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—— Abstract

In this paper, we study the problem of minimizing regret in discounted-sum games played on
weighted game graphs. We give algorithms for the general problem of computing the minimal
regret of the controller (Eve) as well as several variants depending on which strategies the en-
vironment (Adam) is permitted to use. We also consider the problem of synthesizing regret-free
strategies for Eve in each of these scenarios.
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1 Introduction

Two-player games played by Eve and Adam on weighted graphs is a well accepted mathem-
atical formalism for modelling quantitative aspects of a controller (Eve) interacting with its
environment (Adam). The outcome of the interaction between the two players is an infinite
path in the weighted graph and a value is associated to this infinite path using a measure
such as e.g. the mean-payoff of the weights of edges traversed by the infinite path, or the
discounted sum of those weights. In the classical model, the game is considered to be zero
sum: the two players have antagonistic goals—one of the player want to maximize the value
associated to the outcome while the other want to minimize this value. The main solution
concept is then the notion of winning strategy and the main decision problem asks, given a
threshold ¢, whether Eve has a strategy to ensure that, no matter how Adam plays, that the
outcome has a value larger than or equal to c.

When the environment is not fully antagonistic, it is reasonable to study other solution
concepts. One interesting concept to explore is the concept of regret minimization [3] which
is as follows. When a strategy of Adam is fixed, we can identify the set of Eve’s strategies
that allow her to secure the best possible outcome against this strategy. This constitutes Eve’s
best response. Then we define the regret of a strategy ¢ of Eve as the difference between
Eve’s best response; and the payoff she secures thanks to her strategy o. So, when trying to
minimize the regret associated to a strategy, we use best responses as a yardstick. Let us
now illustrate this with an example.
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Figure 1 A game in which wait-
ing is required to minimize regret. Figure 2 A game that models different investment strategies.

Table 1 The possible rate configurations for the rate of interests are given as the first four
columns, then follows the worst-case performance and the regret associated to each strategy of Eve
that are given in rows. Entries in bold are the values that are maximizing the worst case (strategy
BB) and minimizing the regret (strategy SB).

HH HL LH LL Worst-case  Regret
SS 77616 7.6048 7.9784 23.2848 —7.7616 3.8808
SB  —5.8408 3.7632 9.8392 19.4432 —5.8408 3.8416

BB —3.8808 5.7232 5.9192 15.5232 —3.8808 7.7616

» Example 1 (Investment advice). Consider the discounted sum game of Fig. 2. It models
the rentability of different investment plans with a time horizon of two periods. In the first
period, it can be decided to invest in treasure bonds (B) or to invest in the stock market
(S). In the former case, treasure bonds (B) are chosen for two periods. In the latter case,
after one period, there is again a choice for either treasure bonds (B) or stock market (S).
The returns of the different investments depend on the fluctuation of the rate of interests.
When the rate of interests is low (L) then the return for the stock market investments is
equal to 12 and for the treasure bonds it is equal to 8. When the interest rate is high (H)
then the returns for the stock market investments is equal to —4 and for the treasure bonds
it is equal to —2. To model time and take into account the inflation rate, say equal to 2
percent, we consider a discount factor A = 0.98 for the returns. In this example, we make the
hypothesis that the fluctuation of the rate of interests is not a function of the behavior of the
investor. It means that this fluctuation rate is either one of the following four possibilities:
HH, HL, LH, LL. This corresponds to Adam playing a word strategy in our terminology. The
discounted sum of returns obtained under the 12 different scenarios are given in Table 1.
Now, assume that you are a broker and you need to advise one of your customers regarding
his next investment. There are several ways to advise your customer. First, if your customer
is strongly risk averse, then you should be able to convince him that he has to go for the
treasure bonds (B). Indeed, this is the choice that mazimizes the worst case: if the interest
rates stay high for two periods (HH) then the loss will be —3.8808 while it will be higher for
any other choices. Second, and maybe more interestingly, if your customer tolerates some
risks, then you may want to keep him happy so that he will continue to ask for your advice in
the future! Then you should propose the following strategy: first invest in the stock market
(S) then in treasure bonds (B) as this strategy minimizes regret. Indeed, at the end of the
two investment periods, the actual interest rates will be known and so your customer will
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evaluate your advices ex-post. So, after the two periods, the value of the choices made ez ante
can be compared to the best strategy that could have been chosen knowing the evolution of
the interest rates. The regret of SB is at most equal to 3.8416 in all cases and it is minimal:
the regret of BB can be as high as 7.7616 if LL is observed, and the regret of SS can be as
high as 3.8808.

Finally, let us remark that if the investments are done in financial markets that are
subject to different interest rates, then instead of considering the minimization of regret
against word strategies, then we could consider the regret against all strategies. We also
study this case in this paper. |

Previous works. In [8], we studied regret minimization in the context of reactive synthesis
for shortest path objectives. Recently in [13], we studied the notion of regret minimization
when we assume different sets of strategies from which Adam chooses. We have considered
three cases: when the Adam is allowed to play any strategy, when he is restricted to play
a memoryless strategy, and when he plays word strategies. We refer the interested reader
to [13] for motivations behind each of these definitions. In that paper, we studied the regret
minimization problem for the following classical quantitative measures: inf, sup, liminf,
lim sup and the mean-payoff measure. In this paper, we complete this picture by studying the
regret minimization problem for the discounted-sum measure. Discounted-sum is a central
measure in quantitative games but we did not consider it in [13] because it requires specific

techniques which are more involved than the ones used for the other quantitative measures.

For example, while for mean-payoff objectives, strategies that minimize regret are memoryless
when Adam can play any strategy, we show in this paper that pseudo-polynomial memory is
necessary (and sufficient) to minimize regret in discounted-sum games. The need for memory
is illustrated by the following example.

