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—— Abstract

We prove a completeness result for Multiplicative Exponential Linear Logic (MELL): we show
that the relational model is injective for MELL proof-nets, i.e. the equality between MELL proof-
nets in the relational model is exactly axiomatized by cut-elimination.
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1 Introduction

In the seminal paper by Harvey Friedman [11], it has been shown that equality between
simply-typed lambda terms in the full typed structure M x over an infinite set X is completely
axiomatized by 8 and n: we have Mx F v = u & v ~g, u. A natural problem is to know
whether a similar result could be obtained for Linear Logic.

Such a result can be seen as a “separation” theorem. To obtain such separation theorems,
it is a prerequesite to have a “canonical” syntax. When Jean-Yves Girard introduced Linear
Logic (LL) [12], he not only introduced a sequent calculus system but also “proof-nets”.
Indeed, as for LJ and LK (sequent calculus systems for intuitionnistic and classical logic,
respectively), different proofs in LL sequent calculus can represent “morally” the same proof:
proof-nets were introduced to find a unique representative for these proofs.

The technology of proof-nets was completely satisfactory for the multiplicative fragment
without units.! For proof-nets having additives, contractions or weakenings, it was easy to
exhibit different proof-nets that should be identified. Despite some flaws, the discovery of
proof-nets was striking. In particular, Vincent Danos proved by syntactical means in [3]
the confluence of these proof-nets for the Multiplicative Exponential Linear Logic fragment
(MELL). For additives, the problem to have a satisfactory notion of proof-net has been
addressed in [15]. For MELL, a “new syntax” was introduced in [4]. In the original syntax,
the following properties of the weakening and of the contraction did not hold:

the associativity of the contraction;

the neutrality of the weakening for the contraction;

the contraction and the weakening as morphisms of coalgebras.

But they hold in the new syntax; at least for MELL, we got a syntax that was a good
candidate to deserve to be considered as being “canonical”. Then trying to prove that any two

! For the multiplicative fragment with units, it has been recently shown [14] that, in some sense, no
satisfactory notion of proof-net can exist. Our proof-nets have no jump, so they identify too many
sequent calculus proofs, but not more than the relational semantics.
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(n-expanded) MELL proof-nets that are equal in some denotational semantics are /3-joinable
has become sensible and had at least the two following motivations:

to prove the canonicity of the “new syntax” (if we quotient more normal proof-nets, then

we would identify proof-nets having different semantics);

to prove by semantics means the confluence (if a proof-net reduces to two cut-free

proof-nets, then they have the same semantics, so they would be S-joinable, hence equal).
The problem of injectivity? of the denotational semantics for MELL, which is the question
whether equality in the denotational semantics between (n-expanded) MELL proof-nets is
exactly axiomatized by cut-elimination or not, can be seen as a study of the separation
property with a semantic approach. The first work on the study of this property in the
framework of proof-nets is [16] where the authors deal with the translation into LL of the pure
A-calculus; it has been studied more recently for the intuitionistic multiplicative fragment of
LL [17] and for differential nets [18]. For Parigot’s Au-calculus, see [5] and [22].

Finally the precise problem of injectivity for MELL has been adressed by Lorenzo Tortora
de Falco in his PhD thesis [23] and in [24] for the (multiset based) coherence semantics
and the multiset based relational semantics. He gave partial results and counter-examples
for the coherence semantics: the (multiset based) coherence semantics is not injective for
MELL. Also, it was conjectured that the relational model is injective for MELL. We prove
the conjecture in the present paper.

In [24], a proof of the injectivity of the relational model is given for a weak fragment.
But despite many efforts ([23], [24], [1], [19], [18], [20]...), all the attempts to prove the
conjecture failed up to now. New progress was made in [9], where it has been proved that the
relational semantics is injective for “connected” MELL proof-nets. Still, there, “connected”
is understood as a very strong assumption, the set of “connected” MELL proof-nets contains
the fragment of MELL defined by removing weakenings and units. Actually [9] proved a
much stronger result: in the full MELL fragment two proof-nets R and R’ with the same
interpretation are the same “up to the connections between the doors of exponential boxes”
(we say that they have the same LPS? — see Figures 8, 9 and 10 for an example of three
different proof-nets having the same LPS). We wrote: “This result can be expressed in
terms of differential nets: two cut-free proof-nets with different LPS have different Taylor
expansions. We also believe this work is an essential step towards the proof of the full
conjecture.” Despite the fact we obtained a very interesting result about all the proof-nets
(i.e. also for non-“connected” proof-nets?), the last sentence was a bit too optimistic, since,
in the present paper, which presents a proof of the full conjecture, we could not use any
previous result nor any previous technique/idea.

The result of the present paper can be seen as

a semantic separation property in the sense of [11];

a semantic proof of the confluence property;

a proof of the “canonicity” of the new syntax of MELL proof-nets;

a proof of the fact that if the Taylor expansions of two cut-free MELL proof-nets into

differential nets® [10] coincide, then the two proof-nets coincide.

The tradition of the lambda-calculus community rather suggests the word “completeness” and the
terminology of category theory rather suggets the word “faithfulness”, but we follow here the tradition
of the Linear Logic community.

The LPS of a proof-net is the graph obtained by forgetting the outline of the boxes but keeping the
auxiliary doors.

and even adding the MIX rule

Differential proof-nets are linear approximations of proof-nets that are meant to allow the expression of
the Taylor expansion of proof-nets as infinite series of their linear approximations.
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Let us give one more interpretation of its signifance. First, notice that a proof of this
result should consist in showing that, given two non B-equivalent proof-nets R and R’, their
respective semantics [R] and [R'] are not equal, i.e. [R] \ [R'] # 0 or [R'] \ [R] # 0.° But,
actually, we prove something much stronger: we prove that, given a proof-net R, there exist
two points a and 3 such that, for any proof-net R’, we have {«, 8} C [R'] © R~ R'.

