus test to rLTL( , ). The
semantics of the dotted version of (p⇒ q) can be expressed using the LTL valuation as

V (σ, (p⇒ q)) =(
W (σ, (p⇒ q)),W (σ, p⇒ q),W (σ, p⇒ q),W (σ, p⇒ q)

)
.

It is interesting to observe how the semantics of ϕ = (p⇒ q) recovers: 1) strong fairness,
also known as compassion, when the value of ϕ is 0111; 2) weak fairness, also known as
justice, when the value of ϕ is 0011; and 3) the even weaker notion of fairness described by
the formula p ⇒ q, when the value of ϕ is 0001. The fact that all these different and
well known notions of fairness naturally appear in the proposed semantics is another strong
indication of rLTL’s naturalness and usefulness.

3.6 Relating LTL( , ) and rLTL( , )
In this section we discuss, at the technical level, the relationships between rLTL( , ) and
LTL( , ).

First, we argue that the semantics of LTL( , ) can always be recovered from the first
component of the semantics of rLTL( , ). To this end, recall the mapping π1 : B4 → B
introduced in (16), defined by π1(a1, a2, a3, a4) = a1. Composing π1 with a valuation V
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of rLTL( , ), we obtain the function V1 = π1 ◦ V mapping an infinite word σ ∈ Σω and
a rLTL( , ) formula ϕ to a Boolean value. In fact, V1 corresponds to the LTL( , )
semantics, which implies that rLTL( , ) is as expressive as LTL( , ). The proof of this
claim is a straightforward case distinction. On atomic propositions p ∈ P we have

V1(σ, p) =
{
π1(0000) = 0 if p /∈ σ(0); and
π1(1111) = 1 if p ∈ σ(0).

Moreover, the following holds for “Boolean” connectives:

V1(σ, ϕ ∧ ψ) = π1 (V (σ, ϕ) u V (σ, ψ)) = min{V1(σ, ϕ), V1(σ, ψ)},
V1(σ, ϕ ∨ ψ) = π1 (V (σ, ϕ) t V (σ, ψ)) = max{V1(σ, ϕ), V1(σ, ψ)},

V1(σ,¬ϕ) = π1(V (σ, ϕ)) = 1− π1 (V (σ, ϕ)) = 1− V1(σ, ϕ),
V1(σ, ϕ⇒ ψ) = π1 (V (σ, ϕ)→ V (σ, ψ)) = max {1− V1(σ, ϕ), V1(σ, ψ)} .

Finally, the following follows directly from the semantics of and :

V1(σ, ϕ) = π1 (V (σ, ϕ)) = infi≥0 V1(σi.., ϕ),
V1(σ, ϕ) = π1 (V (σ, ϕ)) = supi≥0 V1(σi.., ϕ).

It is not hard to verify that V1 in all cases corresponds to the LTL( , ) valuation.
Conversely, one can translate an rLTL( , ) formula ϕ into four LTL( , ) formulas

ψ1
ϕ, . . . , ψ

4
ϕ such that

πj(V (σ, ϕ)) = Vj(σ, ϕ) = W (σ, ψjϕ)

for all σ ∈ Σω and j ∈ {1, . . . , 4}. The key idea is to emulate the semantics of each operator
occurring in ϕ component-wise by means of dedicated LTL formulas.

The construction of ψjϕ proceeds by induction over the subformulas of ϕ:
If ϕ = p for an atomic proposition p ∈ P, then ψjϕ := p for all j ∈ {1, . . . , 4}.
If ϕ = ϕ1 ∨ ϕ2, then ψjϕ := ψjϕ1

∨ ψjϕ2
for all j ∈ {1, . . . , 4}.

If ϕ = ϕ1 ∧ ϕ2, then ψjϕ := ψjϕ1
∧ ψjϕ2

for all j ∈ {1, . . . , 4}.
If ϕ = ¬ϕ1, then ψjϕ := ¬(ψ1

ϕ1
∧ ψ2

ϕ1
∧ ψ3

ϕ1
∧ ψ4

ϕ1
) for all j ∈ {1, . . . , 4}.

If ϕ = ϕ1 ⇒ ϕ2, then ψjϕ :=
(∨

k∈{1,...,4}(ψkϕ1
∧ ¬ψkϕ2

)
)
⇒ ψjϕ2

for all j ∈ {1, . . . , 4}.
If ϕ = ϕ1, then ψjϕ := ψjϕ1

for all j ∈ {1, . . . , 4}.
If ϕ = ϕ1, then ψ1

ϕ := ψ1
ϕ1
, ψ2

ϕ := ψ2
ϕ1
, ψ3

ϕ := ψ3
ϕ1
, and ψ4

ϕ := ψ4
ϕ1
.

It is not hard to verify that the formulas ψjϕ have indeed the desired meaning. However,
note that the size of ψjϕ, measured in the number of subformulas, is exponential in the size
of ϕ due to the recursive substitution of the sub-formulas.

The preceding discussion can be summarized by the following result.