» Example 2. Consider the example in Figure 1 where M > 1. Eve can play the following
strategies in this game: let i € NU {oo}, and note o the strategy that first plays i rounds
the edge (vy,v) and then switches to (v, ). The regret values associated to those strategies
are as follows.

The regret of > is —+ and it is witnessed when Adam never plays the edge (v,y).

T—x
Indeed, the discounted sum of the outcome in that case is 0, while if Eve had chosen to play

(vr,x) at the first step instead, then she would have gained ﬁ The regret of ¢ is equal

to the maximum between ﬁ — )\Qiﬁ and )\2”1% — )\%ﬁ. The maximum is either

witnessed when Adam never plays (v, y) or plays (v,y) if the edge (vr, ) has been chosen

i+ 1 times (one more time compared to o).

So the strategy that minimizes regret is the strategy o for N > 7211‘321;[ — 3 (so that

N2NHLN < 1), d.e. the strategy needs to count up to N. |

Contributions. We describe algorithms to decide the regret threshold problem for games in
three cases: when there is no restriction on the strategies that Adam can play, when Adam
can only play memoryless strategies, and when Adam can only play word strategies. For
this last case, our problem is closely related to open problems in the field of discounted-sum
automata, and we also consider variants given as e-gap promise problems.

We also study the complexity of the special case when the threshold is 0, 7.e. when we ask

for the existence of regret free strategies. We show that problem is sometimes easier to solve.

Our results on the complexity of both the regret threshold and the regret-free problems are
summarized in Table 2. All our results are for fixed discount factor A.
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Table 2 Complexity of deciding the regret threshold and regret-free problems for fixed .

‘ Any strategy ‘ Memoryless strategies ‘ Word strategies ‘

regret threshold NP PSPACE (Thm. 20), PSPACE-c (e-gap)
(Thm. 8) coNP-h (Thm. 26) (Thm. 29, Thm. 30)

regret-free PTIME PSPACE (Thm. 22), NP-c (Thm. 27)
(Thm. 9) coNP-h (Thm. 26)

Other related works. A Boolean version of our regret-free strategies has been described
in [7]. In that paper, they are called remorse-free strategies. These correspond to strategies
that ensure a regret value of 0 in games with w-regular objectives. They do not establish
lower bounds on the complexity of realizability or synthesis of remorse-free strategies and
they only consider word strategies for Adam.

In [13], we established that regret minimization when Adam plays word strategies only
is a generalization of the notion of good-for-games automata [10] and determinization by
pruning (of a refinement) [1].

The notion of regret is closely related to the notion of competitive ratios used for the
analysis of online algorithms [14]: the performance of an online algorithm facing uncertainty
(e.g. about the future incoming requests or data) is compared to the performance of an
offline algorithm (where uncertainty is resolved). According to this quality measure, an
online algorithm is better if its performance is closer to the performance of an optimal offline
solution.

Structure of the paper. In Sect. 2, we introduce the necessary definitions and notations.
In Sect. 3, we study the minimization of regret when the second player plays any strategy.
Finally, in Sect. 4, we study the minimization of regret when the second player plays a
memoryless strategy and in Sect. 5 when he plays a word strategy.

For reasons of space, some claims presented in the sequel are only supported by a short
proof sketch. We refer the interested reader to the technical report [12] for the full proofs.

2 Preliminaries

A weighted arena is a tuple G = (V, V3, E, w,vr) where (V, E,w) is an edge-weighted graph
(with rational weights), V5 C V, and v; € V is the initial vertex. For a given u € V we
denote by succ(u) the set of successors of u in G, that is the set {v € V : (u,v) € E}. We
assume w.l.o.g. that no vertex is a sink, i.e. Yo € V : |succ(v)| > 0, and that every Eve
vertex has more than one successor, i.e. Vv € V3 : [succ(v)| > 1. In the sequel, we depict
vertices in V3 with squares and vertices in V' \ V3 with circles. We denote the maximum
absolute value of a weight in a weighted arena by W := max.cg |w(e)|.

A play in a weighted arena is an infinite sequence of vertices m = vgvy . .. where (v;,v;41) €
E for all i > 0. Given a play m = vovy ... and integers k < [ we define 7[k..l] := vg ... vy,
7[..k] := 7[0..k], and 7[l..] :== vjvi41.... We refer to the latter two as play prefizes and play
suffizes, respectively. To improve readability, we try to adhere to the following convention:
use 7 to denote plays and p for play prefixes. The length of a play 7, denoted |x|, is oo, and
the length of a play prefix p=vg ... vy, i.e. |p|,isn+ 1.

A strategy for Eve (Adam) is a function o that maps play prefixes ending with a vertex
v from V3 (V' \ V3) to a successor of v. A strategy has memory m if it can be realized as
the output of a finite state machine with m states (see e.g. [11] for a formal definition). A
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memoryless (or positional) strategy is a strategy with memory 1, that is, a function that only
depends on the last element of the given partial play. A play m = vgvy ... is consistent with
a strategy o for Eve (Adam) if whenever v; € V3 (v; € V' \ V3), then o(n[..7]) = v;11. We
denote by G3(G) (6v(G)) the set of all strategies for Eve (Adam) and by X7'(G) (X0(G))
the set of all strategies for Eve (Adam) in G that require memory of size at most m, in
particular X}(G) (X}(G)) is the set of all memoryless strategies for Eve (Adam) in G. We
omit G if the context is clear.

Given strategies o, 7, for Eve and Adam respectively, and v € V', we denote by 7% the
unique play starting from v that is consistent with o and 7. If v is omitted, it is assumed to
be vy.