Now, the points of the relational model can be seen as non-idempotent intersection types”
(see [6] and [7] for a correspondance between points of the relational model and System R —
System R has also been studied recently in [2]). And the proof given in the present paper
uses the types only to derive the normalization property; actually we prove the injectivity for
cut-free proof-nets in an untyped framework:® substituting the assumption that proof-nets
are typed by the assumption that proof-nets are normalizable does not change anything to the
proof.” In [8], we gave a semantic characterization of normalizable untyped proof-nets and we
characterized “head-normalizable” proof-nets as proof-nets having a non-empty interpretation
in the relational semantics. Principal typings in untyped A-calculus are intersection types
which allow to recover all the intersection types of some term. If, for instance, we consider
the System R of [6] and [7], it is enough to consider some injective 1-point'® to obtain the
principal typing of an untyped A-term. But, generally, for normalizable MELL proof-nets,
injective k-points, for any k, are not principal typings; indeed, two cut-free MELL proof-nets
having the same LPS have the same injective k-points for any k € N. In the current paper we
show that a 1-point and a k-heterogeneous point'! together allow to recover the interpretation
of any normalizable MELL proof-net. So, the result of the current paper can be seen as a
first attempt to find a right notion of “principal typing” of intersection types in Linear Logic.
As a consequence, normalization by evaluation, as in [21] for A-calculus, finally becomes
possible in Linear Logic too.

Section 2 formalizes PS’s (our cut-free proof-nets). Section 3 gives a sketch of our
algorithm leading from [R] to the rebuilding of R. Section 4 describes more precisely one
step of the algorithm and states our theorem (Theorem 40): [R] = [R'] & R ~3 R’, where
o3 is the reflexive symmetric transitive closure of the cut-elimination relation.

» Notations. We denote by e the empty sequence. If a is a sequence (aq, ..., a,), then ag : a
denotes the sequence (ap, ..., a,); otherwise, it denotes the sequence («, a) of length 2. The
set of finite sequences of elements of some set £ is denoted by £<%°.

A multiset f of elements of some set £ is a function & — N; we denote by Supp(f) the
support of f i.e. the set {e € &; f(e) # 0}. A multiset f is said to be finite if Supp(f) is finite.
The set of finite multisets of elements of some set £ is denoted by Mg, (E).

The converse, i.e. two [S-equivalent proof-nets have the same semantics, holds by definition of soundness.

Idempotency of intersection (o N a = «) does not hold.

For cut-free proof-nets, types guarantee that they are not cyclic as graphs — instead of typing, it is

enough to assume this property. Our proof even works for “non-correct” proof-structures (correctness is

the property characterizing nets corresponding in a typed framework with proofs in sequent calculus):

we could expect that if the injectivity of the relational semantics holds for proof-nets corresponding

with MELL sequent calculus, then it still holds for proof-nets corresponding with MELL+MIX sequent

calculus, since the category Rel of sets and relations is a compact closed category. [13] assuming

correctness substituted in the proof the “bridges” of [9] by “empires”.

Except that we have to consider the atomic subset of the interpretation instead of the full interpretation

(see Remark 6).

10 An injective k-point is a point in which all the positive multisets have cardinality k& and in which each
atom occurring in it occurs exactly twice.

1 & _heterogeneous points are points in which every positive multiset has cardinality k7 for some j > 0 and,

for any j > 0, there is at most one occurrence of a positive multiset having cardinality k? — they are

obtained by k-heterogeneous experiments (see our Definition 12). The terminology “k-heterogeneous”

has been suggested to us by some reviewer to substitute the expression “k-injective”.
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If fis a function & — &', 29 € £ and y € &', then we denote by f[z — y] the function
f(ﬂj’) fo 7é Toy

! —
E — & defined by flxg — y](x) = { ) i = 0,
&y C dom(f) =&, then we denote by f[&] the set {f(x);z € &}

If f is a function & — &’ and

2 Syntax

We introduce the syntactical objects we are interested in. As recalled in the introduction,
simple types guarantee normalization, so we can limit ourselves to nets without any cut.
Correctness does not play any role, that is why we do not restrict our nets to be correct and
we rather consider proof-structures (PS’s). Since our proof is easily extended to MELL with
axioms, we remove them for simplicity. Moreover, since it is convenient to represent formally
our proof using differential nets with boxes (differential PS’s), we define PS’s as differential
PS’s satisfying some conditions (Definition 4). More generally, differential o-PS’s are defined
by induction on the depth: Definition 1 concerns what happens at depth 0.

We define the set T of types as follows: T ::=1| L|(T®T)|(T®T)|!T|?T. We set T =
{®, ®,1,1,!,7 o}. Pre-contractions (o-ports) are an artefact of our inductive definition on
the depth and are used to ensure the canonicity of our syntactical objects (see Example 6).

» Definition 1. A differential ground-structure is a 6-tuple G = W, P,1,t, L, T), where
P is a finite set; the elements of P(G) are the ports of G;
l is a function P — T;the element I(p) of ¥ is the label of p in G;
W is a subset of {p € P;l(p) # o}; the elements of W(G) are the wires of G;
t is a function W — {p € P;I(p) ¢ {1, L}} such that, for any port p of G, we have (I(p) €
{®, B} = Card ({w € W;t(w) = p}) = 2); if t(w) = p, then w is a premise of p; the arity
ag(p) of p is the number of its premises;
L is a subset of {w € W;l(¢t(w)) € {®,®}} such that (Vp € P) (I(p) € {®,3} =
Card {w € L;t(w) =p}) = 1); if w € L s.t. t(w) = p, then w is the left premise of p;
and T is a function P — T such that, for any p € P,
if i(p) € {1, L}, then T(p) = I(p);
if I(p) = ® (resp. I(p) = %), then, for any w; € WN L and any wy € W\ L such that
t(wy) = p = t(wz), we have T(p) = (T(w1) ® T(wz)) (resp. T(p) = (T(w1) & T(wz)));
it i(p) =1, then (3C € T)(T(p) =1C A (Vw e W)(t(w) =p = T(w) = C));
and if I(p) € {0, 7}, then (3C € T)(T(p) = 7C A (Vw € W) (t(w) = p = T(w) = C)).
We set W(G) =W, P(G) =P, lg =1,tg =t, L(G) = L, Tg = T. The set P(G) =P\ W
is the set of conclusions of G. For any t € T, we set P(G) = {p € P;l(p) = t}; we set
P™G) = P%(G)UP?(G); the set P4(G) of exponential ports of G is P(G) UP*(G) UP°(G).
A ground-structure is a differential ground-structure G s.t. im(tg) N (P'(G) UP°(G)) = 0.

