
Quine’s Fluted Fragment is Non-Elementary∗

Ian Pratt-Hartmann1, Wiesław Szwast2, and Lidia Tendera3

1 School of Computer Science, University of Manchester, UK
ipratt@cs.man.ac.uk

2 Institute of Mathematics and Informatics, Opole University, Poland
szwast@math.uni.opole.pl

2 Institute of Mathematics and Informatics, Opole University, Poland
tendera@math.uni.opole.pl

Abstract
We study the fluted fragment, a decidable fragment of first-order logic with an unbounded number
of variables, originally identified by W.V. Quine. We show that the satisfiability problem for this
fragment has non-elementary complexity, thus refuting an earlier published claim by W.C. Purdy
that it is in NExpTime. More precisely, we consider, for all m greater than 1, the intersection
of the fluted fragment and the m-variable fragment of first-order logic. We show that this sub-
fragment forces (m/2)-tuply exponentially large models, and that its satisfiability problem is
(m/2)-NExpTime-hard. We round off by using a corrected version of Purdy’s construction to
show that the m-variable fluted fragment has the m-tuply exponential model property, and that
its satisfiability problem is in m-NExpTime.

1998 ACM Subject Classification F.4.1 Mathematical logic

Keywords and phrases Quine, fluted fragment, Purdy, non-elementary, satisfiability, decidability

Digital Object Identifier 10.4230/LIPIcs.CSL.2016.39

1 Introduction

The fluted fragment, here denoted FL, is a fragment of first-order logic in which, roughly
speaking, the order of quantification of variables coincides with the order in which those
variables appear as arguments of predicates. Fluted formulas arise naturally as first-order
translations of quantified English sentences in which no quantifier-rescoping occurs, thus:

No student admires every professor
∀x1(student(x1)→ ¬∀x2(prof(x2)→ admires(x1, x2))) (1)

No lecturer introduces any professor to every student
∀x1(lecturer(x1)→ ¬∃x2(prof(x2)∧ ∀x3(student(x3)→ intro(x1, x2, x3)))). (2)

Furthermore, as was observed in [4], various standard translations of multi-modal logic into
first-order logic are also easily seen to yield only fluted formulas. The origins of the fluted
fragment can be traced to a paper given by W.V. Quine to the 1968 International Congress of
Philosophy [11], in which the author defined what he called the homogeneous m-adic formulas.
In these formulas, all predicates have the same arity m, and all atomic formulas have the
same argument sequence x1, . . . , xm. Boolean operators and quantifiers may be freely applied,
except that the order of quantification must follow the order of arguments: a quantifier

∗ This work is supported by the Polish National Science Centre grant DEC-2013/09/B/ST6/01535 to
W.S. and L.T., and by the EPSRC grant EP/K017438/1 to I.P-H.

© Ian Pratt-Hartmann, Wiesław Szwast, and Lidia Tendera;
licensed under Creative Commons License CC-BY

25th EACSL Annual Conference on Computer Science Logic (CSL 2016).
Editors: Jean-Marc Talbot and Laurent Regnier; Article No. 39; pp. 39:1–39:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2016.39
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

39:2 Quine’s Fluted Fragment is Non-Elementary

binding an occurrence of xi may only be applied to a subformula in which all occurrences
of xi+1, . . . , xm are already bound. Quine explained how Herbrand’s decision procedure for
monadic first-order logic easily extends to cover all homogeneous m-adic formulas. The term
fluted logic first appears (to the present authors’ knowledge) in [13], where the restriction
that all predicates have the same arity is abandoned, a relaxation which, according to
Quine, does not affect the proof of decidability of satisfiabilty. It seems that the allusion is
architectural rather than musical: we are invited to think of arguments of predicates as being
‘lined up’ in columns. Quine’s motivation for defining the fluted fragment was to locate the
boundary of decidability in the context of his reconstruction of first-order logic in terms of
predicate-functors, which Quine himself described as a ‘modification of Bernays’ modification
of Tarski’s cylindrical algebra’ [12, p. 299]. Specifically, the fluted fragment can be identified
by dropping from full predicate functor logic those functors associated with the permutation
and identification of variables, while retaining those concerned with cylindrification and
Boolean combination.

Notwithstanding its predicate-functorial lineage, the fluted fragment has, as we shall
see, a completely natural characterization within the standard régime of bound variable
quantification, and thus constitutes an interesting fragment of first-order logic in its own
right. In fact, FL overlaps in expressive power with various other such fragments. For
example, Boolean modal logic [5] maps, under the standard first-order translation, to FL –
in fact, to FL2, the fluted fragment restricted to just two variables. (Thus, FL2 in effect
subsumes the description logic ALC.) On the other hand, even FL2 is not contained within
the so-called guarded fragment of first-order logic [1]: the formula (1), for example, is not
equivalent to any guarded formula. A more detailed comparison of the fluted fragment to
other familiar decidable fragments can be found in [4].

Noah [6] pointed out, however, that – contrary to Quine’s assertion – Herbrand’s technique
does not obviously extend from homogeneous m-adic logic to the fluted fragment, and
consequently, the decidability of the satisfiability problem for the latter should be regarded as
open. This problem – together with the corresponding problems for various extensions of the
fluted fragment – was considered in a series of papers in the 1990s by W.C. Purdy [7, 8, 9, 10].
The decidability of FL is proved in [8], while in [10] it is claimed (Corollary 10) that this
fragment has the exponential-sized model property: if a fluted formula ϕ is satisfiable, then
it is satisfiable over a domain of size bounded by an exponential function of the number
of symbols in ϕ. Purdy concluded (Theorem 13) that the satisfiability problem for FL is
NExpTime-complete.

These latter claims are false. In the sequel, we show that, for m ≥ 2, the fluted fragment
restricted to just m variables, denoted FLm, can force models of (bm/2c)-tuply exponential
size, and that its satisfiability problem is (bm/2c)-NExpTime-hard. It follows that there
is no elementary bound on the size of models of satisfiable fluted formulas, and that the
satisfiability problem for FL is non-elementary. On the other hand, we also show that any
satisfiable formula of the m-variable fluted fragment has a model of m-tuply exponential
size, so that the satisfiability problem for this sub-fragment is contained in m-NExpTime.
Thus, FL has the finite model property, and its satisfiability (= finite satisfiability) problem
is decidable, but not elementary. Note that the above complexity bounds for FLm leave a
gap of a factor of 2.

We mention at this point another incorrect claim by Purdy concerning an extension
of the fluted fragment. In [9], the author considers what he calls extended fluted logic, in
which, in addition to the usual predicate functors of fluted logic, we have an identity functor
(essentially: the equality predicate), binary conversion (the ability to exchange arguments

I. Pratt-Hartmannn, W. Szwast, and L. Tendera 39:3

in binary atomic formulas) and functions (the requirement that certain specified binary
predicates be interpreted as the graph of a function.) Purdy claims (Corollary 19, p. 1460)
that EFL has the finite model property: if a formula of this fragment is satisfiable, then it is
satisfiable over a finite domain. But EFL evidently contains the formula

∀x1∀x2(r(x1, x2)→ f(x1, x2)) ∧ ∃x1∀x2¬r(x1, x2) ∧ ∀x1∃x2r(x2, x1),

where f is required to be interpreted as the graph of a binary function; and this is an axiom
of infinity. In view of these observations, it seems only prudent to treat Purdy’s series of
articles with caution. We also mention that an independent decision procedure for the fluted
fragment – based on resolution theorem-proving – was presented in [15]. No complexity
bounds are given there. Moreover, that paper omits detailed proofs, and these have, to the
authors’ knowledge, never been published.

The structure of this paper is as follows. Section 2 gives some basic definitions. In
Section 3, we show that formulas of FL2m can force models of m-tuply exponential size, and
indeed that the satisfiability problem for FL2m is m-NExpTime-hard, thus disproving the
results claimed in [10]. In Section 4, we show how some of the constructions appearing in
Purdy’s paper can nevertheless be recycled to give a proof that the fluted fragment with m
variables does indeed have the finite model property, and that its satisfiability problem is in
m-NExpTime. This proof is shorter and more perspicuous than the original argument for
the decidability of FL given in [8], and, moreover, yields detailed complexity information.

2 Preliminaries

Let x̄ω = x1, x2, . . . be a fixed sequence of variables. We define the sets of formulas FL[k]

(for k ≥ 0) by structural induction as follows: (i) any atom p(x`, . . . , xk), where x`, . . . , xk is
a contiguous subsequence of x̄ω, is in FL[k]; (ii) FL[k] is closed under boolean combinations;
(iii) if ϕ is in FL[k+1], then ∃xk+1ϕ and ∀xk+1ϕ are in FL[k]. The set of fluted formulas
is defined as FL =

⋃
k≥0 FL

[k]. A fluted sentence is a fluted formula over an empty set of
variables, i.e. an element of FL[0]. Thus, when forming Boolean combinations in the fluted
fragment, all the combined formulas must have as their free variables some suffix of some
prefix x1, . . . , xk of x̄ω; and when quantifying, only the last variable in this sequence may
be bound, as illustrated by the fluted sentences in (1) and (2). Note that, in this paper, we
consider only purely relational signatures.

Denote by FLm the sub-fragment of FL consisting of those formulas featuring at most
m variables, free or bound. Do not confuse FLm (the set of fluted formulas with m variables,
free or bound) with FL[m] (the set of fluted formulas with m free variables). Thus, the
formulas in (1) and (2) are in FL[0]; however (1) is in FLm only for m ≥ 2, and (2) is in
FLm only for m ≥ 3. All formulas occurring in the remainder of the paper will be fluted.