A weighted automaton is a tuple I' = (Q, qr, A, A, w) where A is a finite alphabet, Q
is a finite set of states, g; is the initial state, A C @ x A x @ is the transition relation,
w: A — Q assigns weights to transitions. A run of I on a word aga; - - - € A is a sequence
1) = qoapqrar -+ € (Q x A)* such that (g;,a;,qir1) € A, for all i > 0, and has value Val(y))
determined by the sequence of weights of the transitions of the run and the payoff function
Val. The value T assigns to a word z, i.e. T'(z), is the supremum of the values of all runs on
the word. We say the automaton is deterministic if A is functional (i.e. for all ¢ € @ and all
o € ¥ we have that [{¢ € Q : (q,0,¢') € A} =1.)

Safety games. A safety game is played on a weighted arena by Eve and Adam. The goal
of Eve is to perpetually avoid traversing edges from a set of bad edges, while Adam attempts
to force the play through any unsafe edge. More formally, a safety game is a tuple (G, B)
where G = (V, V3, E,v;) is a weighted arena and B C F is the set of bad edges. A play
T =vgv1 ... is winning for Eve if (v;,viy1) € B, for all i > 0, and it is winning for Adam
otherwise. A strategy for Eve (Adam) is winning for her (him) in the safety game if all plays
consistent with it are winning for her (him). A player wins the safety game if (s)he has a
winning strategy.

» Lemma 3 (from [2]). Safety games are positionally determined: either Eve has a positional
winning strategy or Adam has a positional winning strategy. Determining the winner in a
safety game is decidable in linear time.

Discounted-sum. A play in a weighted arena, or a run in a weighted automaton, induces
an infinite sequence of weights. We define below the discounted-sum payoff function which
maps finite and infinite sequences of rational weights to real numbers. In the sequel we refer
to a weighted arena together with a payoff function as a game. Formally, given a sequence
of weights x = zgz1 ... of length n € NU {00}, the discounted-sum is defined for a rational
discount factor A € (0,1) as follows: DSx(x) := >0, Mz;. For convenience, we apply payoff
functions directly to plays, runs, and prefixes. For instance, given a play or play prefix
T =vv1 ... we write DSy () instead DSy (w(vg,v1)w(vy,v2)...).

Consider a fixed weighted arena G, and a discounted-sum payoff function Val = DS, for
some A € (0,1). Given strategies o, 7, for Eve and Adam respectively, and v € V, we denote
the value of 2. by Valg (o, 7) := Val(xZ.). We omit G if it is clear from the context. If v is
omitted, it is assumed to be vy.

Antagonistic & co-operative values. Two values associated with a weighted arena that
we will use throughout are the antagonistic and co-operative values, defined for plays from a
vertex v € V as:

aVal’(G) = sup, cg, infrecs, Val’(o,7) cVal’(G) := sup,cg, SUP,ce, Val’(o, 7).

30:5
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Again, if G is clear from the context it will be omitted, and if v is omitted it is assumed to
be vy.

We note that, as memoryless strategies are sufficient in discounted-sum games [15],
determining if aVal is larger (or smaller) than a given threshold is decidable in NP N coNP.
Furthermore, the values cVal and aVal are representable using a polynomial number of bits.
S v
— [V, and
log, W). If A is given in binary as part of the input, this becomes exponential (in the size of

In [15] it is also shown that aVal can be computed in time polynomial (in

the input). Regardless of whether A is part of the input, cVal is computable in polynomial
time.

A useful observation used by Zwick and Paterson in [15], and which is implicitly used
throughout this work, is the following.

» Remark. For all v € V, c¢Val*(G) = max{w(u,v) + AcVal’(G) : (u,v) € E}. For
all u € V3, aVal*(G) = max{w(u,v) + AaVal’(G) : (u,v) € E}. For all u € V' \ V3,
aVal"(G) = min{w(u,v) + A\aVal’(G) : (u,v) € E}.

We say a strategy o for Eve is worst-case optimal (mazimizing) from v € V' if it holds
that inf,ce, Val’(o,7) = aVal’(G). Similarly, a strategy 7 for Adam is worst-case optimal
(minimizing) from v € V' if it holds that sup,.s, Val’(o,7) = aVal’(G). Also, a pair of
strategies o, 7 for Eve and Adam, respectively, is said to be co-operative optimal from v € V
if Val’(o,7) = cVal’(G).

» Lemma 4 (from [15]). The following hold:
there exists o € X which is worst-case optimal maximizing from all v € V,
there exists T € Z&/ which is worst-case optimal minimizing from allv € V,
there are o € XL and T € Z\%/ which are co-operative optimal from all v € V.

We now recall the definition of a strongly co-operative optimal strategy o for Eve. Intuit-
ively, such a strategy attempts to maximize the co-operative value. Formally, for any play
prefix p = vy . .. v, consistent with o, and such that v, € V5 if o(p) = ¢/, then v’ € cOpt(vy,);
where cOpt(u) :={v € V : (u,v) € E and cVal*(G) = w(u,v) + AcVal’(G)}. Finally, we
define a new type of strategy for Eve: co-operative worst-case optimal strategies. A strategy
is of this type if it attempts to maximize the co-operative value while achieving at least the
antagonistic value. More formally, for any play prefix p = vg ... v, consistent with o, and
such that v, € V3, if o(p) = v’ then v/ € wOpt(v,,) and

w(vp,v') + AcVal” (G) = max{w(v,,v") + AcVal’ (G) : v € wOpt(v,)},

where wOpt(u) := {v € V : (u,v) € E and aVal*(G) = w(u,v) + AaVal’(G)}.
It is not hard to verify that strategies of the above types always exist for Eve.

» Lemma 5. There exist strongly co-operative optimal strategies and co-operative worst-case
optimal strategies for Eve.

Regret. Let X3 C G35 and Xy C Gy be sets of strategies for Eve and Adam respectively.
Given o € X3 we define the regret of o in G w.r.t. X3 and Xy as:

reg%a’gv(G) 1= Sup, ey, (SUP/exns Val(¢’,7) — Val(o, 7)).