Notice that, for any differential ground-structure G, we have P°(G) C Pf(G).

» Example 2. The ground-structure G defined by: W(G) = {ps, p4, p5}; P(G) = {p1,--.,D5};
lg(p1) = L, lg(p2) = B, lg(ps) = 7 = lg(pa), lg(ps) = 1;

to(ps) = p2 = ta(pa), ta(ps) = pas £(G) = {ps}; and Tg(p1) = L, T(ps) = (713 71),
Tg(ps) =71 = Tg(pa), Tg(ps) = 1; is the ground-structure of the content of the box o; of R
(the leftmost box of Figure 1).

The content of every box of our differential o-PS’s is a o-PS: every !-port inside is always
the main door of some box.
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Figure 1 PS R.

» Definition 3. For any d € N, we define, by induction on d, the set of differential o-PS’s of
depth d (resp. the set of 0-PS’s of depth d). A differential o-PS of depth d (resp. a o-PS of
depth d) is a 4-tuple S = (G, By, B,b), where
G is a differential ground-structure (resp. a ground-structure);
By C {p € P(G); ag(p) = 0} (resp. By = P'(G)) and is the set of bozes of S at depth 0;
B is a function that associates with every o € By a o-PS B(o) = (G(B(0)), Bo(B(0)),
Bg(o), bp(o)) of depth < d that enjoys the following property: if d > 0, then there exists
0 € By s.t. B(0) is a o-PS of depth d — 1; the !-port o is the main door of the box B(o);
and b is a function that associates with every o € By a function b(0) : Pf(G(B(0))) —
{o} UP?(G) UP°(G) such that (resp. P°(G) € U, ez, im(b(0)) and), for any o € By,
(0)|po(g(B(o))) 18 injective'? (resp.'® b(o (0)|po(g(Bloy)) = iPo(G(B(o)))); if ¢ = bo)(p)
with p € P°(G(B(0))), then we set gs,, = p;
o € im(b(0)) and b(0)[P°(G(B(0)))] N P'(G) = ;
for any p € dom(b(0)) N P°(G(Br(0))), we have Tg(b(0)(p)) = Tg(5(0)) (P);
for any p € dom(b(0))
(resp. moreover no p € P(G) is a sequence)'*. For any differential o-PS S = (G, By, B, b),
we set G(S) = G, Bo(S) = By and B(S) = Bo(S) U U,ep,syfo: 050" € B(Bs(o))} is
the set of boxes of S. We denote by Bg the extension of the function B that associates
with each o:0" € B(S), where o € By(S), the o-PS Bp (o). We denote by bs the
extension of the function b that associates with each o: o' € B(S), where o € By(S), the
function b (o) (o). We set Wo(S) = W(G(S)) and Py(S) = P(G(S)); the elements of Py(S)
(resp. of Wy(S)) are the ports of S at depth O (resp. the wires of S at depth 0). For any
1 € TU{m,e}, we set P5(S) = PYG(9)). We set PF(S) = PHG(S)), PL(S) = P°(G(S)) and
PE(S) = PH(S) \ Pf(S); the elements of Pf(S) are the conclusions of S and the elements of
PE(S) are the o-conclusions of S. For any relation P € {>,=,<} on N, for any i € N, we
set BY(S) = {0 € By(S); depth(Bs(0))Pi} and BY(S) = {o € B(S); depth(Bs(0))Pi}.

PS’s are the MELL proof-nets studied in the present paper: there is no cut and no
assumption of correctness property.

» Definition 4. A PS is a o-PS R such that Pf(R) = 0.

» Example 5. Consider the PS R of Figure 1. We have By(R) = {01, 02,03,04}, B(R) = {01,
02, 03, 04, (025 0)7 (OQa 0/)7 (0470)7 (04701)}5 BZO(R) = {Ola (027 0)7 (0270l)a 03, (O4a 0)’ (0470/)}'
We have br(02)(0) = ps, br(02)(ps) = pa, br(02)(ps) = pe and br(02)(0") = p7.

1236 one cannot (pre-)contract several o-ports of the same box.
13 This stronger condition on o-PS’s is ad hoc, but it allows to lighten the notations.
1 This condition on o-PS’s is ad hoc, but it allows to simplify Definition 14.

41:5

)
\P?(G(Br(0))), we have Tg(b(0)(p)) € {"Tg(5(0))(P): ' Tg(B0) (P)};

CSL 2016



41:6

The Relational Model Is Injective for Multiplicative Exponential Linear Logic
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» Example 6. In order to understand the role of the o-ports, consider how the proof-nets O
(Figure 2) and O, (Figure 3) in the “old syntax” (we denoted derelictions, contractions and
auxiliary doors of the “old syntax” by d, ¢ and a, respectively) are represented by the same
PS N (Figure 4). Roughly speaking, in our formalism, one pre-contracts (using o-ports)
as soon as possible and one contracts (using ?-ports) as late as possible. Notice that if
one “ignores” the o-ports, i.e. if, whenever a port p that is not a o-port is immediately
above a series of o-ports that are imediately above a contraction ¢, one draws a wire from p
to ¢ and one removes all the o-ports, then one obtains a cut-free proof-net of [4] without
the “sequentialization condition” (see Figure 5); and, conversely, given such a proof-net,
there is a unique way to add the o-ports to obtain our PS’s. So our definition of PS’s is
exactly equivalent to the definition of cut-free proof-nets of [4] without the “sequentialization
condition”; one reason to not take the same definition as the one of [4] is the desire to have
an inductive definition on the depth, which, as a consequence, leads to the auxiliary notion
of o-PS.

We write R ~ R’ (resp. R = R') if R and R are the same differential PS’s up to the
names of their ports (resp. that are not conclusions):

» Definition 7. An isomorphism ¢ : G ~ G’ of ground-structures is a structure-preserving
bijection Py(G) ~ Po(G’). We define, by induction on depth(R), when ¢ : R ~ R’ holds
for two differential o-PS’s R and R’: it holds whenever ¢ is a pair (¢g, (¢o)ocB,(r)) S-t-
g 1 G(R) = G(R'), Bo(R') = g[Ps(R)] and, for any o € By(R), ¢, : Br(0) ~ Br/(0g(0))
and (Y € PF(Br(0))br (96(0))(G(¢0)(0)) = 9a(br(0)(a)). We set G() = g and, for any
0 € By(R), ¢(0) = po. We write ¢ : R=R'if ¢ : R~ R s.t. G(¢)|pr(p) = idpr(r). We
write R ~ R’ (resp. R = R’) if there exists ¢ s.t. ¢ : R~ R’ (resp. ¢ : R=R/).