I Proposition 5. LTL( , ) and rLTL( , ) are equally expressive.

Since the translations from LTL( , ) to rLTL( , ) and vice versa are effective, we
conclude that any problem for rLTL( , ), whose corresponding problem for LTL( , )
is decidable, is also decidable. In practice, however, the translation from rLTL( , ) to
LTL( , ) involves an exponential blow-up. Hence, we now investigate the complexity of
several verification and synthesis problems by developing specialized algorithms.
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4 Model Checking and Synthesis

Similarly to LTL, rLTL( , ) gives rise to various (decision) problems, some of which we
investigate in this section. We are particularly interested in model checking and in reactive
synthesis. These two problems are clearly amongst the most important in the context of LTL
and, hence, must be investigated for rLTL( , ).

As the translation from rLTL( , ) into LTL( , ) potentially results in an exponentially
large formula, we now develop a computationally more efficient approach to the model checking
and reactive synthesis problems via a translation into (generalized) Büchi automata. Our
construction follows the well known translation of LTL into Büchi automata (see, e.g., Baier
and Katoen [3]) and results in a generalized Büchi automaton with O(k · 5k) states where k
counts the subformulas of the given rLTL( , ) formula. This is the same complexity as
for the LTL translation – which results in an automation with size in O(k · 2k) – once we
replace 2 with 5 since rLTL is 5-valued while LTL is 2-valued.

Similarly to LTL, our translation relies on so-called expansion rules, which we introduce in
Section 4.1. Based on these rules, we present the translation from rLTL( , ) to generalized
Büchi automata in Section 4.2. Subsequently, we consider model checking in Section 4.3 and
reactive synthesis in Section 4.4.

4.1 Expansion Rules

The temporal operators and have expansion rules, which relate valuations at time ` to
that of time `+ 1, similar to their LTL counterparts and (see Baier and Katoen [3] for
an in-depth discussion of LTL expansion rules). The following proposition states these rules.

I Proposition 6 (Expansion Rules). For any rLTL( , ) formula ϕ, any σ ∈ Σω, any ` ∈ N,
and any valuation V , the following equalities (called expansion rules) hold:

V1(σ`.., ϕ) = min {V1(σ`.., ϕ), V1(σ`+1.., ϕ)} , (19)
V2(σ`.., ϕ) = max {V1(σ`.., ϕ), V2(σ`+1.., ϕ)} , (20)
V3(σ`.., ϕ) = min {V4(σ`.., ϕ), V3(σ`+1.., ϕ)} , (21)
V4(σ`.., ϕ) = max {V4(σ`.., ϕ), V4(σ`+1.., ϕ)} . (22)

Moreover, the following holds for each k ∈ {1, . . . , 4}:

Vk(σ`.., ϕ) = max {Vk(σ`.., ϕ), Vk(σ`+1.., ϕ)} . (23)

Before we prove this proposition, let us highlight that Equation (20) does not only recur
on V2 but also on V1 (an analogous observation is true for Equation (21)). In fact, by
recurring on V1(σ`.., ϕ) instead of supk≥` V2(σk.., ϕ), as one might have expected, we avoid
the intermediate computation of supk≥` V2(σk.., ϕ) by the generalized Büchi automaton and,
thereby, save auxiliary memory. This is the key property that allows us to prevent an unduly
growth in the size of the resulting Büchi automaton and to achieve the desired bound on the
number of states.
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Proof of Proposition 6. Equality (19) follows directly from the properties of inf:

V1(σ`.., ϕ) = inf
i≥`

V1(σi.., ϕ)

= inf {V1(σ`.., ϕ), V1(σ`+1.., ϕ), V1(σ`+2.., ϕ), . . .}
= inf {V1(σ`.., ϕ), inf {V1(σ`+1.., ϕ), V1(σ`+2.., ϕ), . . .}}

= min
{
V1(σ`.., ϕ), inf

i≥`+1
V1(σi.., ϕ)

}
= min {V1(σ`.., ϕ), V1(σ`+1.., ϕ)} .

A similar argument using the properties of sup shows that

V2(σ`.., ϕ) = sup
j≥`

inf
i≥j

V2(σi.., ϕ) = max
{

inf
i≥`

V2(σi.., ϕ), sup
j≥`+1

inf
i≥j

V2(σi.., ϕ)
}
.

To conclude the proof of Equality (20), we need to replace the term infi≥` V2(σi.., ϕ)
inside the max by infi≥` V1(σi.., ϕ); in other words, we must prove the last equality in the
equation

max {V1(σ`.., ϕ), V2(σ`+1.., ϕ)} = max
{

inf
i≥`

V1(σi.., ϕ), sup
j≥`+1

inf
i≥j

V2(σi.., ϕ)
}

= max
{

inf
i≥`

V2(σi.., ϕ), sup
j≥`+1

inf
i≥j

V2(σi.., ϕ)
} (24)

holds for every sequence σ ∈ Σω, every rLTL( , ) formula ϕ, and any valuation V .
To this end, we consider two separate cases. The first case is supj≥`+1 infi≥j V2(σi.., ϕ) = 1

and immediately leads to the desired equality

max
{

inf
i≥`

V1(σi.., ϕ), sup
j≥`+1

inf
i≥j

V2(σi.., ϕ)
}

= 1

= max
{

inf
i≥`

V2(σi.., ϕ), sup
j≥`+1

inf
i≥j

V2(σi.., ϕ)
}
.