In the sequel, we employ standard concepts and notation from first-order logic. Structures
are denoted by Gothic capital letters and their domains by the corresponding Roman capitals.
If A is a structure, ϕ(x1, . . . , xk) a formula of FL[k], and ā a k-tuple of elements of A,
then we write A |= ϕ[ā] to indicate that ā satisfies ϕ(x1, . . . , xk) in A; in the case where
ϕ is a fluted sentence and A is a model of ϕ, we write simply A |= ϕ. If ϕ is a formula,
we write ‖ϕ‖ to denote the number of symbols in ϕ. We use ±ϕ to stand either for ϕ
or ¬ϕ, with multiple occurrences of ± in displayed material resolved uniformly: thus, for
example ±p1

i (x1, x2) → ±p1
i (x2) stands for a pair (not a quartet) of formulas, namely,

p1
i (x1, x2)→ p1

i (x2) and ¬p1
i (x1, x2)→ ¬p1

i (x2).

CSL 2016

39:4 Quine’s Fluted Fragment is Non-Elementary

3 Lower bound

In this section, we establish lower complexity bounds for the fluted fragment, which we
express using the tetration function t(k, n), defined, for n, k ≥ 0, by induction as follows:

t(0, n) = n

t(k + 1, n) = 2t(k,n).

Thus, t(1, n) = 2n, t(2, n) = 22n , and so on. Theorem 1 shows that an FL2m-formula of
size O(n2) can force models of size at least t(m,n), thus contradicting Corollary 10 of [10].
Theorem 2 shows that the satisfiability problem for FL2m is m-NExpTime-hard, thus
contradicting Theorem 11 of [10].

As a preliminary, for any z ≥ 0, we take the (canonical) representation of any integer n in
the range (0 ≤ j < 2z) to be the bit-string s̄ = sz−1, . . . , s0 of length z, where n =

∑z−1
i=0 si ·2i.

(Thus, s0 is the least significant bit.) Where z is clear from context, this representation
is unique. Observe that, if, in addition, an integer n′ in the same range is represented by
s′z−1, . . . , s

′
0, then n′ = n− 1 mod 2z if and only if, for all i (0 ≤ i < z):

s′i =
{

1− si if, for all j (0 ≤ j < i), sj = 0;
si otherwise.

This simple observation – effectively, the algorithm for decrementing an integer represented
in binary – will feature at various points in the proof of the following theorem.

I Theorem 1. For all m ≥ 1, there exists a sequence of satisfiable sentences {ϕn}n∈N ∈
FL2m such that ‖ϕn‖ grows polynomially with m and n (and indeed quadratically in n for
fixed m), but the smallest satisfying model of ϕn has at least t(m,n) elements. Hence, there
is no elementary bound on the size of models of satisfiable sentences in FL.

Proof. Fix positive integers m and n. Consider a signature Σm,n featuring:
unary predicates p0, . . . , pn−1;
for all k in the range 1 ≤ k ≤ m, a unary predicate intk;
for all k in the range 1 ≤ k < m, binary predicates ink, outk.

(We shall add further predicates to Σm,n in the course of the proof.) When working within a
particular structure, we call any element satisfying the unary predicate intk in that structure
a k-integer. Each k-integer, b, will be associated with an integer value, valk(b), between 0 and
t(k, n)− 1. For k = 1, this value will be encoded by b’s satisfaction of the unary predicates
p0, . . . , pn−1. Specifically, for any 1-integer b, define val1(b) to be the integer canonically
represented by the n-element bit-string sn−1, . . . , s0, where, for all i (0 ≤ i < n),

si =
{

1 if A |= pi[b];
0 otherwise.

On the other hand, if b is a (k + 1)-integer (k ≥ 1), then valk+1(b) will be encoded by how b

is related to the various k-integers via the predicate ink. Specifically, for any k (1 ≤ k < m)
and any (k + 1)-integer b, define valk+1(b) to be the integer canonically represented by the
bit-string sN−1, . . . , s0 of length N = t(k, n) where, for all i (0 ≤ i < N),

si =
{

1 if A |= ink[a, b] for some (k)-integer a s.t. valk(a) = i;
0 otherwise.

We shall be interested in the case where A satisfies the following two properties, for all k
(1 ≤ k ≤ m).

I. Pratt-Hartmannn, W. Szwast, and L. Tendera 39:5

k-covering: The function valk : intAk → [0, t(k, n)− 1] is surjective.
k-harmony: If k > 1, then, for all k-integers b and all (k − 1)-integers a, a′ in A such that

valk−1(a) = valk−1(a′), we have A |= ink−1[a, b]⇔ A |= outk−1[b, a′].
If k < m, k-covering ensures that, when we want to know what the ith bit in the canonical
binary representation of a (k + 1)-integer b is (where 0 ≤ i < t(k, n)), then there exists a
k-integer a such that valk(a) = i, and for which we can ask whether A |= ink[a, b]. Conversely,
(k + 1)-harmony ensures that, if there are many such a, then it does not matter which
one we consult. For if valk(a) = valk(a′), then by two applications of (k + 1)-harmony,
A |= ink[a, b]⇔ A |= outk[b, a]⇔ A |= ink[a′, b].

The proof proceeds by writing a satisfiable FL2m-formula Φm,n in the signature Σm,n

such that any model A |= Φm,n satisfies k-covering and k-harmony for all k (1 ≤ k ≤ m).
It follows from m-covering that |A| ≥ t(m,n), proving the theorem. The signature Σm,n

will feature several auxiliary predicates. In particular, we take Σm,n to contain: (i) the
unary predicates zero1, . . . , zerom; (ii) the binary predicates pred1,0, . . . ,predm,0; and (iii)
the ternary predicates pred1,1, . . . ,predm−1,1. Furthermore, we take Σm,n to contain, for all
k (1 ≤ k ≤ m) and all ` (0 ≤ ` ≤ 2(m− k)), the (`+ 2)-ary predicate eqk,`. Observe that
Σm,n does not contain the predicate predm,1. Observe also that, as k increases from 1 to m,
the maximal value of the index ` in the predicates eqk,` decreases, in steps of 2, from 2m− 2
down to 0; hence the maximal arity of these predicates decreases from 2m to 2.

Any model A |= Φm,n will be guaranteed to satisfy the following properties for all k
(1 ≤ k ≤ m) concerning the interpretation of these predicates.
k-zero: For all k-integers b, A |= zerok[b]⇔ valk(b) = 0.
k-equality: For all ` (0 ≤ ` ≤ 2(m− k)), all k-integers b, b′ and all `-tuples of elements c̄,

A |= eqk,`[b, c̄, b′]⇔ valk(b) = valk(b′).
k-predecessor: For all ` (0 ≤ ` ≤ min(m − k, 1)), all k-integers b, b′ and all `-tuples of

elements c̄, A |= predk,`[b, c̄, b′]⇔ valk(b′) = valk(b)− 1, modulo t(k, n).

The bounds on ` in the property k-predecessor amount to saying that ` takes values 0 or
1, except when k = m, in which case it takes only the value 0. (Recall that Σm,n does not
feature the predicate predm,1.)

Thus, zerok(x1) can be read as “x1 is zero”, predk,0(x1, x2), as “x2 is the predecessor of
x1”, and predk,1(x1, x2, x3) as “x3 is the predecessor of x1”. Notice that, in the latter case,
the argument x2 is semantically inert. Similarly, eqk,`(x1, . . . , x`+2) can be read as “x1 is
equal to x`+2”, with the ` arguments x2, . . . , x`+1 again semantically inert. When naming
predicates, we employ the convention that the first subscript, k, serves as a reminder that its
primary arguments are typically assumed to be k-integers; the second subscript, `, indicates
that ` (possibly 0) semantically inert arguments have been inserted between the primary
arguments.

We suppose that A |= Φm,n, and establish the properties k-covering, k-harmony, k-zero,
k-equality and k-predecessor for all k (1 ≤ k ≤ m) by induction on k. For ease of reading,
we introduce the various conjuncts of Φm,n as they are required. Appeals to the inductive
hypothesis are indicated by the initials IH.

Base case (k = 1): Let b be a 1-integer, and recall that val1(b) is defined by b’s satisfaction
of the predicates p0, . . . , pn−1. We proceed to secure the properties required for the base
case of the induction. The property 1-harmony is trivially satisfied. We secure 1-zero by
adding to Φm,n the conjunct

∀x1(int1(x1)→ (zero1(x1)↔
n−1∧
i=0
¬pi(x1))). (Φ1)

CSL 2016

39:6 Quine’s Fluted Fragment is Non-Elementary

Thus, if a is a 1-integer, A |= zero1[b]⇔ val1(b) = 0. To do the same for 1-predecessor and
1-equality, we proceed as follows. Letting L = 2m−1, we add to Σm,n an (`+1)-ary predicate,
p`i , for all i (0 ≤ i < n) and all ` (0 ≤ ` ≤ L), and we add to Φm,n the corresponding pair of
conjuncts

n−1∧
i=0

L∧
`=0
∀x1(int1(x1) ∧ ±pi(x1)→ ∀x2 · · · ∀x`+1 ± p`i(x1, . . . , x`+1)). (Φ2)

Note that this really is a pair of formulas: the two occurrences of the ± sign must be resolved
in the same way.