The arity ar(q) of a port q in a differential o-PS R is computed by “ignoring” the
o-conclusions of the boxes of R:

» Definition 8. Let R be a differential o-PS. We define, by induction on depth(R), the
integers ar(q) for any ¢ € Po(R) and cosize(R): we set ar(q) = ag(r)(0)+ Xoepy(n)

Card ({p € P{(Br(0));br(0)(p) =q}) + X oeBo(R) aBg(0)(qR,0) and cosize(R) =
a€br(0)[P4(Br(0))]
max({ar(p);p € Po(R)} U {cosize(Br(0));0 € Bo(R)}).

» Example 9. We have ar(ps) = 4 (and not 2) and cosize(R) = 4 (see Figure 1).
3 Experiments and their partial expansions

When Jean-Yves Girard introduced proof-nets in [12], he also introduced ezperiments of proof-
nets. Experiments (see our Definition 10) are a technology allowing to compute pointwise the
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interpretation [R] of a proof-net R in the model directly on the proof-net rather than through
some sequent calculus proof obtained from one of its sequentializations: the set of results of
all the experiments of a given proof-net is its interpretation [R]. In an untyped framework,
experiments correspond with type derivations and results correspond with intersection types.

» Definition 10. For any C € T, we define, by induction on C, the set [C]: [1] = {*} = [L];
[(C1 @ C2)] = [C1] x [Ca] = [(CL B Co)]; ['C] = Mgn([C]) = [7CT.

Let R be a differential o-PS. We define, by induction on depth(R), the set of experiments
of R: it is is the set of triples (R, ep,ep), where ep is a function that associates with every
p € Po(R) an element of [Tg(gr)(p)] and e is a function which associates to every o € By(R)
a finite multiset of experiments of Br(0) such that

for any p € Pi*(R), for any wi,ws € Wo(R) such that tgry(wi) = p = tgr)(wa),

wy € L(G(R)) and wy ¢ L(G(R)), we have ep(p) = (ep(w1), ep(w2));

for any p € P§(R), we have e(p) = > wewy(r) [er(w)] + ZoEBO(R) Ze’GSupp(elg(o))

) ) tg(r)(w)=p ) )
(XqeP! (Br(o)) €8(0)(E) - [P (D] + X ept (Br(oy) €B(0)(€) - €'p(a)).
br(o)(q)=p br(o)(q)=p

For any experiment e = (R,ep,ep), we set P(e) = ep and B(e) = eg. We set [R] =
{P(e)|pi(ry; € is an experiment of R}.

We encode in a more compact way the “relevant” information given by an experiment
via pseudo-experiments and the functions e#:

» Definition 11. For any differential o-PS R, we define, by induction on depth(R), the set
of pseudo-experiments of R: it is the set of functions that associate with every o € By(R) a
finite set of pseudo-experiments of B (o) and with ¢ a pair (R, m) for some m € N.

Given an experiment e of some differential o-PS R, we define, by induction on depth(R),
a pseudo-experiment € of R as follows: €(¢) = (R,1) and €(0) = U tesupp(8(e)(0) {fle —
(Br(0),1)];1 <i < B(e)(0)(f)} for any o € Bo(R).

Given a pseudo-experiment e of a differential o-PS R, we define, by induction on depth(R),
the function e# : B(R) — Pgn(N) as follows: for any o € By(R), e# (0) = {Card (e(0))} and,
for any o' € B(Br(0)), e”(0:0') = Uereeo) e*(o).

There are different kinds of experiments:

In [24], it was shown that given the result of an injective k-obsessional experiment (k big
enough) of a cut-free proof-net in the fragment A = X|?7A% A|A% 7A|A ® A|!A, one
can rebuild the entire experiment and, so, the entire proof-net. There, “injective” means
that the experiment labels two different axioms with different atoms and “obsessional”
means that different copies of the same axiom are labeled by the same atom.

In [9], it was shown that for any two cut-free MELL proof-nets R and R', we have
LPS(R) = LPS(R') iff, for k big enough'®, there exist an injective k-experiment of R
and an injective k-experiment of R’ having the same result; as an immediate corollary we
obtained the injectivity of the set of (recursively) connected proof-nets. There, “injective’
means that not only the experiment labels two different axioms with different atoms, but
it labels also different copies of the same axiom by different atoms. Given some proof-net
R, there is exactly one injective k-experiment of R up to the names of the atoms.

i

15 Interestingly, [13], following the approach of [9], showed that, if these two proof-nets are assumed to be
(recursively) connected, then we can take k = 2.

41:7
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In the present paper we show that, for any two PS’s R and R’, given the result a of a
k-heterogeneous experiment of R for k big enough, if « € [R'], then R’ is the same PS as R.
The conditions on k are given by the result of a 1-experiment, so we show that two (well-
chosen) points are enough to determine a PS. The expression “k-heterogeneous” means
that, for any two different occurrences of boxes, the experiment never takes the same
number of copies: it takes k7 copies and k72 copies with j; # jo (a contrario, in [24] and
[9], the experiments always take the same number of copies). As shown by the proof-net S
of Figure 11, it is impossible to rebuild the experiment from its result, since there exist four
different 4-heterogeneous experiments ey, es, 3 and e4 such that, for any 7 € {1, 2, 3,4},
we have e;(p) = (*,%), e;(01) = [*,%,x,%| and e;(p') = [[*,...,%],...,[*,...,%]]. For
\—\;—/ T
instance e; takes 4 copies of the box 07 and 16 copies of the4box 02, while ey takes 4
copies of the box 07 and 64 copies of the box os.

» Definition 12. Let £ > 1. A pseudo-experiment e of a o-PS R is said to be k-heterogeneous
if
for any o € B(R), for any m € e¥(0), there exists j > 0 such that m = k7;
for any o € By(R), for any o’ € B(Br(0)), we have (Vey,es € e(0)) (e1%(0') Nea? (0') #
0= e = 62);
and, for any 01,02 € B(R), we have (e? (01) N e (02) # ) = 01 = 09).
An experiment e is said to be k-heterogeneous if € is k-heterogeneous.