A strategy o for Eve is then said to be regret-free w.r.t. X3 and Yy if reg§_ 5 (G) = 0. We
define the regret of G w.r.t. ¥3 and Xy as:

Regy. v, (G) :=inf,ex, regs_ s, (G).
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When X3 or Xy are omitted from reg(-) and Reg(-) they are assumed to be the set of all
strategies for Eve and Adam.
In the unfolded definition of the regret of a game, i.e.

Regy_ v, (G) = infoex, sup, ey, (SUP,/ ey Val(¢’,7) — Val(o, 1)),

let us refer to the witnesses o and o’ as the primary strategy and the alternative strategy
respectively. Observe that for any primary strategy for Eve and any one strategy for Adam,
we can assume Adam plays to maximize the payoff (i.e. co-operates) together with the
alternative strategy once it deviates (necessarily at an Eve vertex) or to minimize against
the primary strategy — again, once it deviates. Indeed, since the deviation yields different
histories, the two strategies for Adam can be combined without conflict. More formally,

» Lemma 6. Consider any o € &3, 7 € Sy, and corresponding play m,. = vovy .... For
all i > 0 such that v; € V3, for all v € succ(v;) \ {vit1} there exist o’ € &3, 7/ € Sy for
which

(i) mp [ i+ 1] =m, 9] v,

(i) Val(r,,.[i +1.]) = cVal' (G), and
(i) 7., =

Furthermore, from any vertex v € V, Eve has a strategy to ensure a payoff of at least
aVal’(G) and Adam has a strategy to ensure a payoff of at most aVal”(G). Thus, one could
further assume that Adam plays to minimize against the primary strategy while maximizing
against the alternative one.

» Lemma 7. Consider any o € &3, 7 € Gy, and corresponding play 7, = vovy .... For
all i > 0 such that v; € V3, for all v' € succ(v;) \ {viy1} there exist o' € &3, 7/ € &y for
which

() moor[it 1] =mp [d] -0 = m ] 0,

(i) Val(nm,, . [i+1..]) = cVal” (G), and

(iii) Val(r_.[i 4+ 1..]) < aVal"+(G).

Both claims follow from the definitions of strategies for Eve and Adam and from Lemma 4.
In the remaining of this work, we will assume that A is not given as part of the input.

3 Regret against all strategies of Adam

In this section we describe an algorithm to compute the (minimal) regret of a discounted-sum
game when there are no restrictions placed on the strategies of Adam. The algorithm can be
implemented by an alternating machine guaranteed to halt in polynomial time. We show
that the regret value of any game is achieved by a strategy for Eve which consists of two
strategies, the first choosing edges which lead to the optimal co-operative value, the second
choosing edges which ensure the antagonistic value. The switch from the former to the latter
is done based on the “local regret” of the vertex (this is formalized in the sequel). The latter
allows us to claim NP-membership of the regret threshold problem. The following theorem
summarizes the bounds we obtain:

» Theorem 8. Deciding if the regret value is less than a given threshold (strictly or non-
strictly), playing against all strategies of Adam, is in NP.
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Let us start by formalizing the concept of local regret. Given a play or play prefix
T =1vp... and integer 0 < i < |x| such that v; € V3, define locreg(m, ) as follows:

A (cval’, (@) - Val(w[i..])) if 7 is a play,
A (evalZ,  (G) - Val(w[i..j])) — MaVal’ (G) if 7 is a prefix of length j +1 > i+ 1,
A (cVal” (G) — aVal’ (G)) if  is a prefix of length 7 + 1,

where cVal’,  (G) = max{w(v;,v) + AcVal’(G) : (v;,v) € E and v # v;11}. Intuitively,
for 7 a play, locreg(w, i) corresponds to the difference between the value of the best deviation
from position ¢ and the value of 7. For 7 a play prefix, locreg(m,i) assumes that after

position j = || — 1 Eve will play a worst-case optimal strategy.

3.1 Deciding 0-regret

We will now argue that the problem of determining whether Eve has a regret-free strategy
can be decided in polynomial time. Furthermore, if no such strategy for Eve exists, we will
extract a strategy for Adam which, against any strategy of Eve, ensures non-zero regret. To
do so, we will reduce the problem to that of deciding whether Eve wins a safety game. The
unsafe edges are determined by a function of the antagonistic and co-operative values of the
original game. Critically, the game is played on the same arena as the original regret game.

» Theorem 9. Deciding if the regret value is 0, playing against all strategies of Adam, is in
PTIME.

Proof. We define a partition of the edges leaving vertices from V3 into good and bad for
Eve. A bad edge is one which witnesses non-zero local regret. We then show that Eve can
ensure a regret value of 0 if and only if she has a strategy to avoid ever traversing bad
edges. More formally, let us assume a given weighted arena G = (V,V3,vr, F,w) and a
discount factor A € (0,1). We define the set of bad edges B := {(u,v) € F : u € V3 and
w(u,v) + AaVal’(G) < cVal?, (G)}.

Note that strategies for either player in the newly defined safety game are also strategies
for them in the original game (and vice versa as well). We now claim that winning strategies
for Adam in the safety game G= (V,Va,vr, E, B) ensure that, regardless of the strategy of
Eve, its regret will be strictly positive. The idea behind the claim is that, Adam can force
to traverse a bad edge and from there, play adversarially against the primary strategy and
co-operatively with an alternative strategy.

» Claim 10. If 7 € Gy is a winning strategy for Adam in G, then there exist ' € Gy and
o' € &3 such that Yo € &3 : Val(o',7') — Val(o,7') > AVImin{cVal“ (G) — w(u,v) —
AaVal’(G) : (u,v) € B and u € V5} > 0.

The claim follows from the definitions and Lemma 7. Conversely, winning strategies for Eve
in G are actually regret-free.

» Claim 11. If o € S5 is a winning strategy for Eve in G, then reg?(G) = 0.