The second case is supj≥`+1 infi≥j V2(σi.., ϕ) = 0 and the desired equality reduces to

inf
i≥`

V1(σi.., ϕ) = inf
i≥`

V2(σi.., ϕ).

We now note that supj≥`+1 infi≥j V2(σi.., ϕ) = 0 implies infi≥`+1 V2(σi.., ϕ) = 0, which
implies infi≥` V2(σi.., ϕ) = 0. To conclude the proof, we must show infi≥` V1(σi.., ϕ) = 0. We
recall that every element b = (b1, b2, b3, b4) ∈ B4 satisfies b1 ≤ b2. In particular, we have
V1(σi.., ϕ) ≤ V2(σi.., ϕ) for every i ∈ N, and it follows from the monotonicity properties of
inf that

inf
i≥`

V1(σi.., ϕ) ≤ inf
i≥`

V2(σi.., ϕ).

The proof of Equality (20) is now finished by noting that the previous inequality and
infi≥` V2(σi.., ϕ) = 0 imply infi≥` V1(σi.., ϕ) = 0.

The proof of Equality (21) is dual to the proof of Equality (20), while the proof of
Equality (22) is dual to the proof of Equality (19). J
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4.2 From rLTL( , ) to Generalized Büchi Automata
Let us begin this section by briefly recalling the definition of generalized Büchi automata.

I Definition 7 (Generalized Büchi automaton). A generalized Büchi automaton (GBA) is a
tuple A = (Q,Σ, q0,∆,F) consisting of a nonempty, finite set Q of states, a (finite) input
alphabet Σ, an initial state q0 ∈ Q, a (nondeterministic) transition relation ∆ ∈ Q× Σ×Q,
and a set F ⊆ 2Q denoting the acceptance conditions.

The run of a generalized Büchi automaton on a word σ ∈ Σω (also called input) is an
infinite sequence of states ρ = q0q1 . . . ∈ Qω satisfying (qi, σ(i), qi+1) ∈ ∆ for all i ∈ N (note
that every run starts in the initial state q0). Given a run ρ = q0q1 . . ., we denote the set of
states occurring infinitely often during ρ by Inf(ρ) = {q ∈ Q | ∀i ∈ N ∃j ≥ i : qj = q}. A
run ρ is called accepting if Inf(ρ) ∩ F 6= ∅ for all F ∈ F (i.e., the run visits a state of each
set F ∈ F infinitely often). The language of a generalized Büchi automaton A, denoted by
L(A), is the set of all infinite words σ ∈ Σω for which an accepting run of A exists.

Having recapitulated these basic definitions, we can now turn to our translation from
rLTL( , ) to generalized Büchi automata. This translation is an adaptation of a standard
translation from LTL to generalized Büchi automata that constructs an automaton whose
states correspond to valuations of the given LTL formula. An important concept in this
context is that of the so-called ϕ-expansion: given an rLTL( , ) formula ϕ, the ϕ-expansion
of an infinite word σ ∈ Σω tracks the evaluation of ϕ and its subformulas at each position of σ.
The key idea then is to construct a generalized Büchi automaton Aϕ that nondeterministically
guesses the ϕ-expansion step-by-step when reading its input and verifies the guess by means
of its acceptance conditions. A formal definition of the ϕ-expansion is given below. To ease
the following presentation, we denote the set of sub-formulas of an rLTL( , ) formula ϕ,
which is defined in the usual way, by closure of ϕ, abbreviated as cl(ϕ).

I Definition 8 (ϕ-expansion). Let ϕ be an rLTL( , ) formula. The ϕ-expansion of an
infinite word σ ∈ Σω is a mapping η : cl(ϕ)× N→ B4 satisfying η(ψ, i) = V (σi.., ψ) for all
ψ ∈ cl(ϕ) and i ∈ N.

Note that the ϕ-expansion is unique for a given word and subsumes the valuation of
ϕ in the sense that V (ϕ, σ) = η(ϕ, 0). Although the definition of the ϕ-expansion is not
constructive, we can introduce constraints that completely characterize the ϕ-expansion of
a given word. The pivotal idea is to impose constraints for local consistency (e.g., η(¬ψ, i)
for ψ ∈ cl(ϕ) at some position i ∈ N has to be η(ψ, i)) and to exploit the expansion rules of
Proposition 6 to relate η(ψ, i) and η(ψ, i + 1). As in the case of valuations V , we use the
shorthand-notation ηj(ψ, i) instead of the more verbose expression πj(η(ψ, i)).