Then, for any 1-integer b and any `-tuple c̄ from A,

A |= p`i [b, c̄]⇔ A |= pi[b]. (3)

In effect, the conjuncts (Φ2) append semantically inert arguments to each of the predicates pi.
This technique will be helpful at several points in the sequel, and we employ the convention
that a superscript ` on a predicate letter indicates that the corresponding undecorated
predicate has had ` semantically inert arguments appended to its primary arguments. Note
that p0

i is simply equivalent to pi.
Now we can secure the property 1-equality. For all ` (0 ≤ ` < 2m−2), let ε1,`(x1, . . . , x`+2)

abbreviate the formula:
∧n−1
i=0 (p`+1

i (x1, . . . , x`+2) ↔ pi(x`+2)). We see from (3) that
ε1,`(x1, . . . , x`+2) in effect states that (for x1 and x`+2 1-integers) the values of x1 and x`+2
are identical. We therefore add to Φm,n the conjuncts

2m−2∧
`=0
∀x1(int1(x1)→
∀x2 · · · ∀x`+2(int1(x`+2)→ eq1,`(x1, . . . , x`+2)↔ ε1,`(x1, . . . , x`+2))). (Φ3)

Thus, for any 1-integers b, b′ in A and any `-tuple c̄ from A (0 ≤ ` < 2m − 2), A |=
eq1,`[b, c̄, b′]⇔ val1(b) = val1(b′).

Turning to the property 1-predecessor, assume for the moment that m > 1, so that
the predicates pred1,0 and pred1,1 are both in Σm,n. For 0 ≤ ` ≤ 1, let π1,`(x1, . . . , x`+2)
abbreviate the formula

n−1∧
i=0

([
i−1∧
j=0
¬p`+1

j (x1, . . . , x`+2)→ (p`+1
i (x1, . . . , x`+2)↔ ¬pi(x`+2))]∧

[
i−1∨
j=0

p`+1
j (x1, . . . , x`+2)→ (p`+1

i (x1, . . . , x`+2)↔ pi(x`+2))]).

From our preliminary remarks on the canonical representations of numbers by bit-strings, we
see that π1,`(x1, . . . , x`+2) codes the statement that (for x1 and x`+2 1-integers) the value of
x`+2 is one less than that of x1 mod 2n. We then add to Φm,n the conjuncts

1∧
`=0
∀x1(int1(x1)→
∀x2 · · · ∀x`+2(int1(x`+2)→ (pred1,`(x1, . . . , x`+2)↔ π1,`(x1, . . . , x`+2)))), (Φ4)

securing the property 1-predecessor, as required.
If, on the other hand, m = 1, we proceed in the same way, except that we add only the

conjunct of (Φ4) with index ` = 0; this suffices to satisfy the property 1-predecessor. Observe
that care is required in this case, because Σ1,n does not feature the ternary predicate pred1,1
– indeed, it features no ternary predicates at all.

I. Pratt-Hartmannn, W. Szwast, and L. Tendera 39:7

Finally, to secure 1-covering, we add to Φm,n the conjuncts

∃x1(int1(x1) ∧ zero1(x1)) (Φ5)
∀x1(int1(x1)→ ∃x2(int1(x2) ∧ pred1,0(x1, x2))). (Φ6)

Observe that (Φ6) features only pred1,0, and not pred1,1, and so does not stray outside Σm,n,
even when m = 1.

Inductive case: This case arises only if m ≥ 2. Assume that valk : intAk → [0, t(k, n)− 1]
satisfies the properties of k-harmony, k-zero, k-predecessor, k-covering and k-equality. We
show, by adding appropriate conjuncts to Φm,n, that these properties hold with k replaced
by k + 1.

For (k + 1)-harmony, we add to Φm,n the following pair of conjuncts:

∀x1(intk(x1)→ ∀x2(intk+1(x2) ∧ ±ink(x1, x2)→
∀x3(intk(x3)∧eqk,1(x1, x2, x3)→±outk(x2, x3)))). (Φ7)

If a, a′ are k-integers such that valk(a) = valk(a′), and b is any (k + 1)-integer, then, by
k-equality (IH), A |= eqk,1[a, b, a′], whence (Φ7) evidently secures (k + 1)-harmony.

We remind ourselves at this point of the role of (k + 1)-harmony in the subsequent
argument, and, in particular, on its relationship to k-covering. Let b be a (k + 1)-integer,
and recall that valk+1(b) is defined by b’s satisfaction of the predicates ink in relation to the
various k-integers in A. By k-covering (IH), for all i (0 ≤ i < t(k, n)), there is a k-integer a
with valk(a) = i; and by (k + 1)-harmony (just established), all such k-integers a agree on
what the ith bit in valk+1(b) should be.

To secure (k + 1)-zero, we add to Φm,n the conjunct

∀x1(intk+1(x1)→ (zerok+1(x1)↔ ∀x2(intk(x2)→ ¬outk(x1, x2)))). (Φ8)

From (k + 1)-harmony and (Φ8) we see that, for all (k + 1)-integers b, A |= zerok+1[b] ⇔
(valk+1(b) = 0). For if there were any k-integer a, such that A |= ink[a, b], then we would
have A |= outk[b, a].

Establishing the property (k + 1)-predecessor is more involved. We add to Σm,n binary
predicates in/k, out/k. The idea is that, for any k-integer a and any (k + 1)-integer b:

A |= in/k[a, b]⇔ (for any k-integer a′,valk(a′) < valk(a)⇒ A 6|= ink[a′, b]); (4)
A |= in/k[a, b]⇔ A |= out/k[b, a]. (5)

Condition (4) allows us to read in/k(x1, x2) as “all the bits in the value of the (k + 1)-integer
x2 whose index is less than the value of the k-integer x1 are zero.” Condition (5) is somewhat
analogous to (k + 1)-harmony.

Securing Condition (5) is easy. We add to Φm,n the pair of conjuncts

∀x1(intk(x1)→ ∀x2(intk+1(x2) ∧ ±in/k(x1, x2)→
∀x3(intk(x3)∧eqk,1(x1, x2, x3)→±out/k(x2, x3)))). (Φ9)

For let a be a k-integer and b a (k + 1)-integer. By the property k-equality (IH), A |=
eqk,1[a, b, a], whence (5) follows.

Securing Condition (4) is harder. We first add to Σm,n a binary predicate zero1
k, which

appends one semantically inert argument to the unary predicate zerok. That is, we add to
Φm,n the pair of conjuncts

∀x1(intk(x1)∧±zerok(x1)→∀x2±zero1
k(x1, x2)). (Φ10)

CSL 2016

39:8 Quine’s Fluted Fragment is Non-Elementary

in/k ¬outk, out/k

¬outk
valk(a′) < valk(a∗)

valk(a∗) = valk(a)− 1

predk,1a

b

a∗

Figure 1 Fixing the interpretation of in/
k.

We can then secure (4) by adding to Φm,n the conjunct

∀x1(intk(x1)→
∀x2(intk+1(x2)→ (in/k(x1, x2)↔ (zero1

k(x1, x2)∨
∀x3(intk(x3) ∧ predk,1(x1, x2, x3)→ (out/k(x2, x3) ∧ ¬outk(x2, x3))))))). (Φ11)

To see this, we perform a subsidiary induction on the quantity valk(a). Let a be
any k-integer and b any (k + 1)-integer. For the base case, suppose valk(a) = 0. Then
A |= zerok[a] by the property k-zero (IH), whence A |= zero1

k[a, b] by (Φ10), whence A |=
in/k[a, b] by (Φ11). For the inductive step, suppose that valk(a) > 0; thus, by k-zero again,
A 6|= zerok[a]. Assume first that A |= in/k[a, b]. By k-covering (IH), we may pick some k-integer
a∗ with valk(a∗) = valk(a)− 1. By k-predecessor (IH), setting ` = 1, A |= predk,1[a, b, a∗],
whence, taking x1, x2 and x3 in (Φ11) to be a, b and a∗, respectively, A |= out/k[b, a∗] and
A 6|= outk[b, a∗]. The situation is illustrated in Fig. 1. Applying the subsidiary inductive
hypothesis, it follows from (4) and (5), with a replaced by a∗, that for any k-integer a′
with valk(a′) < valk(a∗), A 6|= ink[a′, b]. Moreover, by (k + 1)-harmony (just established),
A 6|= outk[b, a∗] implies that, for any k-integer a′ with valk(a′) = valk(a∗), A 6|= ink[a′, b].
Thus, for any k-integer a′, valk(a′) < valk(a) ⇒ A 6|= ink[a′, b]. Conversely, suppose that
A 6|= in/k[a, b]. Then, from (Φ11), there exists some k-integer a∗ such that predk,1[a, b, a∗],
but either A 6|= out/k[b, a∗] or A |= outk[b, a∗]. By k-predecessor (IH), again setting ` = 1,
valk(a∗) = valk(a)− 1, and hence, applying the subsidiary inductive hypothesis, (4) and (5)
ensure that, if A 6|= out/k[b, a∗], then, for some k-integer a′ with valk(a′) < valk(a∗) < valk(a),
A |= ink[a′, b]. On the other hand, by k-equality and (k+ 1)-harmony, A |= outk[b, a∗] implies
A |= ink[a∗, b]. Either way, there exists a k-integer a′ such that valk(a′) < valk(a), but
A |= ink[a′, b]. This completes the (subsidiary) induction, and establishes (4).