Our argument to prove this claim requires we first show that a winning strategy for Eve
ensures the antagonistic value of G from vj.

The desired result then follows from Lemma 3 and from the fact that membership of an
edge in B can be decided by computing cVal and a threshold query regarding aVal, thus in
polynomial time. <
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vr

oT o't

Figure 3 Depiction of a play and a “better Figure 4 A deviation from v, cannot be a
alternative play”. better alternative to m,, if j > N(Val(o',7) —
Val(o,7)).

We observe that the proof of Theorem 9 — more precisely, Claim 10 — implies that, if there is
no regret-free strategy for Eve in a game, then the regret of the game is at least A\IV| times

the smallest local regret labelling the bad edge from B which Adam can force. More formally:

» Corollary 12. If no regret-free strategy for Eve exists in G, then Reg(G) > ag where
ag = NVImin{locreg(uv,0) : u € V3 and (u,v) € B}.

3.2 Deciding r-regret

It will be useful in the sequel to define the regret of a play and the regret of a play prefiz.

Given a play m = vgvy . .., we define the regret of 7 as:
reg(m) := sup ({locreg(m,) : v; € V3} U {0}).

Intuitively, the local regrets give lower bounds for the overall regret of a play. We will also
let the regret of a play prefix p = vy ...v; be equal to

Wil

max ({/\i(cValvi (@) — Val(pli..j])) : 0 <i < j and v; € Va}U {0}) .

Let us give some more intuition regarding the regret of a play. Consider a pair of strategies
o and 7 for Eve and Adam, respectively. Suppose there is an alternative strategy o’ for
Eve, such that, against 7, the obtained payoff is greater than that of 7 . It should be clear
that this implies there is some position ¢ such that, from vertex v; € V3 ¢’ and 7 result in a
different play from 7. (see Figure 3). We will sometimes refer to this deviation, i.e. the
play 7., as a better alternative to m, ..

We can now show the regret of a strategy for Eve in fact corresponds to the supremum of
the regret of plays consistent with the strategy.

» Lemma 13. For any strategy o of Eve, reg?(G) = sup{reg(n) : m is consistent with c}.

We note that for any play , the sequence (\(cVal¥, (G) — Val(r[i..])))i>0 converges

Wit1
to 0 because (cVal’,  (G) — Val(rli..])) is bounded by % It follows that if we have a

non-zero lower bound for the regret of 7, then there is some index N such that the witness

for the regret occurs before N. Moreover, we can place a polynomial upper bound on N.

More precisely:

» Lemma 14. Let 7 be a play in G and suppose 0 < r < reg(w). Let
N(r) := |(logr +log(l — A) — log(2W))/log A] + 1.

Then reg(r) = reg(n[..N(r)]) — AN Val(7[N(r)..]).
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The above result gives us a bound on how far we have to unfold a game after having witnessed
a non-zero lower bound, r, for the regret. If we consider the example from Figure 3, this
translates into a bound on how many turns after v; a deviation can still yield bigger local
regret (see Figure 4).

Corollary 12 then gives us the required lower bound to be able to use Lemma 14.

» Lemma 15. If Reg(G) > ag then Reg(G) is equal to

ienef sup{reg(n[..N(ag)]) — AN@¢)aVal"~@e) (@) : m = vovy ... is consistent with o}.
4SGE]

This already implies we can compute the regret value in alternating polynomial time (or
equivalently, deterministic polynomial space [5]).

» Proposition 16. The regret value is computable using only polynomial space.

Proof. We first label the arena with the antagonistic and co-operative values and solve the
safety game described for Theorem 9. The latter can be done in polynomial time. If the Eve
wins the safety game, the regret value is 0. Otherwise, we know ag > 0 is a lower bound
for the regret value. We now simulate G using an alternating Turing machine which halts
in at most N(ag) steps. That is, a polynomial number of steps. The simulated play prefix
is then assigned a regret value as per Lemma 15 (recall we have already pre-computed the
antagonistic value of every vertex). <

As a side-product of the algorithm described in the above proof we get that finite memory
strategies suffice for Eve to minimize her regret in a discounted-sum game.

» Corollary 17. Let pu:= |A|N(@G) | with N(0) = 0. It holds that

Regzg,ev(G) = Regg, 6, (G).

3.3 Simple regret-minimizing behaviours

We will now argue that Eve has a simple strategy which ensures regret of at most Reg(G).
Her strategy will consist of “playing co-operatively” for some turns (until a high local regret
has already been witnessed) and then switch to a co-operative worst-case optimal strategy.

We will now define a family of strategies which switch from co-operative behaviour to
antagonistic, after a specific number of turns have elapsed (in fact, enough for the discounted
local regret to be less than the desired regret). Denote by o a strongly co-operative
strategy for Eve in G and by oV a co-operative worst-case optimal strategy for Eve in G.
Recall that, by Lemma 5, such strategies for her always exist. Finally, given a co-operative
strategy o, a co-operative worst-case optimal strategy ¢V, and t € Q let us define an
optimistic-then-pessimistic strategy for Eve [c° 5 o). The strategy is such that, for any
play prefix p = vg ... v, such that v, € V3

. co if |cOpt =1andl -oM(p), 1) >t
0 4 gy = {70) I 10OPHen)| = 1 and Tocrog(p- o™/(p)n 1)
o™ (p) otherwise.

We claim that, when we set t = Reg(G), an optimistic-then-pessimistic strategy for Eve
ensures minimal regret. That is

» Proposition 18. Let 0% be a strongly co-operative strategy for Eve, o™ be a Eve and a co-
operative worst-case optimal strategy for Eve, and t = Reg(G). The strategy o = [0° - oV
has the property that reg®(G) = Reg(G).
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This is a refinement of the strategy one can obtain from applying the algorithm used to
prove Proposition 16.! The latter tells us that a regret-minimizing strategy of Eve eventually
switches to a worst-case optimal behaviour. For vertices where, before this switch, another

edge was chosen by Eve, we argue that she must have been playing a co-operative strategy.