In the following, let ψ ∈ cl(ϕ) and i ∈ N. The first type of constraints (local constraints)
are as follows:

A1. If ψ = p, then η(ψ, i) =
{

0000 if p /∈ σ(i); and
1111 if p ∈ σ(i).

A2. If ψ = ¬ψ1, then η(ψ, i) = η(ψ1, i).
A3. If ψ = ψ1 ∧ ψ2, then η(ψ, i) = min {η(ψ1, i), η(ψ2, i)}.
A4. If ψ = ψ1 ∨ ψ2, then η(ψ, i) = max {η(ψ1, i), η(ψ2, i)}.
A5. If ψ = ψ1 ⇒ ψ2, then η(ψ, i) = η(ψ1, i)→ η(ψ2, i).
A6. If ψ = ψ1, then η(ψ, i) = (b1, b2, b3, b4) where bj = max

{
ηj(ψ1, i), ηj(ψ, i+ 1)

}
for

j ∈ {1, . . . , 4}.
A7. If ψ = ψ1, then η(ψ, i) = (b1, b2, b3, b4) where
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(a) b1 = min
{
η1(ψ1, i), η1(ψ, i+ 1)

}
,

(b) b2 = max
{
b1, η2(ψ, i+ 1)

}
,

(c) b3 = min
{
b4, η3(ψ, i+ 1)

}
, and

(d) b4 = max
{
η4(ψ1, i), η4(ψ, i+ 1)

}
.

To ensure satisfaction of the subformulas involving the temporal operators and , we add
the following further constraints (non-local constraints). These constraints are derived from
the expansion rules and translate directly into Büchi conditions.
B1. For each ψ ∈ cl(ϕ) and j ∈ {1, . . . , 4}, there exists no k ∈ N such that for every ` ≥ k

both ηj( ψ, `) = 1 and ηj(ψ, `) = 0.
B2. For each ψ ∈ cl(ϕ),

(a) there exists no k ∈ N such that for every ` ≥ k both η1( ψ, `) = 0 and η1(ψ, `) = 1;
(b) there exists no k ∈ N such that for every ` ≥ k both η2( ψ, `) = 1 and η1( ψ, `) = 0;
(c) there exists no k ∈ N such that for every ` ≥ k both η3( ψ, `) = 0 and η4( ψ, `) = 1;
(d) there exists no k ∈ N such that for every ` ≥ k both η4( ψ, `) = 1 and η4(ψ, `) = 0.

In fact, these constraints completely characterize the ϕ-expansion of a given word, which
is formally proven in Appendix A.

I Lemma 9. Given an rLTL( , ) formula ϕ over the atomic propositions P and an infinite
word σ ∈ Σω where Σ = 2P , let η : cl(ϕ)× N→ B4 be a mapping satisfying the compatibility
constraints A1 to B2. Then, η is uniquely determined, and it is the ϕ-expansion of σ.

Before we define the generalized Büchi automaton Aϕ formally, let us sketch its construc-
tion. The states of Aϕ are mappings µ : cl(ϕ) → B4, which encode the ϕ-expansion of a
word σ in the sense that the sequence of states µ0µ1 . . . constituting an accepting run on σ
satisfies µi(ψ) = ηi(ψ) for all i ∈ N and ψ ∈ cl(ϕ). Clearly, the only states (i.e., mappings µ)
of interest are those consistent with the local compatibility constraints A1 to A5.5 Thus, in
order to ease the following definition, we denote the set of such mappings by S (note that
the cardinality of S is bounded by |B4||cl(ϕ)| = 5|cl(ϕ)|).

When reading an input-word, the automaton Aϕ uses its transitions to verify that its
guess satisfies the local constraints and its acceptance condition to verify the non-local
constraints. The latter is achieved by adding a Büchi condition for each of the Conditions B1
and B2, which translate the respective conditions in a straightforward manner. To capture
the many-valued semantics of rLTL( , ), we define the automaton without an initial state.
Instead, we introduce states qb for each b ∈ B4 with the property that Aϕ accepts a word
σ ∈ Σω when starting in the state qb if and only if V (σ, ϕ) = b. Thus, an accepting run
starting in qb signals that ϕ evaluates on σ to b. The formal definition of Aϕ is as follows.

I Definition 10 (Automaton Aϕ). Let ϕ be an rLTL( , ) formula over the atomic proposi-
tions P. Additionally, let Σ = 2P , a ∈ Σ, and S be the set of functions µ : cl(ϕ)→ B4 that
satisfy Conditions A1 to A5. We define the generalized Büchi automaton Aϕ = (Q,Σ,∆,F)
as follows:

Q = {qb | b ∈ B4} ∪ S;
the transition relation is defined by:

(qb, a, µ) ∈ ∆ if and only if µ(ϕ) = b and µ(p) =
{

1111 if p ∈ a ∩ cl(ϕ); and
0000 if p ∈ cl(ϕ) \ a;

5 By this we mean that the conditions are satisfied if we substitute µ for η.
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(µ, a, µ′) ∈ ∆ if and only if the pair (µ, µ′) satisfies Conditions A6 and A7 as well as