Having fixed the interpretation of in/k, we proceed to secure the property (k+1)-predecessor.
Assume first that k + 1 < m. We add to Σm,n the predicates in2

k, in3
k, in/k

2, in/k
3 and we add

to Φm,n the conjuncts

1∧
`=0
∀x1(intk(x1)→
∀x2(intk+1(x2) ∧ ±ink(x1, x2)→ ∀x3 · · · ∀x`+4 ± in`+2

k (x1, . . . , x`+4))), (Φ12)

1∧
`=0
∀x1(intk(x1)→

∀x2(intk+1(x2) ∧ ±in/k(x1, x2)→ ∀x3 · · · ∀x`+4 ± in/k
`+2(x1, . . . , x`+4)), (Φ13)

fixing these predicates to be the result of adding either 2 or 3 semantically inert arguments
to ink and in/k, as indicated by the superscripts.

I. Pratt-Hartmannn, W. Szwast, and L. Tendera 39:9

In the sequel, we shall employ a formula denoted %k,0(x1, . . . , x4), which will be of interest
where x1 and x4 are k-integers with equal values, while x2 and x3 are (k + 1)-integers.
Intuitively this formula says: “the valk(x1)th – equivalently, valk(x4)th – digits of x2 and
x3 are as they should be if valk+1(x3) = valk+1(x2) − 1 mod t(k + 1, n).” Similarly, we
shall employ the formula %k,1(x1, . . . , x5) which will be of interest where x1 and x5 are
k-integers with equal values, while x2 and x4 are (k + 1)-integers. Intuitively this formula
says: “the valk(x1)th – equivalently, valk(x5)th – digits of x2 and x4 are as they should be if
valk+1(x4) = valk+1(x2)− 1 mod t(k + 1, n).” Note that, in the latter case, x3 is a dummy
variable. Formally, for 0 ≤ ` ≤ 1, define %k,`(x1, . . . , x`+4) to be the formula

[in/k
`+2(x1, . . . , x`+4)→ (in`+2

k (x1, . . . , x`+4)↔ ¬outk(x`+3, x`+4))] ∧

[¬in/k
`+2(x1, . . . , x`+4)→ (in`+2

k (x1, . . . , x`+4)↔ outk(x`+3, x`+4))].

Suppose that a, a′ are k-integers, b, b′ (k+1)-integers and c̄ an `-tuple of elements. From (Φ12),
A |= in`+4

k [a, b, c̄, b′, a′] ⇔ A |= ink[a, b], and from (Φ13),
A |= in/k

`+2[a, b, c̄, b′, a′]⇔ A |= in/k[a, b]. Furthermore, by (k+1)-harmony, A |= outk[b′, a′]⇔
A |= ink[a′, b′]. Hence, from our preliminary remarks on the canonical representations of
numbers by bit-strings, A |= %k,`[a, b, c̄, b′, a′] just in case the valk(a′)-th digit in the encoding
of valk+1(b′) is the same as the valk(a)-th digit in the encoding of valk+1(b) − 1, modulo
t(k + 1, n).

Now add to Σm,n the ternary predicate predDigk+1,0 and quaternary predicate
predDigk+1,1, and add to Φm,n the conjunct

1∧
`=0
∀x1(intk(x1)→ ∀x2(intk+1(x2)→ ∀x3 · · · ∀x`+3(intk+1(x`+3)→
∀x`+4(intk(x`+4) ∧ eqk,`+2(x1, . . . , x`+4)→

(predDigk+1,`(x2, . . . , x`+4)↔ %k,`(x1, . . . , x`+4))))). (Φ14)

This formula is illustrated in the left-hand diagram of Fig. 2 in the case ` = 1: here, %k,1 holds
of the tuple a, b, c, b′, a, and predDigk+1,1 of the tuple b, c, b′, a, just in case the valk(a)th digit
of valk+1(b′) agrees with the valk(a)th digit of valk+1(b)− 1. (Note that the single element
a is depicted twice in this diagram.) Suppose a is a k-integer, b, b′ are (k + 1)-integers in
A, and c̄ is any `-tuple from A with 0 ≤ ` ≤ 1. By k-equality (IH), A |= eqk,`+2[a, b, c̄, b′, a],
and from the properties of %k,` just established (setting a′ = a), A |= predDigk+1,`[b, c̄, b′, a]
just in case the valk(a)th digit of valk+1(b′) is equal to the valk(a)th digit of valk+1(b)− 1,
modulo t(k + 1, n).

To establish (k + 1)-predecessor, therefore, we add to Φm,n the conjuncts

1∧
`=0
∀x1(intk+1(x1)→ ∀x2 · · · ∀x`+2(intk+1(x`+2)→

(predk+1,`(x1, . . . , x`+2)↔ ∀x`+3(intk(x`+3)→ predDigk+1,`(x1, . . . , x`+3))))). (Φ15)

From (Φ15), A |= predk+1,`[b, c̄, b′] just in case each digit of valk+1(b′) is equal to the
corresponding digit of valk+1(b)− 1, modulo t(k + 1, n).

If, on the other hand, k + 1 = m, we proceed as above, but we add to Σm,n only the
predicates in2

k, in/k
2, predDigk+1,0 (not in3

k, in/k
3 or predDigk+1,1), and we add to Φm,n only

those conjuncts of (Φ12)–(Φ15) with ` = 0 (not with ` = 1). This suffices for (k + 1)-
predecessor in the case k + 1 = m, and does not require the use of any predicates outside
Σm,n.

CSL 2016

39:10 Quine’s Fluted Fragment is Non-Elementary

a

±intk

a

±outk
b

eqk,3, %k,1
c

b′predDigk+1,1

a

±ink

a

±outk
b

eqk,`+2, ±in`+2
k

b′eqDigk+1,`

. . .

Figure 2 Fixing the interpretations of predDigk+1,1 (left) and eqDigk+1,` (right).

To establish the property (k + 1)-covering, we add to Φm,n the conjuncts

∃x1(intk+1(x1) ∧ zerok+1(x1)) (Φ16)
∀x1(intk+1(x1)→ ∃x2(intk+1(x2) ∧ predk+1,0(x1, x2))). (Φ17)

Note that (Φ17) features only predk+1,0, and not predk+1,1, so it is defined even when
k + 1 = m

It remains only to establish (k + 1)-equality. Conceptually, this is rather easier than
(k + 1)-predecessor; however, we do need to consider larger numbers of semantically inert
variables. Let L = 2(m− k − 1). The property (k + 1)-equality concerns the interpretation
of the (` + 2)-ary predicate eqk+1,` for for all ` (0 ≤ ` ≤ L). Observe that, if k = 1 (first
inductive step), then L = 2m− 4, and if k = m− 1 (last inductive step), then L = 0. Thus,
in the sequel, we always have L ≤ 2m− 4. (Remember that the inductive case is encountered
only if m ≥ 2.)

To ease the pain of reading, we split the task into three stages. For the first stage, for all
` (0 ≤ ` ≤ L), add to Σm,n an (`+ 2)-ary predicate in`k, and add to Φm,n the conjuncts

L∧
`=0
∀x1(intk(x1)→
∀x2(intk+1(x2) ∧ ±ink(x1, x2)→ ∀x3 · · · ∀x`+2 ± in`k(x1, x2, . . . , x`+1, x`+2))), (Φ18)

thus fixing in`k to be the result of adding ` semantically inert arguments to in`k. (For ` ≤ 3,
this repeats the work of (Φ12), but no matter.)

In the second stage, for all ` (0 ≤ ` ≤ L), add to Σm,n an (`+ 3)-ary predicate eqDigk+1,`,
and add to Φm,n the conjuncts

L∧
`=0
∀x1(intk(x1)→ ∀x2(intk+1(x2)→ ∀x3 · · · ∀x`+3(intk+1(x`+3)→
∀x`+4(intk(x`+4) ∧ eqk,`+2(x1, . . . , x`+4)→

(eqDigk+1,`(x2, . . . , x`+4)↔ ηk,`+2(x1, . . . , x`+4)))))), (Φ19)

where ηk,`+2(x1, . . . , x`+4) is the formula: in`+2
k (x1, . . . , x`+4)↔ outk(x`+3, x`+4).

Let b, b′ be (k+1)-integers in A, a a k-integer in A, and c̄ any `-tuple from A. We claim that
A |= eqDigk+1,`[b, c̄, b′, a] just in case valk+1(b) and valk+1(b′) agree on their valk(a)th bit. For,
by k-equality (IH), A |= eqk,`+2[a, b, c̄, b′, a]. Hence, by (Φ19) A |= eqDigk+1,`[b, c̄, b′, a] holds
just in case A |= ηk,`+2[a, b, c̄, b′, a]. But, by (Φ18), A |= in`+2

k [a, b, c̄, b′, a] if and only if A |=
ink[a, b], i.e. if and only if the valk(a)th bit of valk+1(b) is 1. That is, A |= eqDigk+1,`[b, c̄, b′, a]
is equivalent to the statement that A |= ink[a, b] if and only if A |= outk[b′, a]. The situation
is illustrated (for the case where A |= eqDigk+1,`[b, c̄, b′, a] holds) in the right-hand diagram
of Fig. 2, where all polarity alternatives ± are assumed to be resolved in the same way.

But, by (k + 1)-harmony, A |= outk[b′, a] if and only if A |= ink[a, b′]. This establishes
the claim.

In the third stage, we add to Φm,n the conjunct

I. Pratt-Hartmannn, W. Szwast, and L. Tendera 39:11

L∧
`=0
∀x1(intk+1(x1)→ ∀x2 · · · ∀x`+2(intk+1(x`+2)→

(eqk+1,`(x1, . . . , x`+2)↔ ∀x`+3(intk(x`+3)→ eqDigk+1,`(x1, . . . , x`+3))))). (Φ20)

Given the properties of eqDigk+1,` just established, this evidently secures (k + 1)-equality,
completing the induction.