Otherwise, she could have switched sooner.

We have shown the regret value can be computed using an algorithm which requires
polynomial space only. This algorithm is based on a polynomial-length unfolding of the game
and from it we can deduce that the regret value is representable using a polynomial number
of bits. (Indeed, all exponents occurring in the formula from Lemma 15 will be polynomial
according to Lemma 14.) Also, we have argued that Eve has a “simple” strategy o to ensure
minimal regret. Such a strategy is defined by two polynomial-time constructible sub-strategies
and the regret value of the game. Hence, it can be encoded into a polynomial number of
bits itself. Furthermore, ¢ is guaranteed to be playing as its co-operative worst-case optimal
component after N(Reg(G)) turns (see, again, Lemma 14), which is a polynomial number of
turns. Given a regret threshold r, we claim we can verify that o ensures regret at most r in
polynomial time. This can be achieved by allowing Adam to play in G, and against o, with
the objective of reaching an edge with high local regret before N(Reg(G)) turns. A possible
formalization of this idea follows. Consider the product of G with a counter ranging from 1
to N(Reg(G)) where we make all vertices belong to Adam. In this game H, we make edges
leaving vertices previously belonging to Eve go to a sink and define a new weight function w’
which assigns to these edges their negative non-discounted local regret: going from u to v
when o dictates to go to v’ yields w(u, v’)+)\aVa1”/(H xo)—w(u,v)+AcVal’(H). Lemma 15
allows us to show that o ensures regret at most r in G if and only if the antagonistic value
of a discounted-sum game played on H with weight function w’ is at most —r.

It follows that the regret threshold problem is in NP, as stated in Theorem 8.

» Example 19. We revisit the discounted-sum game from Figure 1. Let us instantiate the
values M = 100 and A\ = %. According to our previous remarks on this arena, after i visits to

v without Adam choosing (v, y), Eve could achieve (1_11) (19—0)% =10 (1—90)% , by going to z,
10

or hope for <11,001) (1%)2”1 = 1000 (%)21‘+1 by going to v again. Her best regret minimizing
10

strategy corresponds to 022 which ensures regret of at most 10 — 10(19—0)44 ~ 9.9030. (Note

that, since 1000(19—0)2j 1 <10 for all j > 22, the best alternative strategy indeed achieves

a payoff of 10 only. This alternative strategy corresponds to having gone to x from the

beginning.)

It is easy to see that Eve cannot win the safety game G constructed from this arena.

Indeed, from the initial vertex v; both (vr,z) and (vs,v) are bad edges for Eve since there

are always alternative strategies to obtain higher payoffs (that is, if Adam does not play to y).
More formally, we note that cVal’’, = 1000\, cVal’’, = 10, aVal® = 10, and aVal’ = 10\

Thus, the lower bound a¢ one can obtain from G is then equal to

9 9N\ /9! 9\* 9\°
i 1 — | —10,10-10 | — — ] =10 — ) —10( — | = 1.2466.
i () <010 (2)'} (2) 2 10(B) 10 () 121
As expected, when Eve plays her optimal regret-minimizing (optimistic-then-pessimistic)

strategy any better alternative must deviate before N(ag) = 71 turns. In general, against o,
for i < 22 a regret bigger than 9.9030 is obtained by Adam choosing the edge (v,y) to help

1 In fact, our proof of Prop. 18 relies on Eve requiring finite memory, to minimize her regret.
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any strategy of Eve going to v more than ¢ times, for ¢ > 22 choices of Adam are no longer
relevant and the best alternative strategy for Eve is to have gone to = from the first step. <«

4 Regret against positional strategies of Adam

In this section we consider the problem of computing the (minimal) regret when Adam is
restricted to playing positional strategies.

» Theorem 20. Deciding if the regret value is less than a given threshold (strictly or
non-strictly), playing against positional strategies of Adam, is in PSPACE.

Playing against an Adam, when he is restricted to playing memoryless strategies gives
Eve the opportunity to learn some of Adam’s strategic choices. However, due to its decaying
nature, with the discounted-sum payoff function Eve must find a balance between exploring
too quickly, thereby presenting lightly discounted alternatives; and learning too slowly,
thereby heavily discounting her eventual payoff.

A similar approach to the one we have adopted in Section 3 can be used to obtain an
algorithm for this setting. The claimed lower bound follows from Theorem 26.

4.1 Deciding 0-regret

As in the previous section, we will reduce the problem of deciding if the game has regret value
0 to that of determining the winner of a safety game. It will be obvious that if no regret-free
strategy for Eve exists in the original game, then we can construct, for any strategy of hers,
a positional strategy of Adam which ensures non-zero regret. Hence, we will also obtain a
lower bound on the regret of the game in the case Adam wins the safety game.

Let us fix some notation. For a set of edges D C E, we denote by G|D the weighted
arena (V,Va,vr, D,w). Also, for a positional strategy 7 : (V \ V5) = E for Adam in G,
we denote by G x 7 the weighted arena resulting from removing all edges not consistent
with 7. Next, for an edge (s,t) € E we define Ey(st) := {(u,v) € E : if u = s then v =
t or u € V3}. We extend the latter to play prefixes p = vg...v, by (recursively) defining
Ey(p) := Ey(p[..n — 1]) N Ey(vp—1vy). If 7 is a play, then E D Ey(n[..1]) 2 Ey(w]..j]) for
all 0 <4 < j. Hence, since E is finite, the value Ey(7) := lim;>q Ey(n[..7]) is well-defined.
Remark that Ey(mw) does not restrict edges leaving vertices of Eve. The following properties
directly follow from our definitions.