» Example 13. There exists a 10-heterogeneous pseudo-experiment f of the proof-net R of
Figure 1 such that f# (o) = {10223}, f#(02) = {10}, f#(03) = {10?%*}, f#(04) = {100},
f#((02,0)) = {102,...,102}, f#((02,0')) = {103, ...,10%%}, f#((04,0)) = {10%3,...,10'22}
and f#((04,0")) = {10123,/ 10222},

In [9], the interest for injective experiments came from the remark that the result of an
injective experiment of a cut-free proof-net can be easily identified with a differential net
of its Taylor expansion in a sum of differential nets [10] (it is essentialy the content of our
Lemma 16). Thus any proof using injective experiments can be straightforwardly expressed
in terms of differential nets and conversely. Since this identification is trivial, besides the
idea of considering injective experiments instead of obsessional experiments, the use of the
terminology of differential nets does not bring any new insight'6, it just superficially changes
the presentation.That is why we decided in [9] to avoid introducing explicitely differential nets.
In the present paper, we made the opposite choice for the following reason: the algorithm
leading from the result of a k-heterogeneous experiment of R to the entire rebuilding of R is
done in several steps: in the intermediate steps, we obtain a partial rebuilding where some
boxes have been recovered but not all of them; a convenient way to represent this information
is the use of “differential nets with boxes” (called “differential PS’s” in the present paper)
that lie between the purely linear differential proof-nets and the non-linear proof-nets. Now,
the differential net representing the result and the proof-net R are both instances of the
more general notion of “differential nets with boxes”.

The rebuilding of the proof-net R is done in d steps, where d is the depth of R. We first
rebuild the occurrences of the boxes of depth 0 (the deepest ones) and next we rebuild the

16 For proof-nets with cuts, the situation is completely different: the great novelty of differential nets is
that differential nets have a cut-elimination; the differential nets appearing in the Taylor expansion
of a proof-net with cuts have cuts, while the semantics does not see these cuts. But the proofs of the
injectivity only consider cut-free proof-nets.
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Figure 6 7(f)[0].

occurrences of the boxes of depth 1 and so on... This can be formalized using differential nets
(with boxes) as follows: if e is an injective experiment of R, then 7 (€)[i] is the differential
net corresponding with e in which only boxes of depth > i are expanded,'” so 7T (€)[0] is
(essentially) the same as the result of the experiment and 7 (€)[d] = R; the first step of the
algorithm builds 7 (€)[1] from 7 (€)[0], the second step builds 7 (€)[2] from T (€)[1], and so
on... We thus reduced the problem of the injectivity to the problem of rebuilding 7 (€)[i + 1]
from T (€)[i] for any k-heterogeneous experiment e (k big enough).

» Definition 14. Let R be a o-PS of depth d. Let e be a pseudo-experiment of R. Let i € N.

We define, by induction on d, a differential o-PS T (e)[i] = (We.is Pe.is leis teis Leis Tei)s Beis
Be i, be.i) of depth min{i, d} s.t. Pf(R) = PH(T (e)[i]) and (Vp € Pf(R))lg(R) (P) = lg(T (o)) (P)
as follows: we set P2, = UOIGB?(R) Ueee(on) {(o1,€1) : p;p € Pey i \ PL(Br(01))};
Wei = Wo(R) UP?,; and Pe; = Po(R) UP? ;;
() = { lgry(p) if p € Po(R); . .,
’ leyis(P)) ifp=(o1,e1) :p with oy € B5"(R);
te; is the extension of {5y that associates with each (01,e1) : w' € W,,, where
(01,61) i te, s(W') if w' € We, ;i and t., ;(w') & PH(Br(01));
01 € B&'(R), the port { br(01)(te,s(w')) if w € We, ; and te, ;(w') € P
br(o1)(w’) if w' € P{(Br(01));
Lo = £GR) VU, cgiiiy Unncotony {01 €1) : ip € Loy}
Te,i(p) = { Tg(R)(p) z:fp € Po(R); . >i
’ Te,i(p)  ifp=(o1,e1) : p’ with o, € Bg'(R);
Be,=By(R)U UmeBgi(R) Uelee(ol){ (01,e1) : 0 ;0 € Be, i}
_ [ Brlo)  ifoeB5'(R);
)= { Be,.i(0)) ifo=(o1,e1): 0 with o, € B (R);
be; is the extension of bR‘BO<i(R) that associates with each (01,e1) : o' € Be,;, where
>i . 01,€1) : bey () (p)  if bey,i(0))(p) & PH(Br(01));
o e 5.t smeion o {7 e )

Be i(O

s

» Example 15. If f is a pseudo-experiment of the proof-net R of Figure 1 with f# like in
Example 13, then Figures 6 and 7 represent respectively 7 (f)[0] and 7 (f)[1].

The injectivity of the relational semantics for differential PS’s of depth 0 is trivial (one
can proceed by induction on the cardinality of the set of ports). Since [T (€)[0]] = {e|p«(r)},
one can easily identify the result e pr(g) of an experiment e with the differential net 7 (€)[0]:

17 Boxes of depth > i are boxes whose content is a proof-net of depth > i; the reader should not confuse
bozes of depth > i with bozes at depth > i.

41:9
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Figure 7 7(f)[1].

» Lemma 16. Let R and R’ be two o-PS’s such that P(R) = P/(R’). Let e be an experiment
of R and let e’ be an experiment of R’ such that e|pr(ry = €' |pr(rry- Then T (€)[0] = T (e)]0].

Now, the following fact shows that if we are able to recover T (€)[depth(R)] from T (€)[0],
then we are done.

» Fact 17. Let R be a o-PS. Let e be a pseudo-experiment of R. Then T (e)[depth(R)] = R.