µ′(p) =
{

1111 if p ∈ a ∩ cl(ϕ); and
0000 if p ∈ cl(ϕ) \ a;

F is the union of the following sets:
for each ψ ∈ cl(ϕ), we introduce for each j ∈ {1, . . . , 4} the set

F ψ,j = {µ ∈ S | πj(µ( ψ)) = 0 or πj(µ(ψ)) = 1};

for each ψ ∈ cl(ϕ), we introduce the sets:

F ψ,1 = {µ ∈ S | π1(µ( ψ)) = 1 or π1(µ(ψ)) = 0}
F ψ,2 = {µ ∈ S | π2(µ( ψ)) = 0 or π1(µ( ψ)) = 1}
F ψ,3 = {µ ∈ S | π3(µ( ψ)) = 1 or π4(µ( ψ)) = 0}
F ψ,4 = {µ ∈ S | π4(µ( ψ)) = 0 or π4(µ(ψ)) = 1}

Definition 10 ensures that Aϕ accepts σ ∈ Σω if and only if there exists a run qb, µ0, µ1, . . .

on σ that visits each F ∈ F infinitely often. As an example, suppose that a run visits the
set F ψ,1 for ψ ∈ cl(ϕ) infinitely often (i.e., π1(µi( ψ)) = 0 or π1(µi(ψ)) = 1 holds for
infinitely many i ∈ N). This means that it never happens that from some k ∈ N onward
both π1(µk( ψ)) = 1 and π1(µk(ψ)) = 0. Hence, Condition B1 is fulfilled. Similarly, the
remaining sets F ∈ F make sure that Conditions B1 and B2 are indeed satisfied. Moreover,
the definition of ∆ ensures that Conditions A1 to A7 are satisfied along an accepting run of
Aϕ on σ and, therefore, this run in fact forms the ϕ-expansion of σ (and is unique). Finally,
by using different initial states, we make sure that Aϕ accepts σ starting from qb if only if
b = V (σ, ϕ) (since all outgoing transitions lead to states µ with µ(ϕ) = b). As a consequence,
we obtain the following result.

I Theorem 11. Let ϕ be an rLTL( , ) formula over the set P of atomic propositions,
Σ = 2P , and b ∈ B4. Then, Aϕ accepts σ ∈ Σω when starting in state qb if and only if
V (σ, ϕ) = b.

For notational convenience, we denote the generalized Büchi automaton Aϕ with initial
state qb by Abϕ. In addition, given a set B ⊆ B4, we denote the generalized Büchi automaton
accepting the union

⋃
b∈B L(Abϕ) by ABϕ . The construction of ABϕ is straightforward: first, we

add a new state, say q0, to Aϕ and designate it as initial state; second, we add ε-transitions
(q0, ε, qb) for each b ∈ B, which can subsequently be removed in the same manner as for finite
automata with ε-transitions.

We finish this section with a remark about the size of the automata Aϕ and ABϕ . Recalls
that Aϕ’s state are (mainly) functions µ : cl(ϕ)→ B4, of which there are |B4||cl(ϕ)| = 5|cl(ϕ)|

many. Moreover, recall that we use four acceptance conditions per and operator.
I Remark. Both the automaton Aϕ and ABϕ have O(5|cl(ϕ)|) states and at most 4 · |cl(ϕ)|
acceptance sets.

4.3 Model Checking
Broadly speaking, the model checking problem asks whether the model of a given system
exhibits a specified behavior (which is described as an rLTL( , ) formula in our case).
Usually, a system is modeled as a Kripke structure, which is, for the sake of model checking,
translated into a Büchi automaton whose language corresponds to the unraveling of the
Kripke structure. For reasons of simplicity, we consider a system – more precisely, a model

CSL 2016



10:16 Robust Linear Temporal Logic

thereof – already to be given as a (generalized) Büchi automaton. This leads to the following
formulation of the model checking problem.

I Problem 1 (Model checking). Let ϕ be an rLTL( , ) formula over the set P of atomic
propositions, let A be a generalized Büchi automaton over the alphabet 2P , and let B ⊆ B4.
Does V (σ, ϕ) ∈ B hold for all σ ∈ L(A)?

Our translation of rLTL( , ) formulas into a generalized Büchi automaton provides
a straightforward means to answer the model checking problem: one simply constructs
ABϕ and checks L(A) ⊆ L(ABϕ ). However, the naive attempt to check this inclusion (i.e.,
checking whether L(A) ∩ (Σω \ L(ABϕ )) = ∅ holds) would require to complement ABϕ , which
we clearly want to avoid due to the inevitable exponential blowup; moreover, the equality
Σω \ L(ABϕ ) = L(AB¬ϕ) does not hold in general. Instead, we exploit the fact that one can
write the complement of L(ABϕ ) as Σω \ L(ABϕ ) = L(AB′

ϕ ) for B′ = B4 \B, which leads to
the following result; a proof can be found in Appendix B.