» Lemma 21. Let w be a play or play prefix consistent with a positional strategy for Adam.
It then holds that:
(i) for every v € V' \ V3 there is some edge (v,-) € Ey(m),
(i) 7 is consistent with a strategy T € LY (G) if and only if T € TL(G|Fy(r)), and
(iii) every strategy 7 € LY (G| By (7)) is also an element from TY(G).

To be able to decide whether regret-free strategies for Eve exist, we define a new safety
game. The arena we consider is G := (V, V3,07, E) where V := V x P(E), V5 := V5 x P(E),
v = (vr, E), and E contains the edge ((u,C), (v, D)) if and only if (u,v) € E and D =
C N Ey(uv).

» Theorem 22. Deciding if the regret value is 0, playing against positional strategies of
Adam, is in PSPACE.

Proof. A safety game is constructed as in the proof of Theorem 9. Here, we consider G
and the set of bad edges B := {((u,C), (v,D)) € E : v € V3 and 37 € XL(G|C),w(u,v) +
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AcVal’(G x 7) < cVal“, (G x 7)}. We then have the safety game G = (V, V5,4, E, B).

Note that there is an obvious bijective mapping from plays (and play prefixes) in G to plays
(prefixes) in G which are consistent with a positional strategy for Adam. One can then show
the following properties hold:

» Claim 23. If 7 € &y(G) is a winning strategy for Adam in G, then for all 0 € G5(G),
there exist tro € E@(G) and s;o € 63(G) such that Val(s;o,t;,) — Val(o,t,5) > AVIAEI+1)
min{cVal", (G x 7) — w(u,v) — AcVal’(G x 7) : ((u,C), (v, D)) € B,7 € ZL,(G|O)}.

The claim follows from positional determinacy of safety games and Lemma 21.

» Claim 24. Ifo € 63(@) is a winning strategy for Eve in G, then there is s, € G3(G)
such that regg’a,zé(G) =0.
It then follows from the determinacy of safety games that Eve wins the safety game G if and
only if she has a regret-free strategy.

We observe that simple cycles in G have length at most |V|(|E| 4+ 1). Thus, we can
simulate the safety game until we complete a cycle and check that all traversed edges are
good, all in alternating polynomial time. Indeed, an alternating Turing machine can simulate
the cycle and then (universally) check that for all edges, for all positional strategies of the
Adam, the inequality holds. <

» Corollary 25. If no regret-free strateqy for Fve exists in G, then Regsa,z\g(G) > bg
where bg = NVIUEIFD min{cVal” (G x 1) — w(u,v) — AcVal’(G x 1) : ((u,C), (v,D)) €
B and T € SL(G|C)}.

4.2 Lower bounds

We claim that both 0-regret and r-regret are coNP-hard. This can be shown by adapting
the reduction from 2-disjoint-paths given in [13] to the regret threshold problem against
memoryless adversaries.

» Theorem 26. Let A € (0,1) and r € Q be fized. Deciding if the regret value is less than r
(strictly or non-strictly), playing against positional strategies of Adam, is coNP-hard.

5 Playing against word strategies of Adam

In this section, we consider the case where Adam is restricted to playing word strategies.

First, we show that the regret threshold problem can be solved whenever the discounted sum
automata associated to the game structure can be made deterministic. As the determinization
problem for discounted sum automata has been solved in the literature for only sub-classes
of discount factors, and left open in the general case, we complement this result by two other
results. First, we show how to solve an e-gap promise variant of the regret threshold problem,
and second, we give an algorithm to solve the 0 regret problem. In the two cases, we obtain
completeness results on the computational complexities of the problems.

5.1 Preliminaries

The formal definition of the e-gap promise problem is given below. We first define here the
necessary vocabulary. We say that a strategy of Adam is a word strategy if his strategy can
be expressed as a function 7 : N — [max{deg™ (v) : v € V}], where [n] = {i: 1 <i < n} and
deg™ (v) is the outdegree of v (i.e. the number of edges leaving v). Intuitively, we consider an
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order on the successors of each Adam vertex. On the i-th turn, the strategy 7 of Adam will
tell him to move to the 7(4)-th successor of the vertex according to the fixed order. We denote
by 20y the set of all such strategies for Adam. A game in which Adam plays word strategies
can be reformulated as a game played on a weighted automaton I' = (Q, g7, A, A, w) and
strategies of Adam— of the form 7 : N — A — determine a sequence of input symbols, i.e.
an omega word, to which Eve has to react by choosing A-successor states starting from
qr- In this setting a strategy of Eve which minimizes regret defines a run by resolving the
non-determinism of A in I', and ensures the difference of value given by the constructed run
is minimal w.r.t. to the value of the best run on the word spelled out by Adam.

5.2 Deciding 0-regret

We will now show that if the regret of an arena (or automaton) is 0, then we can construct a
memoryless strategy for Eve which ensures no regret is incurred. More specifically, assuming
the regret is 0, we have the existence of a family of strategies of Eve which ensure decreasing
regret (with limit 0). We use this fact to choose a small enough ¢ and the corresponding
strategy of hers from the aforementioned family to construct a memoryless strategy for Eve
with nice properties which allow us to conclude that its regret is 0. Hence, it follows that an
automaton has zero regret if and only if a memoryless strategy of Eve ensures regret 0. As
we can guess such a strategy and easily check if it is indeed regret-free (using the obvious
reduction to non-emptiness of discounted-sum automata or one-player discounted-sum games),
the problem is in NP. A matching lower bound follows from a reduction from SAT which
was first described in [1].

» Theorem 27. Deciding if the regret value is 0, playing against word strategies of Adam, is
NP-complete.