We have remarked that, by m-covering, any model of Φm,n has cardinality at least t(m,n).
We claim that Φm,n is satisfiable. Let A = A1∪̇ · · · ∪̇Am, where Ak = {〈k, i〉 | 0 ≤ i <

t(k, n)}〉. (That is, A is the disjoint union of the various sets of integers [0, t(k, n)− 1].) Let
intAk = Ak for all k (1 ≤ k ≤ m), and interpret the other predicates of Σm,n as described. It
is easily verified that A |= Φm,n.

It remains only to check the number of variables featured in Φm,n. Consider first the
conjuncts introduced in the base case. By inspection, (Φ1)–(Φ3) and (Φ5)–(Φ6) are in FL2m.
For m > 1, (Φ4) is in FL3; but if m = 1, only the conjunct with index ` = 0 is present, which
is in FL2. Either way, (Φ1)– (Φ6) are in FL2m. Consider now the conjuncts introduced in
the inductive case. By inspection, these feature only max(5, 2m) ≤ 2m variables. If, however,
m = 2, then the inductive step only runs once, with k + 1 = m, in which case only those
conjuncts of (Φ12)–(Φ15) occur for which ` = 0, which feature only 4 variables. Either way,
(Φ7)–(Φ20) are in FL2m. J

Now that we can enforce m-tuply exponentially large models in FL2m, it is a simple
matter to establish that the satisfiability problem for this fragment is m-NExpTime-hard.
The technique involves the encoding of tiling problems over a grid of m-tuply exponential size
using formulas of FL2m, the coordinates of the various positions in this grid being represented
as pairs of m-integers. The details are roughly analogous to the NExpTime-hardness proof
for the two-variable fragment of first-order logic (see e.g. [2], pp. 253 ff.), and are relegated
to the Appendix.

I Theorem 2. The satisfiability problem for FL2m is m-NExpTime-hard. Hence, the
satisfiability problem for FL is non-elementary.

4 Upper bound

In this section we show that FL is decidable, thus confirming the Purdy’s original article [8].
The strategy adopted here, however, employs a variant of a construction found in the (as we
now know) flawed article [10]. As well as providing m-NExpTime upper complexity bounds
for the sub-fragments FLm for all m ≥ 1, the argument below yields a much shorter and
more perspicuous proof than that given in [8].

The 1-variable fluted fragment, FL1, coincides with the 1-variable fragment of first-order
logic, and so its satisfiability (= finite satisfiability) problem is in NPTime (and hence
certainly in NExpTime). Furthermore, the 2-variable fluted fragment, FL2, is a proper
subset of the 2-variable fragment of first-order logic, whose satisfiability (= finite satisfiability)
problem is known to be in NExpTime [3] (and hence certainly in 2-NExpTime). In the
sequel, therefore, we may confine attention to the case m ≥ 3.

We begin by narrowing the range of fluted formulas we need to consider. An FLm-sentence
Φ is in normal form if it is a conjunction of sentences of the forms:

∀x1∀x2 . . . ∀xk(θ → ∃xk+1ξ) ∀x1∀x2 . . . ∀xk(ϑ→ ∀xk+1ψ),

where 1 ≤ k < m, and θ, ξ, ϑ, ψ are quantifier-free fluted formulas such that θ, ϑ ∈ FL[k],
and ξ, ψ ∈ FL[k+1]. The proof of the following lemma is routine:

CSL 2016

39:12 Quine’s Fluted Fragment is Non-Elementary

u u

p p

a b
p

>

u(x1) u(x1)

α1(x1, x2) α2(x1, x2) α1(x1, x2)

>

u(x1) u(x1)

α1(x1, x2) α2(x1, x2) α1(x1, x2) α1(x1, x2)

Figure 3 A structure A, its characteristic fluted (2,0)-constituent, µ = fcA2 [], depicted as a tree,
and a double-tree formed from µ featuring a duplicated node.

I Lemma 3. Let ϕ be an FLm-sentence over a signature Σ. We can compute, in exponential
time, a disjunction Ψ =

∨
i∈I Ψi of normal form FLm-sentences over a signature Σ′ such

that ϕ is satisfiable over a given domain A if and only if Ψ is satisfiable over A, ‖Ψi‖ =
O(‖ϕ‖ log‖ϕ‖) (i ∈ I) and Σ′ consists of Σ together with some additional predicates of arity
at most m− 1.

We require one or two additional technical preliminaries. An atomic fluted k-type
(over a given signature) is a maximal consistent conjunction of atomic or negated atomic
FL[k]-formulas. For example, over a signature Σ featuring a single unary predicate u and
a single binary predicate p, the formulas α1(x1, x2) = u(x2) ∧ p(x1, x2) and α2(x1, x2) =
u(x2) ∧ ¬p(x1, x2) are atomic fluted 2-types. We take > to be the unique atomic fluted
0-type. Where the signature is clear from context, we denote the set of all atomic fluted
k-types by α(k), and write α =

⋃m
k=0α

(k). Observe that |α(k)| for each k is bounded by
2|Σ|, hence |α| ≤ m · 2|Σ|. For a given Σ-structure A and ā ∈ Ak, we denote by tpA[ā] the
unique atomic fluted k-type t such that A |= t[ā].

We employ an adaptation, to the fluted case, of the familiar notion of Hintikka constituent
(see, e.g. [14]). Again, fix some signature Σ. Define a fluted (m,m)-constituent to be an
atomic fluted m-type. Let k satisfy m > k ≥ 0. Define a fluted (k,m)-constituent to be a
formula

λ = t(x1, . . . , xk) ∧
∧
λ′∈Λ

∃xk+1.λ
′ ∧ ∀xk+1

∨
λ′∈Λ

λ′, (6)

where Λ is some set of fluted (k + 1,m)-constituents, and t an atomic fluted k-type. We
call the elements of Λ the successors of λ, and t the atomic part of λ. Any fluted (k,m)-
constituent λ has a natural representation as a labelled tree, with the children of each node
given by its successors and the label by its atomic part.

We illustrate these notions for the signature Σ considered above, and for the value
m = 2. The fluted (2, 2)-constituents are, by definition, the atomic fluted 2-types. Hence,
the formulas λ1(x1) = u(x1) ∧ ∃x2.α1(x1, x2) ∧ ∃x2.α2(x1, x2) ∧ ∀x2(α1(x1, x2) ∨ α2(x1, x2))
and λ2(x1) = u(x1) ∧ ∃x2.α1(x1, x2) ∧ ∀x2.α1(x1, x2) are fluted (1,2)-constituents. In the
same way, the sentence µ = ∃x1λ1(x1) ∧ ∃x1λ2(x1) ∧ ∀x1(λ1(x1) ∨ λ2(x1)) is a fluted (0,2)-
constituent. The tree corresponding to this fluted (0,2)-constituent is depicted in the middle
diagram of Fig. 3. By elementary combinatorics, one can show that the number of fluted
(k,m)-constituents is bounded by t(m− k + 1, n+m− k), where n = |Σ|.

The following lemma states that, for fixed k and m, the fluted (k,m)-constituents over a
given signature form a partition. The proof proceeds in exactly the same way as for Hintikka
constituents (cf. Theorem 2 in [8] and Theorem 3.10 in [14]).

I Lemma 4. Fix some signature Σ and integers m ≥ k ≥ 0. Denote by Λ the set of fluted
(k,m)-constituents over Σ. Then: (i) |=

∨
Λ; and (ii) |= λ→ ¬µ for all distinct λ, µ ∈ Λ.

I. Pratt-Hartmannn, W. Szwast, and L. Tendera 39:13

It follows that, in any structure A, and for any m, k (m ≥ k ≥ 1), a k-tuple ā from A satisfies
a unique fluted (k,m)-constituent. We denote this fluted (k,m)-constituent by fcAm[ā]. In
the case k = 0, we obtain the fluted (0,m)-constituent fcAm[], which we call the characteristic
fluted (0,m)-constituent of A. The left-hand diagram in Fig. 3 shows a 2-element structure
A over domain {a, b} whose characteristic fluted (0,m)-constituent is the sentence µ in our
example above. Indeed, we see that fcA2 [a] = λ1 and fcA2 [b] = λ2.

Let λ be a fluted (k,m)-constituent. If k > 0, define ϕ← to be the formula obtained
from ϕ by deleting all literals of λ containing x1 and then shifting remaining variables
left, i.e. replacing each variable xi+1 by xi, for i > 1. Thus, continuing the example
of the previous paragraph, we have (removing unnecessarily duplicated conjuncts) λ←1 =
∃x1.u(x1) ∧ ∀x1.u(x1). If, on the other hand, k < m, define λ↑ to be the formula obtained
by removing from λ all literals containing xm and all subformulas starting with a quantifier
binding xm. (If k = m = 1, we take λ← to be >; similarly, if k = 0 and m = 1, we take λ↑
to be >.) The following Lemma is completely routine.

I Lemma 5. Let λ be a fluted (k,m)-constituent. If k > 0, then λ← is a fluted
(k − 1,m − 1)-constituent; if, on the other hand, k < m, then λ↑ is a fluted
(k,m − 1)-constituent. Moreover, if λ = fcAm[] for some Σ-structure A and λ′ is a fluted
(1,m)-constituent that is a successor of λ, then λ′← = λ↑.

By way of motivation, suppose A is a structure, with fcAm[a1, . . . , ak] = λ. If k > 0, then
fcAm−1[a2, . . . , ak] = λ←; likewise, if k < m, then fcAm−1[a1, . . . , ak] = λ↑.