I Theorem 12. One can decide the model checking problem (Problem 1) for the Büchi
automaton A = (Q,Σ, q0,∆,F) and the rLTL( , ) formula ϕ in time O

(
(|F|+ |cl(ϕ)|) ·

|Q| · 5|cl(ϕ)|).
It is worth mentioning that the corresponding optimization problem, namely to find the

largest b ∈ B4 such that V (σ, ϕ) ≥ b holds for all σ ∈ L(A), can be solved by repeatedly
solving Problem 1 for decreasing values of b and, hence, falls into the complexity same class.

4.4 Synthesis of Reactive Systems
In the context of reactive synthesis, we consider infinite-duration two-player games over
finite graphs with rLTL( , ) winning conditions. In particular, we show, given a game with
rLTL( , ) winning condition, how to construct a finite-state winning strategy. Throughout
this section, we assume familiarity with games over finite graphs and follow the definitions
and notations by Grädel, Thomas, and Wilke [11].

We consider games of the following kind.

I Definition 13 (rLTL( , ) games). Let P be a finite set of atomic propositions. An
rLTL( , ) game is a pair G = (G, (ϕ,B)) consisting of

a finite, labeled game graph G = (V,E, λ) where V is a finite set of vertices that is
partitioned into two disjoint sets V0, V1 ⊆ V , E ⊆ V × V is an edge relation, and
λ : V → 2P is a function labeling each vertex with atomic propositions; and
a pair (ϕ,B) consisting of an rLTL( , ) formula ϕ over P and a set B ⊆ B4 (this pair
constitutes the winning condition as we formalize shortly).

An rLTL( , ) game is played as usual by two players, Player 0 and Player 1, who
construct a play ρ = v0v1 . . . ∈ V ω (i.e., an infinite sequence of vertices) by moving a
token along the edges of the game graph. A play ρ = v0v1 . . . induces an infinite word
λ(ρ) = λ(v0)λ(v1) . . . ∈ (2P)ω, and the value of the formula ϕ on λ(ρ) determines the winner
of the play. More precisely, we call a play ρ ∈ V ω winning for Player 0 if V (λ(ρ), ϕ) ∈ B;
symmetrically, we call a play winning for Player 1 if it is not winning for Player 0. Finite-state
strategies and winning strategies are defined as usual (see Grädel, Thomas, and Wilke [11]
for further details).

Given an rLTL( , ) game and a vertex v ∈ V , we are interested in solving the game (i.e.,
in deciding which player has a winning strategy from v and in computing such a strategy),
which is formalized next.
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I Problem 2 (Solving rLTL( , ) games). Let an rLTL( , ) game G = (G, (ϕ,B)) over
the set V of vertices and a vertex v0 ∈ V be given.
1. Determine the player who has a winning strategy from vertex v0.
2. Compute a winning strategy from vertex v0.

To solve this problem, we follow the Safra-based approach using the following four-step
process. A detailed description of each step can be found in Appendix C.
1. We construct a nondeterministic Büchi automaton BBϕ with L(BBϕ ) = {σ ∈ (2P)ω |

V (σ, ϕ) ∈ B}.
2. We determinize BBϕ using Safra’s construction [20], resulting in a (deterministic) Rabin

automaton CBϕ that is language-equivalent to BBϕ .
3. We construct a Rabin game G′ by taking the product of the game graph G and the Rabin

automaton CBϕ .
4. We apply standard techniques to solve G′, which allows us to decide which player has a

winning strategy from v and to construct a winning strategy for the corresponding player.

Using this process, we obtain the following results (the complexity results immediately
follow from the size of Aϕ, the subsequent Safra construction, and the standard technique to
solve the resulting Rabin game).

I Theorem 14. Given an rLTL( , ) game G = (G, (ϕ,B)) with G = (V,E, λ) and a vertex
v0 ∈ V , one can
1. decide which player has a winning strategy from v0 (i.e., Problem 2 Part 1) and
2. compute a winning strategy for the corresponding player (i.e., Problem 2 Part 2)
in time O(nk+3kk!) where n = |V | · 25c0|cl(ϕ)| , k = 5c1|cl(ϕ)|, and c0, c1 are suitable constants.

5 Quality is Dual to Robustness

We motivated rLTL( , ) by the need to distinguish between the different ways in which
safety properties can be violated. One can take a dual view and seek to distinguish between
the different ways in which guarantee properties are satisfied. To illustrate this point, consider
the LTL formula p⇒ q where p is an environment assumption and q is a system
guarantee. According to the motto more is better we would prefer the system to guarantee
the stronger property q whenever the environment satisfies the stronger property p.
By now, the reader can already complete our argument: p should lead to q and p

should lead to q. Formalizing these ideas would still take us to a 5-valued logic where,
however, negation needs to be defined differently. Although we can still use the linear order

0000 ≺ 0001 ≺ 0011 ≺ 0111 ≺ 1111

on the set of truth values, one now needs to interpret the values differently. The value 0000
still corresponds to false but the remaining truth values now correspond to different quality
values for true with 0001 being the lowest quality and 1111 the highest. Negation should
then take 0000 to 1111 and all the remaining truth values to 0000. Such negation is no more
than the intuitionistic negation already discussed in Section 3.3 and would equip B4 with
the structure of an Heyting algebra instead of the da Costa algebra used in this paper. This
observation justifies the title of this section and suggests the following question: is there an
extension of LTL that can be used to reason about both robustness and quality? This is a
question we leave for further research.