If e is a k-heterogeneous experiment of R, then, for any i € N, there exists a bijection
et 5 Useor(ry loge (m)im € e#(0)} = PY(T()[i) \ Bo(T(@)[i]) such that, for any j €
dom(!c;), we have (ar(e)[1©le,i)(j) = k7. In Subsection 4.1, we will show how to recover
Usenzi(r) {logy(m); m € e#(0)} from T (e)[0]. There are two kinds of boxes of T (e)[i + 1] at
depth 0: the “new” boxes of depth i and the boxes of depth < i, which are the “old” boxes
(i.e. that already were in T (e)[i]) that do not go inside some “new” box:

» Fact 18. Let R be a o-PS. Let e be a pseudo-experiment of R. Let i € N. Then we have
B! (T(e)li +1]) = Bo(T (e)[i]) N Po(T (e)[i +1]);

Br(e)li+1] g (7(e)i+1) = BT B (T(e)li+1))
and bT(e)[i-‘rl] ‘B(fi('r(e)[i—i-l]) = b’T(e)[z]

B5 (T (e)li+1])

The challenge is the rebuilding of the “new” boxes at depth 0 of depth .

4 From T (e)[i] to T (e)[t + 1]
4.1 The outline of the boxes

In this subsection we first show how to recover the set |J,cpzi (g {logy(m);m € e#(0)} and,
therefore, the set P} (7 (e )[ 1)\ Bo(T (e)[i]) (Lemma 21). Next, we show how to determine,
from T (e)[i], the set B5*(T (e)[i + 1]) of “new” boxes and, for any such “new” box o €
B5' (T (e)li +1]), the set im(by(e)i+11(0)) of exponential ports that are immediately below
(Proposition 25). In particular, we have B (7 (e)[i+1]) =!..;[Ni(e)], where the set N;(e) C N
is defined from the set My(e) of the numbers of copies of boxes taken by the pseudo—
experiment e:

» Definition 19. Let R be a differential o-PS. Let & > 1. Let e be a k-heterogeneous
pseudo-experiment of R. For any ¢ € N, we define, by induction on i, M;(e) C N\ {0}
and (m; ;(e))jen € {0,..., k — 1} as follows. We set Mo(e) = U,epryli € Ni& € e#(0)}
and we write Card (M;(e)) in base k: Card (M;(e)) = >_,cymij(e) - k7; we set Miy1(e) =
{j > 0;m, ;(e) # 0}.

For any i € N, we set NV;(e) = M;(e) \ Mit1(e).

Notice that all the sets M;(e) and N;(e) can be computed from 7 (e)[0], since we have
Mo(e) = {ar )0 (0); p € Po(T(e)[0])}
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» Example 20. If f is a 10-heterogeneous pseudo-experiment as in Example 13, then
Mo(f) ={1,...,224}. We have Card (Mo(f)) =4+ 2-10' +2-10%, hence M;(f) = {1,2}
and No(f) = {3,...,224}. We have Card (M;(f)) = 2, hence Ms(f) = 0 and N1(f) = {1,2}.

The following lemma shows that, for any k-heterogeneous pseudo-experiment e of R, for
any i € N, the function !.; is actually a bijection M;(e) — P, (T (e)[i]) \ Bo(T (e)[i]) such
that, for any j € M;(e), we have (ar(e)(i) © Mre))) (J) = K.

» Lemma 21. Let R be a o-PS. Let k > Card(B(R)). For any k-heterogeneous pseudo-
experiment e of R, for any i € N, we have M;(e) = U,ep=i(g){J € N; k7 € e#(0)}, hence
Ni(e) = Uoep-1(myld €N ki € e#(0)}.

» Example 22 (Continuation of Example 20). We thus have M (f) = {1,2} and P} (T (f)[i])\
Bo(T()[1]) = {02, 04} with ar(syp1j(02) = 10! and ar(pp(os) = 102 (see Figure 7).

The set Ky, nr, () (S) of “critical ports” is a set of exponential ports that will play a crucial
role in our algorithm.

» Definition 23. Let S be a differential o-PS. Let k > 1. For any p € Py(S), we define the
sequence (my ;(S)(p))jen € {0,...,k — 1} as follows: ag(p) = > jen M, (S)(p) - k. For
any j € N, we set K ;(S) = {p € Po(S); my,;(S)(p) # 0} N PG(S)) and, for any J C N,
we set ICk’J(S) = UjGJ ICk,j(S).

» Example 24. We have K10,1(S) = {p1, pa, P5,p6, p7, 02} and Ki0,2(S) = {pa, p5, pe; p7, 04},
where S is the PS of Figure 7. So we have Ky 11,21(S) = {p1, P4, D5, P6, P7, 02,04}

Critical ports are defined by their arities. We show that they are exponential ports that
are immediately below the “new” boxes:

» Proposition 25. Let R be a o-PS. Let k > Card(B(R)), cosize(R). Let e be a k-
heterogeneous pseudo-ezperiment of R and leti € N. Then we have By (T (€)[i+1]) =!lc:[Ni.e).
Furthermore, for any j € Nj(e), we have im(by)it1)(le,i(4))) = K (T(e)[i]) and, if
lei(j) & B3 (R), then there exist o, € By ™ (R) and e1 € e(01) such that j € Ni(er). In
particular, we have Ky nr, ) (T (e)[i]) € P§(T (e)[i + 1]).

In particular, this proposition highlights one more essential difference between the k-exper-
iments of [23, 24, 9, 13] and our k-heterogeneous experiments. There, such a k-experiment
labelling some contraction p with a multiset of cardinality 3, m; - k7 (where 0 < m; < k for
any j) gives the information that immediately above the contraction p there are exactly m;,
series of exactly jo auxiliary doors. Here, whenever a k-heterogeneous experiment labels some
contraction p with a multiset of cardinality >, m; - k7 (where 0 < m; < k for any j), the
integer jg is not related to the number of auxiliary doors in series anymore; it corresponds,
in the case m;, > 0, with the existence of a box, whose some occurrence takes k7 copies of
its content, having, among all its auxiliary doors, exactly m;, auxiliary doors that are, each
of them, the first one (i.e. the deepest one) of a series of auxiliary doors immediately above
the contraction p.

» Example 26 (Continuation of Example 22). We thus have !¢ 1[N (f)] = {02,04}; and indeed
02 and o4 are the boxes of depth 1 at depth 0 of T(f)[2] = R (see Figure 1). Moreover
we have K101 (T (f)[1]) = {p1, P4, ps, 6, p7, 02} and Ki02(T(f)[1]) = {pa, ps,p6, 7, 04}; and
indeed, in Figure 1, we have im(b7(s)21(02)) = {p1, P4, D5, D6, P7,02} and im(by(sy2(04)) =
{p4,p5. 6, p7, 04}
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As the following example shows, the information we obtain is already strong, but not
strong enough.