5.3 Deciding r-regret: determinizable cases

When the weighted automaton I' associated to the game structure can be made deterministic,
we can solve the regret threshold problem with the following algorithm. In [13] we established
that, against eloquent adversaries, computing the regret reduced to computing the value of a
quantitative simulation game as defined in [6]. The game is obtained by taking the product
of the original automaton and a deterministic version of it. The new weight function is the
difference of the weights of both components (for each pair of transitions). In [4], it is shown
how to determinize discounted-sum automata when the discount factor is of the form %, for
n € N. So, for this class of discount factor, we can state the following theorem:

» Theorem 28. Deciding if the regret value is less than a given threshold (strictly or
non-strictly), playing against word strategies of Adam, is in EXP for \ of the form %L

5.4 The e-gap promise problem

Given a discounted-sum automaton A, r € Q, and &€ > 0, the e-gap promise problem adds to
the regret threshold problem the hypothesis that A will either have regret < r or > r +¢.
We observe that an algorithm that satisfies that:

a YES answer implies that Regy,_ oy, (A) <7 +¢,

whereas a NO answer implies Regy_ oy, (A) > 7.
will decide the e-gap promise problem.

In [4], it is shown that there are discounted-sum automata which define functions that
cannot be realized with deterministic-sum automata. Nevertheless, it is also shown in that
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B bazl,(l/\ A,0 /\ A,0 /\bail,o .,
N N _/

A\ {bail}, 0 ‘ ‘ A\ {bail}, 0

Figure 5 Initial gadget used in reduction from QBF.

paper that given a discounted-sum automaton it is always possible to construct a deterministic
one that is e-close in the following formal sense. A discounted-sum automaton A is e-close to
another discounted sum automaton B, if for all words x the absolute value of the difference
between the values assign by A and B to x is at most . So, it should be clear that we can
apply the algorithm underlying Theorem 28 to I" and a determinized version Dr of it (which
is e-close to T') and solve the e-gap promise problem. We can then prove the following result.

» Theorem 29. Deciding the e-gap regret problem is in PSPACE.

The complexity of the algorithm follows from the fact that the value of a (quantitative
simulation) game, played on the product of I' and Dr we described above, can be determined
by simulating the game for a polynomial number of turns. Thus, although the automaton
constructed using the techniques of Boker and Henzinger [4] is of size exponential, we can
construct it “on-the-fly” for the required number of steps and then stop.

Proof Sketch. We reduce the problem to determining the winner of a reachability game on
an exponentially larger arena. Although the arena is exponentially larger, all paths are only
polynomial in length, so the winner can be determined in alternating polynomial time, or
equivalently, polynomial space.

The idea of the construction is as follows. Given a discounted-sum automaton A4, we
determinize its transitions via a subset construction, to obtain a deterministic, multi-valued
discounted-sum automaton D 4. Then we decide if Eve is able to simulate, within the regret
bound, the D4 on A for all finite words up to a length (polynomially) dependent on e. If we
simulate the automaton for a sufficient number of steps, then any significant gap between the
automata will be unrecoverable regardless of future inputs, and we can give a satisfactory
answer for the e-GAP REGRET PROBLEM. More specifically, we only have to simulate this
determinization process for N steps, where N := |(loge 4 log(1 — \) — log(4W))/log A| +
1. |

5.5 Lower bounds

We claim the e-gap promise problem is PSPACE-hard even if both A and e are not part of
the input. To establish the result, we give a reduction from QSAT which uses the gadgets
depicted in Figures 5 and 6.

» Theorem 30. Let A € (0,1) and € € (0,1) be fized. As input, assume we are given r € Q
and weighted arena A such that Regy, oy, (A) < 7 or Regys_ oy, (A) > r +¢e. Deciding if
the regret value is less than a given threshold, playing against word strategies of Adam, is
PSPACE-hard.

Proof Sketch. We will reduce the QSAT PROBLEM to the present one.
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OO

A\ —b,0 A\ b,0

R <
>
o

A\ b,0

)
O

Figure 6 Left and right sub-arenas of the reduction from QBF. Clause i shown on the left;
existential and universal gadgets for variables x; and x, respectively, on the right.

The QSAT PROBLEM asks whether a given fully quantified Boolean formula (QBF) is
satisfiable. The problem is known to be PSPACE-complete [9]. It is known the result holds
even if the formula is assumed to be in conjunctive normal form with three literals per clause
(also known as 3-CNF). Therefore, w.l.o.g., we consider an instance of the QSAT PROBLEM
to be given in the form:

JroVar1Izy ... D(x0, 21, .., Tn)

where @ is in 3-CNF.
Our reduction works for values of r, X, Y, and Z such that
(i) \2Z > (r+e)(1—N),
(i) M"(Z-X)> (r+e)(1-N),
(i) M(Z-Y) <r(1-)\),
(iv) MY = A" X <7r(1—N).
The alphabet of the new weighted arena is A = {bail, b, —b}.

Intuitively, the construction works as follows. The initial gadget shown in Figure 5,
ensures that Eve always plays to the rightmost sub-arena. In this part of the game, she has,
for every existentially quantified variable, a choice which corresponds to setting the variable
to a value of true or false. Depending on her choice, Adam can either play a specific symbol
corresponding to him accepting the valuation or stop the simulation and go to Ly where
Eve wins the regret game. For universally quantified variables, Eve has no choice (see right
part of Fig. 6). The crucial idea is that Adam accepts or rejects a valuation of a variable by
playing letter b or —b. These letters can only be read by a clause gadget if the literal does
not make the clause true.

If the QBF is true, Eve will be able to make sure no alternative play in the left side of the
game leads to 1 z. This is the case since the construction ensures that every clause gadget
(see left part of Fig. 6) with a literal set to true cannot be used to reach L . <
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It follows that the general problem is also PSPACE-hard (even if € is set to 0).

» Corollary 31. Let A € (0,1). For r € Q, weighted arena G, determining whether
Regg_ an, (G) <, for < € {<, <}, is PSPACE-hard.
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