For the purposes of this section it is expedient to view a (finite, non-empty) tree as a
tuple T = 〈V, ε, p〉, where ε ∈ V and p : (V \ {ε})→ V is a function such that, for all v ∈ V ,
p(· · · p(v)) = ε for some finite (possibly zero) number of applications of p. The elements of V
are the nodes of T , ε is the root, and, for every other node v, p(v) is the parent of v. The
number h(v) of applications of p required to reach ε from v is the height of v; thus, h(ε) = 0.
As usual, for a subset X ⊆ V , p[X] denotes the image of X, and p−1[X], the inverse image
of X under p. We write p−1[v] for p−1[{v}] – that is, the children of v. As usual, a leaf of a
tree is a node v with no children, and we say that a tree is uniform if all leaves have the
same height. The height of a uniform tree is the height of any of its leaves.

We now define the main notions for this section. Let Tf = 〈V, ε, f〉 and Tg = 〈V, ε, g〉
be uniform trees of height m sharing the same nodes and root. We say T = 〈V, ε, f, g〉 is a
double tree if the following hold:

for every v ∈ V , f−1[ε] = g−1[ε]; (D1)
for every v ∈ V \ {ε}, if f−1[v] 6= ∅, then g[f−1[v]] = f−1[g(v)]. (D2)

A routine induction shows that, if T = 〈V, ε, f, g〉 is a double tree, then, for all v ∈ V , v has
the same height in the trees 〈V, ε, f〉 and 〈V, ε, g〉. We call this number the height of v in
T, and denote it by h(v). Note that (D2) is, in essence, a confluence condition: if m is the
height of T, then, for any node v (with 1 ≤ h(v) < m) the children of v in Tf map under g
onto the children of u = g(v) in Tf (see Fig. 4).

A moment’s thought shows that not all trees can be made into double trees. This is true,
for example, of the tree depicted in the middle diagram of Fig. 3: the right-hand node labelled
u(x1) has exactly one child and one proper sister, which makes it impossible to satisfy (D2).
On the other hand, by duplicating nodes if necessary, double trees can be created, as shown
in the right-hand diagram of Fig. 3, where the function g is indicated by dashed edges. This
process of transforming trees (specifically, trees depicting characteristic fluted constituents of
structures) into double trees plays a crucial role in the proof of Lemma 7, below.

CSL 2016

39:14 Quine’s Fluted Fragment is Non-Elementary

Let T = 〈V, ε, f, g〉 be a double tree and τ : V → α a function. We say T = 〈V, ε, f, g, τ〉
is an α-double tree if the following conditions hold:

for every v ∈ V , τ(v) ∈ α(k), where k = h(v); (D3)
for every v ∈ V \ {ε}, τ(g(v)) = τ(v)←. (D4)

Thus, in an α-double tree, every node v is labelled with some atomic fluted h(v)-type, α.
Notice that, if h(v) ≥ 1, then g(v) must be labelled with α←.

Before we actually construct any α-double trees, let us first see what we can do with
them. Let ϕ ∈ FLm be a sentence in normal form, and T = 〈V, ε, f, g, τ〉 be an α-double
tree. We say T satisfies ϕ, and write T |= ϕ, when the following conditions hold for
all k < m and for every v ∈ V with h(v) = k: (i) for every conjunct of ϕ of the form
∀x1∀x2 . . . ∀xk(θ → ∃xk+1ξ), if τ(v) |= θ then there is a v′ ∈ f−1[v] such that τ(v′) |= ξ;
and (ii) for every conjunct of ϕ of the form ∀x1∀x2 . . . ∀xk(ϑ→ ∀xk+1ψ), if τ(v) |= ϑ then
for every v′ ∈ f−1[v], τ(v′) |= ψ. Thus, any α-double tree of height m endows any normal
form formula of FLm with a truth-value in a natural way. Observe that, in this definition,
a conjunct of ϕ with variables x1, . . . , xk+1 imposes constraints only on the labels of nodes
with height k and k+ 1. However, conditions (D1)–(D4) on α-double trees ensure that these
constraints affect adjacent pairs of nodes throughout T.

There is a close – though subtle – relationship between α-double trees and models of
normal-form FL-formulas, encapsulated in the following two lemmas.

I Lemma 6. Let ϕ ∈ FLm be in normal form, and suppose T is an α-double tree of height
m, s.t. T |= ϕ. Then there is a model A |= ϕ, with |A| equal to the number of leaves in T.

Proof. Let A be the set of leaves of T. We assign to each node v of T a subset Av ⊆ A

with the property that, for each non-leaf node v, the family {Aw | w a child of v} partitions
A into non-empty subsets, making crucial use of the properties (D1) and (D2) of double
trees. In this way, any k-tuple a1, . . . ak from A is naturally associated with a node v of
height k, namely, that node v with ancestors ε, v1, . . . , vk = v where, for all i (1 ≤ i ≤ k),
ai ∈ Avi . This assignment of sequences to nodes allows us to turn A into a structure A: if
a1, . . . ak is associated with the node v, we set tpA

m[a1, . . . , ak] to be whatever atomic fluted
k-type T labels v with. Using the properties (D3)–(D4), this assignment can be shown to be
consistent, and to result in a structure satisfying ϕ. The details are given below.

Let T = 〈V, ε, f, g, τ〉 be a finite α-double tree satisfying ϕ. We decompose V as a union
of disjoint subsets V =

⋃m
k=0 V

k, where V k (0 ≤ k ≤ h) is the set of nodes of height k. Let A
be the set of leaves of T – this will be the domain of the model A we are going to construct.
First we define two labelling functions d0, d : V 7→ P(A) satisfying the following properties
for each k (0 ≤ k ≤ m):
(i) for every w ∈ Vk, d0(w) 6= ∅ and d0(w) ⊆ d(w),
(ii) if 0 < k then, for every w ∈ V k, d(w) ⊆ d(g(w)),
(iii) d(ε) = A, and if 0 < k, then, for every w ∈ V k, the family {d(w′) | w′ ∈ f−1[f(w)]} is a

partition of A.

We call d(w) the local domain of w and d0(w) the initial local domain of w. We remark that,
in (iii), f−1[f(w)] is the set of (reflexive) siblings of w in Tf .

For each element w ∈ V , we define d0(w) to be the set of leaves in the subtree of Tg
rooted at w. Thus for any w with h(w) ≥ 1,

d0(w) ⊆ d0(g(w)). (7)

I. Pratt-Hartmannn, W. Szwast, and L. Tendera 39:15

ε

level k − 1

level k

level k + 1

v

u
g

w1 w2
. . .

ws

x1 x2
. . .

xr

g

Figure 4 A double tree: v ∈ V k, w1, . . . , ws are f -children of v; x1, . . . , xr are f -children of
u = g(v) and g[{w1, . . . , ws}] = {x1, . . . , xr}.

Now define d(ε) = d0(ε) = A and for each w ∈ V 1, define d(w) = d0(w). This ensures
properties (i)–(iii) for k = 0 and k = 1. The function d is defined for remaining nodes
by induction on the height. Assume properties (i)–(iii) hold for all nodes v ∈ V k, where
1 ≤ k < m; we extend d to nodes w ∈ V k+1 as follows. Consider first any element v ∈ V k:
we proceed to define d(w) for every w ∈ f−1[v]. Remembering that k ≥ 1, let u = g(v).
Condition (D2) in the definition of double trees tells us that g(f−1[v]) = f−1(u); we may
therefore consider the various nodes in x ∈ f−1(u) one by one, defining d(w) for all those
w ∈ f−1[v] such that g(w) = x. Suppose g−1[x] = {w1, . . . , wl}. We define d(w) for each
of these nodes w by starting with the set d0(w), and then distributing the elements of
d(x) \ (d0(w1) ∪ . . . ∪ d0(wl)) among these sets in any way. Property (i) is thus secured
trivially for all these w. From (7), we see that, for each such w, d(w) ⊆ d(x) = d(g(w)), thus
securing (ii). By executing this procedure for all x ∈ f−1[u], we will have defined d(w) for
all w ∈ f−1[v]. From property (iii) applied to level k, the family {d(x) | x ∈ f−1[u]} is a
partition of A, whence the family {d(w) | w ∈ f−1[v]} will be a partition of A, thus securing
property (iii) for all children of v in Tf . Therefore, after considering every v ∈ V of height k,
we obtain properties (i)–(iii) for all elements of V of height k + 1.

We use one more piece of notation: for every v ∈ V define Sv, the sequence domain of
v, to be the set of k-tuples Sv = d(v1)× . . .× d(vk), where ε, v1, . . . , vk = v is the path in
Tf from the root to v. Simple induction using property (iii) of the construction shows that
sequence domains at each level k (0 < k ≤ m) form a partition of Ak:
(iv)

⋃
v∈V k Sv = Ak and, if for some ā ∈ Ak we have ā ∈ Sv and ā ∈ Sw then v = w.

Now we set the interpretation of the predicate letters on A. Namely, for every p ∈ Σ of arity
k, for every v ∈ V with h(v) ≥ k, and for every āb̄ ∈ Sv with |b̄| = k, define:

b̄ ∈ pA iff p(xl+1, . . . , xl+k) ∈ τ(v).