» Example 27. The PS’s R;, Ry and Rj3 of Figures 8, 9 and 10 respectively have the same
LPS. But if we know that p € im(br(01)), then we know that R # R3. Still we are not able
to distinguish between R; and Rs.

4.2 Connected components

In order to rebuild the content of the boxes, we introduce our notion of connected component
(Definition 32), which uses the auxiliary notions of substructure (Definition 28) and connected
substructure (Definition 31). A differential o-PS R is a substructure of a differential o-PS S
(we write R C S) if R is obtained from S by erasing some ports and wires. More precisely:

» Definition 28. Let R and S be two differential o-PS’s. Let Q C P§(S). We write R g S
to denote that Py(R) C Po(S), Wo(R) = {w € Wy(S) N (Po(R) \ Q);tgs)(w) € Po(R)},
lo(r) = 19(9)|py(ry t9(R) = 1a(s) |y LO(R) = L(G(S)) N{w € Wo(S);tg(s)(w) €
'P(;n(R)}, Tg(R) = Tg(S)"PO(R)’ Bo(R) = Bo(S) NPy(R), Br = BS‘BO(R) and b = bS‘Bo(R)-
We write R C S if there exists Q such that R Cg S.

» Remark 1. Let RC S and Q C P§(S). We have R Cg S iff QN Py(R) C PH(R).
» Remark 2. If R, R’ Co S and Py(R) = Po(R’), then R = R’.

Let us explain with the following example why we sometimes need to erase some wires
(so the notion of Ty is not enough).

» Example 29. We need to erase some wires whenever there exist a box o and p, ¢ € im(bg/(0))
such that tg(r/)(q) = p. Consider, for instance, Figure 12. If €’ is a k-heterogeneous pseudo-
experiment of R’, then we want to be able to consider the PS U of Figure 13 as a substructure
of T(e’)[1], so we need to erase the wire ¢; we thus have U Ty, , o3 T (e')[1].

The relation g formalizes the notion of “connectedness" between two ports of S at depth
0. But be aware that, here, “connected” has nothing to do with “connected” in the sense of
[9]: here, any two doors of the same box are always “connected”.

» Definition 30. Let S be a differential o-PS. We define the binary relation ©g on Py(.S)
as follows: for any p,p" € Po(S), we have p og p' iff (p € Wo(S) and p' = tg(s)(p)) or
(p" € Wo(S) and p = tg(s)(p)) or ((3o € Bo(S)){p, p'} S im(bs(0))).
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» Definition 31. Let S and T be two differential o-PS’s. Let @ C P§(S) such that T Cg S.
We write T dg S if, for any p,p’ € Po(T), there exists a finite sequence (py,...,p,) of
elements of Py(T') such that pg = p, p, = p’ and, for any j € {0,...,n — 1}, we have
pj Ss pj+1 and (p; € Q= j =0).

» Remark 3. If T'dg S, Q' CPE(S) and Po(T)N Q' C Q, then T dgo/ S.

The sets SE((Q, Qo)) of “components T of S above Q and Qg that are connected wvia
other ports than Q and such that cosize(T) < k” will play a crucial role in the algorithm of
the rebuilding of 7 (€)[i + 1] from 7 (€)[¢]. The reader already knows that, here, “connected”
has nothing to do with the “connected proof-nets" of [9]: there, the crucial tool used was
rather the “bridges” that put together two doors of the same copy of some box only if they
are connected in the LPS of the proof-net.

» Definition 32. Let k € N. Let S be a differential o-PS. Let Q C P§(S) and Qg C Py(5).
cosize(T) < k and PY(T) C QU Qy and

We set SE((Q, Qo)) = {T o S; Po(T)\ Q # 0 and (Vp € Po(T))(Vq € Po(S)) } We
(pesqandq ¢ Po(T)) = p e Q)

write also SE(Q) instead of SE((Q,0)) and C*(S) = SE((PL(S), PE(9))).

A port at depth 0 of S that is not in @ cannot belong to two different components:

» Fact 33. Let k € N. Let S be a differential o-PS. Let Q,Qy C Py(S). Let T,T' €
SE((Q, Qo)) such that (Po(T) NPo(T')\ Q#0. Then T =T'.

» Example 34. We have Card (S4°({p1, pa s, 6, p7,02})) = 241 and Card (S ({p4, ps, pe, p7, 04})) =
320, where S is the PS of Figure 7.

The operator ) glues together several o-PS’s that share only o-conclusions:

» Definition 35. Let U be a set of o-PS’s. We say that U is gluable if, for any R, S € U s.t.
R # S, we have Po(R) NPy(S) C PL(R)NPL(S). If U is gluable, then S"U is the o-PS such
that P{ (Y- U) = U{P!(R); R € U} obtained by glueing all the elements of .

The set C*(R) (for k big enough) is an alternative way to describe a o-PS R:
» Fact 36. Let R be a o-PS. Let k > cosize(R). We have R =Y C*(R).

Definition 37 allows to formalize the operation of “putting a connected component inside
a box”, which will be useful for building the boxes of depth i of T (€)[i + 1]: from some bozable
differential o-PS R C T (€)[i], we build a o-PS R such that, for some o € By (T (e)[i + 1]),
there exists T € C*(Brz)[i+1)(0)) such that T~ R.

» Definition 37. Let R be a differential o-PS. If Pf(R) C P§(R), PH(R) N By(R) = 0
and Py(R) \ Bo(R) C Pf(R), then one says that R is bozable and we define a o-PS R s.t.
Po(R) C Po(R), PE(R) € Wo(R) and Pf(R) = Pf(R) N Py(R) as follows:

Po(R) = Wo(R) UU,ep, () (im(br(0)) N PH(R));
Wo(R) = {w € Wo(R);tg(r)(w) € Wo(R)}
| B0 S0

tot = 1600 [y s L) = LG(R)) N Wo(T); Bo(T) = Bo(R); by = b,
If U is a set of boxable differential o-PS’s, then we set U = {R; R € U}.