CSL 2016
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6 Discussion

The logic rLTL offers a transparent way to reason about the robustness of LTL specifications.
Given an LTL formula ϕ, one obtains the corresponding rLTL formula ψ simply by dotting
the temporal operators in ϕ. The technical development of the semantics was based on the
insight that the temporal operators and count how often the formula they are applied
to is satisfied thereby leading to a 5-valued logic. We studied the verification and synthesis
problems for rLTL and showed they can be solved in exponential and doubly exponential
time, respectively. These complexity bounds are the same as those for LTL once we replace
2, since LTL is Boolean valued, with 5, since rLTL is 5-valued. It remains an open problem
to determine if these complexity upper bounds are tight. In addition to this question, we
sketched in Section 5 a variant of rLTL tailored to quality and raised the question of how to
combine robustness and quality in a single logic.
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A ϕ-Expansion

Proof of Lemma 9. To prove the lemma, we need to establish that V (σi.., ψ) = η(ψ, i) holds
for all ψ ∈ cl(ϕ) and i ∈ N. The proof proceeds by structural induction over the subformulas
of ϕ.
Base case. In the case of atomic propositions, the claim holds by definition of V .
Induction step. In the case of the operators ¬, ∨, ∧, and ⇒, the claim follows immediately

from applying the induction hypothesis and by definition of V .
In the case of ψ = ψ1, a straightforward induction that applies (a) Condition A6,
(b) the expansion rule for (see Proposition 6, Equation (22)), and (c) the induction
hypothesis for ψ1 (i.e., V (σi.., ψ1) = η(ψ1, i) for all i ∈ N) shows that the following is
true for each j ∈ {1, . . . , 4}: if ηj(ψ1, k) = 1 for a k ∈ N, then ηj(ψ, `) = 1 and, hence,
Vj(σ`.., ψ) = ηj(ψ, `) for all ` ≤ k. Therefore, if infinitely many k with ηj(ψ1, k) = 1
exist, then Vj(σi.., ψ) = ηj(ψ, i) for all i ∈ N. If this is not the case, then there exists
a k ∈ N such that ηj(ψ1, `) = 0 for all ` ≥ k. Then, Condition B1 asserts for all ` ≥ k

that ηj(ψ, `) = 0 and, hence, Vj(σ`.., ψ) = ηj(ψ, `) is satisfied by the semantics of and
the induction hypothesis for ψ1; this, in turn, implies Vj(σi.., ψ) = ηj(ψ, i) for all i ∈ N.
These arguments are true for all j ∈ {1, . . . , 4} and, therefore, V (σi.., ψ) = η(ψ, i) holds
for all i ∈ N.
The case ψ = ψ1 can be proven using similar arguments as in the case of the operator,
but the semantics of requires to split the proof into four parts and prove Vj(σi.., ψ) =
ηj(ψ, i) individually for each j ∈ {1, . . . , 4}. So as not to clutter this proof too much,
we provide a detailed proof for j = 1 and skip the remaining. However, it is important
to note that the claim needs to be proven first for j = 1 and j = 4 since the proofs for
j = 2 and j = 3 rely thereon (the expansion rules recur on V1(σi.., ψ) and V4(σi.., ψ),
respectively).
To prove V1(σi.., ψ) = η1(ψ, i) for all i ∈ N, we first observe that η1(ψ1, k) = 0 for a
k ∈ N implies V1(σ`.., ψ) = η1(ψ, `) for all ` ≤ k; analogous to the case of the operator
, an induction using Condition A7(a), the expansion rule for (see Proposition 6,

Formula (19)), and the induction hypothesis for ψ1 establishes this. Hence, if infinitely
many k with η1(ψ1, k) = 0 exist, then V1(σi.., ψ) = η1(ψ, i) for all i ∈ N. If this is not the
case, then there exists a k ∈ N such that η1(ψ1, `) = 1 for all ` ≥ k. Then, Condition B2(a)
asserts for all ` ≥ k that η1(ψ, `)) = 1 and, hence, V1(σ`.., ψ) = η1(ψ, `) holds by the
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semantics of and the induction hypothesis of ψ1. This implies V1(σi.., ψ) = η1(ψ, i) for
all i ∈ N.
As mentioned above, the case j = 4 and the subsequent cases j = 2 and j = 3 are
analogous. J

B Model Checking

Proof of Theorem 12. Let ϕ be an rLTL( , ) formula over the atomic propositions P,
A = (Q,Σ, q0,∆,F) a generalized Büchi automaton over the alphabet 2P , and B ⊆ B4.