This is well defined. For, suppose in addition that c̄b̄ ∈ Sw for some w ∈ V with h(w) ≥ k.
Let u and x be the ancestors of, respectively, v and w in Tg at level k. By property (ii)
of the d-labelling, b̄ ∈ Su and b̄ ∈ Sx. Now, property (iv) implies u = x. And so applying
repeatedly condition (D4) of the definition of an α-double tree to τ(v) and τ(w) we get:

p(xl+1, . . . , xl+k) ∈ τ(v) iff p(x1, . . . , xk) ∈ τ(u) iff p(xj+1, . . . , xj+k) ∈ τ(w).

It remains to check that A |= ϕ. Observe that for each v ∈ V with v 6= ε Sv is non-empty,
and moreover for each ā ∈ Sv tpA(ā) = τ(v). Since ϕ is in normal form and T satisfies ϕ, it
is obvious that all conjuncts of ϕ are true in A. J

I Lemma 7. Let ϕ ∈ FLm be in normal form, and suppose A |= ϕ. Then there exists a
finite α-double tree satisfying ϕ with the number of leaves bounded by t(m,O(mn)).

CSL 2016

39:16 Quine’s Fluted Fragment is Non-Elementary

Proof. We begin by considering the characteristic fluted (m, 0)-constituent µ = fcAm[]. As
we have seen, µ can be viewed as a tree Tλ = 〈V, f, ε〉. Any node v at level k (0 ≤ k ≤ m)
in Tλ corresponds to a position in the syntax tree of µ defining a fluted (k,m)-constituent
vλ. Note that we may have λv = λw for distinct nodes v, w, because there may be repeated
subformulas. Our task is to make Tλ into an α-double tree satisfying ϕ. We begin by adding
a second parent function g to Tλ satisfying

λ↑g(v) = λ←v for all v ∈ V \ {ε}, (8)

which we now proceed to define.
We start by setting, for every v with height 1, g(v) = f(v) = ε. Note that Lemma 5

implies that for all nodes v with height 1, λ←v = λ↑ε, as required by (8). Now suppose that
g(v) = u has been defined for some node v of height k < m in such a way that (8) holds,
and suppose that w is a child of v, that is: f(w) = v. Thus, λw is simply a subformula of
λv, whence, by (8), λg(v) must have some subformula π such that π↑ = λ←w . Indeed, π is a
fluted (k,m)-constituent. Let x be the child of u (i.e. f(x) = u) such that λx = π. Thus,
λ←w = λ↑x, and we may set g(w) = x. Proceeding in this way, we can define g for all of
V \ {ε} satisfying (8). The resulting construction is illustrated in Fig. 4. Unfortunately, this
construction does not quite ensure (D2); for, while g maps the children (under f) of v to
the children (under f) of g(v), the latter set may not be covered by this mapping. That is,
we have g[f−1[v]] ⊆ f−1[g(v)] rather than the desired g[f−1[v]] = f−1[g(v)]. However, this
matter can be rectified by creating duplicates of the children of v which are then free to be
mapped to any children of g(v) not yet accounted for (c.f. Fig. 3).

To make this construction precise we need one more notion. Let k satisfy 0 < k < m.
A fluted (k,m)-semi-constituent is defined in the same way as a fluted (k,m)-constituent
via the recursion in (6), except that Λ is now a finite multiset (rather than set) of fluted
(k + 1,m)-semi-constituents. In other words, fluted semi-constituents are just like fluted
constituents, with the difference that repeated successors are allowed. Let η and ζ be fluted
(k,m)-semi-constituents. We write η ≈ ζ if, after removing repeated successors from η and ζ
(at all levels in the recursion), the same fluted (k,m)-constituent is obtained. We represent
fluted semi-constituents as trees, just as we do fluted constituents; moreover, the operations
← and ↑ on fluted constituents are extended to fluted semi-constituents in the obvious way.

Now, we are ready to give the details. To define the function g in Tλ, we start as
mentioned above by setting, for every w ∈ V 1, g(w) = f(w) = ε. For nodes w ∈ V with
h(w) > 1, we define g(w) assuming that g(f(w)) has already been defined and that the
following condition holds for v = f(w)

λ↑g(v) ≈ λ
←
v . (9)

The basic step, for a single node w, is performed as follows.

Define g(w): suppose v = f(w) and (9) holds for v. Since λw is a successor of λv
there exists at least one conjunct η of λg(v) such that η↑ ≈ λ←w . So we may pick a
node x such that λx = η and we set g(w) = x.

Observe that after defining g(w) as above we have λ↑g(w) ≈ λ←w . So, we may extend the
definition of g to a complete f -subtree Tf (w) of w, traversing the subtree level by level. This
is performed as follows.

Complete(g, Tf (w)): suppose v = f(w) and (9) holds for v.
Let z1 . . . , zr be all the nodes of Tf (w), excluding the root, ordered so that nodes

I. Pratt-Hartmannn, W. Szwast, and L. Tendera 39:17

level k − 1

level k

level k + 1

level m− 1

level m
λw λxλw′

λ↑x

u

w w′

v xx0

g

Figure 5 Covering x with respect to v: solid lines correspond to f and dashed lines – to g.
λ←w ≈ λ↑x and λw′ is a copy of λw.

on lower levels appear before nodes on higher levels (e.g. according to breadth-first
search). For every i (0 ≤ i ≤ r) call Define(g(zi)).

Now, we are ready to extend the definition of g to all nodes of V by calling the above
procedure for every node w ∈ V 1. Denote the resulting tree by T = 〈V, ε, f, g, τ〉. Evidently,
in T the following properties hold for every k (0 ≤ k ≤ m)
(i) if k > 0, then for all w ∈ V k, λ↑g(w) ≈ λ

←
w ,

(ii) if 0 < k < m then, for every w ∈ V k, g[f−1[w]] ⊆ f−1[g(w)].

In the required α-double tree to ensure (D2) the inclusions in condition (ii) are supposed to
become equalities. This requires one more operation.

Suppose x and v are two nodes such that g(v) = f(x) (refer to Figure 5). Suppose there
is no node w such that f(w) = v and g(w) = x. We then proceed as follows.

Covering x with respect to v: suppose x ∈ V , 1 ≤ h(x) < m, g(v) = f(x) = u, and
g−1[x] = ∅, where h(x) is the height of x in the f -tree. By (i), λ↑u ≈ λ←v . So, there is
a conjunct η in λv such that η← ≈ λ↑x. Pick a node w such that f(w) = v and λw = η.
Add to v a copy Tw′ of the f -tree Tw. (We remind the reader that this is equivalent
to add to λv a copy of the conjunct λw.) Define g(w′) = x and run the procedure
Complete(g, Tf (w′)).

We note that the above operation maintains conditions (i)–(ii).
Now, we proceed on all nodes of the tree constructed, level by level, covering all the

nodes x such that h(x) < m with respect to all nodes v such that g(v) = f(x). Denote the
resulting tree by T and the set of nodes of T by V.

Evidently, T is an α-double tree. Moreover, since we have added only identical conjuncts
to T , T also satisfies ϕ.

It remains to estimate the number of leaves in T. Let C(k,m) be the number of fluted
(k,m)-constituents and let N(k) be the maximal number of children of a node v ∈ V with
h(v) = k. By elementary combinatorics, one can show that C(k,m) ≤ t(m−k+1, n+m−k),
where n = |Σ|. We have N(0) = C(1,m), N(1) ≤ C(2,m) + C(1,m), and N(m − 1) ≤
C(m,m) + . . . + C(1,m) ≤ m · C(1,m). Hence, the number of leaves in T is bounded by
(m · C(m− 1))m, which is bounded by t(m,O(mn)). J

Lemmas 3, 6 and 7 instantly imply the main theorem of this section:

CSL 2016

39:18 Quine’s Fluted Fragment is Non-Elementary

I Theorem 8. FL has the finite model property. Moreover, the satisfiability problem for
FLm is in m-NExpTime.

Discussion

When restricting attention to FL with a fixed number of variables, the upper complexity
bounds given in Theorem 8 are not tight, even for FL1. As mentioned earlier, the 1-variable
fluted fragment, FL1, coincides with the 1-variable fragment of first-order logic, and so its
satisfiability problem is NPTime-complete (that is: 0-NExpTime-complete). Furthermore,
the 2-variable fluted fragment, FL2, is a proper subset of the 2-variable fragment of first-order
logic, whose satisfiability (= finite satisfiability) problem is known to be in NExpTime. Hence,
setting m = 1 in Theorem 2, the satisfiability problem for FL2 is NExpTime-complete. By
considering more closely the normal forms yielded by Lemma 3 and using a more complicated
construction, the present authors have been able to strengthen Theorem 8 to show that, for
m ≥ 3, FLm is in fact in (m− 2)-NExpTime. Together with Theorem 2, this implies that
FL3 is NExpTime-complete and FL4 is 2-NExpTime-complete. However, the additional
gain in the upper complexity-bound is purchased at the cost of a less perspicuous proof, and
anyway fails to close the gap with the lower complexity-bounds for FLm when m ≥ 5.

References
1 H. Andréka, J. van Benthem, and I. Németi. Modal languages and bounded fragments of

predicate logic. Journal of Philosophical Logic, 27(3):217–274, 1998.
2 E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Springer, 1997.
3 E. Grädel, P. Kolaitis, and M. Vardi. On the decision problem for two-variable first-order

logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.
4 U. Hustadt, R. Schmidt, and L. Georgieva. A survey of decidable first-order fragments and

description logics. Journal of Relational Methods in Computer Science, 1(3):251–276, 2004.
5 C. Lutz and U. Sattler. The complexity of reasoning with Boolean modal logics. In

F. Wolter, H. Wansing, M. de Rijke, and M. Zakharyaschev, editors, Advances in Modal
Logic, volume 3, pages 1–20, Menlo Park, 2001. CLSI Publications.

6 A. Noah. Predicate-functors and the limits of decidability in logic. Notre Dame Journal of
Formal Logic, 21(4):701–707, 1980.

7 W. C. Purdy. Decidability of fluted logic with indentity. Notre Dame Journal of Formal
Logic, 37(1):84–104, 1996.

8 W. C. Purdy. Fluted formulas and the limits of decidability. Journal of Symbolic Logic,
61(2):608–620, 1996.

9 W. C. Purdy. Quine’s limits of decision. Journal of Symbolic Logic, 64(4):1439–1466, 1999.
10 W. C. Purdy. Complexity and nicety of fluted logic. Studia Logica, 71:177–198, 2002.
11 W. V. Quine. On the limits of decision. In Proceedings of the 14th International Congress

of Philosophy, volume III, pages 57–62. University of Vienna, 1969.
12 W. V. Quine. Algebraic logic and predicate functors. In The Ways of Paradox, pages

283–307. Harvard University Press, revised and enlarged edition, 1976.
13 W. V. Quine. The variable. In The Ways of Paradox, pages 272–282. Harvard University

Press, revised and enlarged edition, 1976.
14 V. Rantala. Constituents. In R. Bogdan, editor, Jaakko Hintikka, volume 8 of Profiles,

pages 43–76. Springer Netherlands, 1987.
15 R. Schmidt and U. Hustadt. A resolution decision procedure for fluted logic. In D. Mc-

Allester, editor, Proceedings, CADE, number 1831 in LNAI, pages 433–448. Springer-Verlag,
2000.

I. Pratt-Hartmannn, W. Szwast, and L. Tendera 39:19

5 Appendix

Proof of Theorem 2. If m = 1, the result may be obtained by simple adaptation of the
familiar proof that the satisfiability problem for the two-variable (non-fluted) fragment of
first-order logic is NExpTime-hard [2, pp. 253, ff.]. We therefore assume in the sequel that
m ≥ 2. This avoids a tedious special case.

We employ the apparatus of tiling systems. A tiling system is a triple 〈C,H, V 〉, where C is
a non-empty, finite set and H, V are binary relations on C. The elements of C are referred to
as colours, and the relations H and V as the horizontal and vertical constraints, respectively.
For any integer N , a tiling for 〈C,H, V 〉 of size N is a function f : {0, . . . , N − 1}2 → C

such that, for all i, j (0 ≤ i, j < N), the pair 〈f(i, j), f(i + 1, j)〉 is in H and the pair
〈f(i, j), f(i, j + 1)〉 is in V , with addition in arguments taken to be modulo N . A tiling of
size N is to be pictured as a colouring of an N ×N toroidal grid by the colours in C; the
horizontal constraints H thus specify which colours may appear ‘to the right of’ which other
colours; the vertical constraints V likewise specify which colours may appear ‘above’ which
other colours. An n-tuple c̄ of elements of C is an initial configuration for the tiling f if
c̄ = f(0, 0), . . . , f(n − 1, 0). An initial configuration for f is to be pictured as a row of n
colours occupying the ‘bottom left-hand’ corner of the grid.

The m-tuply exponential tiling problem for a tiling system (C,H, V) is the following
problem: given an n-tuple c̄ from C, determine whether there exists a tiling for (C,H, V)
of size t(m,n) with initial configuration c̄. Because of the close connection between runs of
Turing machines and solutions of tiling systems, it is straightforward to see that there exist
tiling systems for which the m-tuply exponential tiling problem is m-NExpTime-complete.

Let (C,H, V) be a tiling system and m ≥ 2. We construct, for any n-tuple c̄ from C, a
formula Φc̄ over a signature Σc̄, with the property that there exists a tiling for (C,H, V) of
size t(m,n) with initial configuration c̄ if and only if Φc̄ is satisfiable. For ease of reading, we
add predicates to Σc̄ as they are encountered, and we specify the conjuncts of Φc̄ as and
when they are required in the course of the reduction.

We begin by setting Σc̄ to be the signature Σm,n from Theorem 1, and we add to Φc̄ all
the conjuncts of Φm,n. In fact, it is the predicates established in the penultimate stage of the
induction that interest us here. Specifically, in any model of Φc̄, we have a valuation function
valm−1 defined on (m− 1)-integers with values in the range [1, t(m− 1, n)], and satisfying
the properties (m− 1)-harmony, (m− 1)-zero, (m− 1)-predecessor, (m− 1)-covering and
(m− 1)-equality. Using these predicates, we construct objects that may be thought of as, in
essence, pairs of m-integers.

We start by adding to Σc̄ the unary predicate vtx and the binary predicates inX and
inY . If a structure A is clear from context, we call any element of A satisfying vtx a vertex.
Define the function valX : vtxA → [0, t(m,n)− 1] by setting valX(b), for any vertex b, to be
the integer with canonical representation sN−1, . . . , s0 of length N = t(m− 1, n) where, for
all i (0 ≤ i < N),

si =


1 if A |= inX [a, b] for some (m− 1)-integer a such that

valm−1(a) = i;
0 otherwise.

Think of valX(b) as the horizontal coordinate of b. The vertical coordinate of b, valY (b) is
defined similarly, using the binary predicates inY . We rely on (m − 1)-covering to ensure
that, for any i in the range [0, t(m− 1, n)− 1], there is an (m− 1)-integer having any value

CSL 2016

39:20 Quine’s Fluted Fragment is Non-Elementary

i; and below we establish harmony-like properties showing that it does not matter which
such (m− 1)-integer we choose, if there are many.

Add to Σc̄ the binary predicates outX , outY , eqX , eqY predX and predY . Using D to
stand for either of the letters X or Y , add to Φc̄ conjuncts ensuring the following properties
D-harmony: For all vertices b and all (m − 1)-integers a, a′ in A such that valm−1(a) =

valm−1(a′), A |= inD[a, b]⇔ A |= outD[a′, b].
D-zero: For all vertices b in A, A |= zeroD[a]⇔ valD(b) = 0.
D-equality: For all vertices b, b′ in A, A |= eqD[b, b′]⇔ valD(b) = valD(b′).
D-predecessor: For all vertices b, b′ in A, A |= predD[b, b′]⇔ valD(b′) = valD(b)− 1 modulo

t(m,n).

The conjuncts in question are trivial adaptations of those used in the proof of Theorem 1
to establish m-harmony m-zero, m-equality and m-predecessor. All require at most 2m
variables.

The following conjuncts of Φc̄ now establish that, for all pairs of integers i, j in the range
[0, t(m,n)− 1], there exists a vertex a with coordinates (i, j):

∃x1(vtx(x1) ∧ zeroX(x1) ∧ zeroY (x1))
∀x1(vtx(x1)→∃x2(vtx(x2)∧predY (x1, x2)∧eqX(x1, x2)))
∀x1(vtx(x1)→∃x2(vtx(x2)∧predX(x1, x2)∧eqY (x1, x2))).

Note that there is no requirement that vertices be uniquely defined by their horizontal and
vertical coordinates.

Treating each colour in C as a unary predicate in Σc̄, we colour each vertex uniquely by
adding to Φc̄ the conjunct

∀x1(vtx(x1)→
(∨
c∈C

c(x1)
)
∧

c6=d∧
c,d∈C

¬(c(x1) ∧ d(x1))).

To obtain a well-defined grid-colouring, we wish models of Φc̄ to satisfy the following property.
chromatic harmony: For all vertices b and b′ such that valX(b) = valX(b′) and valY (b) =

valY (b′), and for all colours c ∈ C, A |= c[b]⇔ A |= c[b′].
And this we ensure by adding to Φc̄ the conjunct

∀x1(vtx(x1) ∧ c(x1)→ ∀x2(vtx(x2) ∧ eqX(x1, x2) ∧ eqY (x1, x2)→ c(x2))).

Thus, any model of Φc̄ defines a colouring of the t(m,n)× t(m,n) toroidal grid. To ensure
that this colouring is a tiling for (C,H, V), we simply add to Φc̄ the conjuncts∧

(c,d)6∈H

∀x1(vtx(x1) ∧ d(x1)→ ∀x2(vtx(x2)∧predX(x1, x2)∧eqY (x1, x2)→¬c(x2)))

∧
(c,d)6∈V

∀x1(vtx(x1) ∧ d(x1)→ ∀x2(vtx(x2)∧predY (x1, x2)∧eqX(x1, x2)→¬c(x2))).

Finally, we need to ensure that c̄ is written in the bottom left configuration. But this is
routine. If c0 is the initial element of c̄, we write

∃x1(vtx(x1) ∧ zeroX(x1) ∧ zeroY (x1) ∧ c0(x1)).

thus setting the ‘bottom left’ tile to have colour c0. The remaining elements of c̄ may be
easily set using the predicates predDigX and eqY . This completes the construction of Φc̄.

I. Pratt-Hartmannn, W. Szwast, and L. Tendera 39:21

We have shown that, if Φc̄ is satisfiable, then the t(m,n)× t(m,n)-grid colouring problem
(C,H, V) has a solution. Conversely, a simple check shows that, if t(m,n) × t(m,n)-grid
colouring problem (C,H, V) has a solution, then by interpreting the predicates involved in
Φc̄ as suggested above, we obtain a model of Φc̄. This completes the reduction. It is evident
that, for fixed (C,H, V) and m, this reduction runs in time polynomially bounded by the
length of c̄. J

CSL 2016

	Introduction
	Preliminaries
	Lower bound
	Upper bound
	Appendix