First, let B′ = B4 \B. Then, it is not hard to verify that

V (σ, ϕ) ∈ B for all σ ∈ L(A)⇔ L(A) ⊆ L(ABϕ )
⇔ L(A) ∩

(
Σω \ L(ABϕ )

)
= ∅

⇔ L(A) ∩ AB
′

ϕ = ∅.

Recall that AB′

ϕ has 5|cl(ϕ)| + 5 states and also at most 4 · |cl(ϕ)| acceptance sets.
Second, given two generalized Büchi automata A1 = (Q1,Σ, q1

0 ,∆1,F1) and A2 =
(Q2,Σ, q2

0 ,∆2,F2), it is well-known that one can construct a generalized Büchi automaton
accepting L(A1) ∩ L(A2) using a simple product construction (see, e.g., [16]). This construc-
tion results in an automaton with |Q1| · |Q2| states and |F1|+ |F2| acceptance sets. Since
AB′

ϕ consists of 5|cl(ϕ)| + 5 states and has at most 4 · |cl(ϕ)| acceptance sets, this implies that
one can construct a generalized Büchi automaton B with L(B) = L(A) ∩ L(AB′

ϕ ) consisting
of |Q| · (5|clϕ| + 5) states and at most |F|+ 4 · |cl(ϕ)| acceptance sets.

Finally, it is left to check whether L(B) = ∅. This problem is fundamental in LTL model
checking, and there exist efficient algorithms that solve this problem in time linear in the
product of the number of states of the input automaton and the number of its acceptance sets
(see, e.g., [3]). Hence, one can solve Problem 1 in O

(
(|F|+ |cl(ϕ)|) · |Q| · 5|cl(ϕ)|) time. J

C Computing Strategies in rLTL( , )-Games

We compute a winning strategy in an rLTL( , )-game using a four-step process:
1. First, we construct the generalized Büchi automaton ABϕ ; recall that this automaton

comprises 5|cl(ϕ)| + 5 states and at most 4 · |cl(ϕ)| acceptance sets. Subsequently, we
construct a nondeterministic Büchi automaton BBϕ accepting the same language; the
standard conversion results in a Büchi automaton that comprises O(4 · |cl(ϕ)| ·(5|cl(ϕ)|+5))
states.

2. Using Safra’s determinization procedure [20], we obtain a (deterministic) Rabin automa-
ton6 CBϕ that is language-equivalent to BBϕ . The automaton CBϕ has 25c0|cl(ϕ)| states and
5c1·|cl(ϕ)| Rabin pairs where c0 > c1 are suitable constants.

3. Next, we construct a Rabin game7 as follows. We first construct the (unlabeled) product
game graph G′ = (V ′, E′) of the game graph G = (V,E, λ) and the Rabin automaton

6 A Rabin automaton is a tuple C = (Q,Σ, q0, δ,Ω) where Q, Σ, and q0 are as in Büchi automata,
δ : Q× Σ→ Q is a (deterministic) transition function, and Ω ⊆ 2Q × 2Q is the acceptance condition.
The run of a Rabin automaton on a word σ ∈ Σω is an infinite sequence of states ρ = q0q1 . . . satisfying
δ(qi, σ(i)) = qi+1 for all i ∈ N. A run ρ is called accepting if there exists a pair (E,F ) ∈ Ω such that
E ∩ Inf(ρ) = ∅ and F ∩ Inf(ρ) 6= ∅.

7 A Rabin game is a game played over an unlabeled game graph G = (V,E) with nonempty, finite set
V of vertices and directed edge relation E ⊆ V × V . The winning condition of a Rabin game is a
set Ω ⊆ 2V × 2V , and a play ρ = v0v1 . . . ∈ V ω is said to be winning for Player 0 if there exists a
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CBϕ = (Q, 2P , q0, δ,Ω) such that V ′ = V ×Q and(
(v, q), (v′, q′)

)
∈ E′ ⇔ (v, v′) ∈ E and δ(q, λ(v)) = q′.

Then, we define the Rabin winning condition of G′ to be

Ω′ =
{

((V,E), (V, F )) ∈ V ′ × V ′ | (E,F ) ∈ Ω
}
.

The desired Rabin game is then G′ = (G′,Ω′).
An induction over the length of plays in G′ shows that Player 0 wins a play ρ′ =
(v0, q0)(v1, q1) . . . if and only if Player 0 wins the play ρ = v0v1 . . . in G.

4. Finally, by applying the method by Piterman and Pnueli [17], we solve the resulting
Rabin game in time O(nk+3kk!) where n = |V | · 25c0|cl(ϕ)| is the number of vertices and
k = 5c1|cl(ϕ)| is the number of Rabin pairs of G′.

pair (E,F ) ∈ Ω such that E ∩ Inf(ρ) = ∅ and F ∩ Inf(ρ) 6= ∅; by slight abuse of notation, Inf(ρ) here
corresponds to the set of all vertices occurring infinitely often in the play ρ.
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