CSL 2016
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Figure 16 The o-PS > U, of Example 39.

In the proof of the following proposition, we finally describe the complete algorithm
leading from 7 (e)[¢] to T (e)[i + 1]. Informally: for every jo € N;(e), for every equivalence
class ¥ € Sé“-(e)m (Kkjo (T(e)]i])) /-, if Card (T) = >, cymy - k7 (with 0 < mj; < k), then we
remove my, - k7° elements of T from G(7 (e)[i]) and we put m,, such elements inside the
(new) box !¢ ;(jo) of depth i. For every jo € N;(e), the set Uj, of the proof is the union of
the sets of such m;, elements for all the equivalence classes T € Sé“-(e)[i] (Kr.jo (T (e)[7])) /-

» Proposition 38. Let R and R’ be two PS’s. Let k > cosize(R), cosize(R'), Card (B(R)),
Card(B(R')). Lete be a k-heterogeneous pseudo-experiment of R and let €’ be a k-heterogeneous
pseudo-experiment of R’ s.t. T(e)[0] = T(e')[0]. Then, for any i € N, we have T (e)[i] =
T (4.

Proof (Sketch). By induction on i. We assume that T (e)[¢i] = T(e')[i]. We set M =
M;(e) = M;(€') and N = N;(e) = N;(€').

Let S = T(e)[i]. There is a bijection ! : M — P}(S) \ Bo(S) such that, for any
j € M, we have (ag o !)(j) = kJ. For any j € N, we set K; = Kj;(S) and T; =
SE(KC;). We set T = Ujen7j- For any T € T, we define (m1)jen € {0,..., k- 1
as follows: Card({T" € T;T=T'}) = Y ,eym; - k. Weset P = {p € Po(S); p ¢
Ujen U T € Sk(K;) Po(T)}. For any j € N, we are given U; C 7T, such that, for any
T € 7;, we have Card {T" e U;; T' =T}) = mJT. Let S’ be some differential PS such that
G(SIp) Ty G(S") Ty G(S), where S|p is the unique Sy Cy S’ s.t. Po(Sp) = P, and:

Ujoe./\f T/jO g UjoE./\/ 7}0

for any T € T, we have Card ({T’ € UjenS6(K)); T = T}) =D jenm) K
Bo(S') = (Bo(S) NPo(S")) U V]

for any o1 € By(S) NPy(S”), we have Bgr(01) = Bg(o1) and bg/(01) = bg(01)
for any j € N, there exists p’ : Bg/(1(5)) ~ >_U; such that bs/ (1(5))(q) =

{ G(p)(a) if g € PL(Bs/(1(5)));
tgs)(G(p") (@) if ¢ € PU(Bs:(1(5)))-
Then one can show that 7 (e)[i + 1] = 5" =T (¢/)[i + 1]. <

» Example 39. Consider Figure 7. We set jo = 1. We have oy = !71(jo). We set
Tiy = 871-0(]0)[1} (K101 (T(f)[1])). Let T be the o-PS of Figure 15. We have T' € T, and
Card({T" € T;T'=T}) = 1-10° + 1-10'. So we can take Uj, in such a way that {I” €
Uj; T = T} = {T}. There exists p” : By(pyg(02) ~ Y U, (see Figure 16) such that
b7(1)(2)(02)(a2) = P1 = tg(T () (G(p™)(42)) (see Figure 1): we set G(p")(q2) = g-

4.3 Injectivity

» Theorem 40. Let R and R’ be two PS’s s.t. PA(R) = PH(R'). If[R] = [R'], then R=R'.
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Proof. We set d = max {depth(R), depth(R')}. For any k > 1, there exist a k-heterogeneous
experiment e of R and a k-heterogeneous experiment e’ of R’'® such that e|pPi(R) = e |Pi(rr) €
[R]IN[R']. By Lemma 16, we have 7 (€)[0] = T (¢/)[0]. Thereforeif k > cosize(R), Card (B(R)),
then, by Proposition 38, we have T (€)[d] = T (¢’)[d]. Now, by Fact 17, we have R = T (€)[d] =
T(e[d] =R

Al

» Remark 4. From any 1-point of [R] (i.e. the result of some 1-experiment of R) one can recover
cosize(R) and Card (B(R)). This remark shows that for characterizing R, two points are
enough: a 1-point of its interpretation, from which one can bound cosize(R) and Card (B(R)),
and a k-heterogeneous point of its interpretation with k > cosize(R), Card (B(R)).

» Remark 5. If we want to extend our theorem to PS’s with axioms, then we assume that
the interpretation of any ground type is an infinite set and we consider a k-heterogeneous
experiment e that is “injective” in the sense that every atom (the atoms are the elements of
the interpretations of the ground types) occurring in e[Pf(R)] occurs exactly twice.

» Remark 6. In an untyped framework with axioms, we need to add the constraint on the
injective k-heterogeneous point one considers to be [R]-atomic, i.e. a point of [R] that cannot
be obtained from another point of [R] by some substitution that is not a renaming. Atomic
points are results of atomic experiments (experiments that label axioms with atoms) — the
converse does not necessarily hold.

» Conclusion. We showed the injectivity of the relational semantics for MELL proof-nets
by showing the injectivity of the Taylor expansion for cut-free MELL proof-nets, i.e. two
different cut-free MELL proof-nets have different Taylor expansions; and, more precisely,
we showed that, for any cut-free MELL proof-net, two simple differential nets in its Taylor
expansion are enough to recover the entire proof-net. As a reviewer pointed out, it is worth
noticing that the same proof should work in presence of cuts, i.e. our proof is a proof of
a stronger result: the Taylor expansion of MELL proof-nets is injective (and two simple
differential nets in the Taylor expansion of any MELL proof-net are enough to recover the
entire proof-net).
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A With axioms (Remark 5)

With axioms, we need to slightly modify Definition 11, since different experiments can induce
the same pseudo-experiment:

» Definition 41. Given an experiment e of some differential o-PS R, we define, by induction
on depth(R), a pseudo-experiment € of R as follows: €(¢) = (R, 1) and

€(0) = 4 fle = (Br(0),i)]; f € Supp(B(e)(0)) and 1 < i < > B(e)(0)(9)
g€ Sup p(B(e)(0))
=f
for any o € By(R).

Notice that, if there is no axiom, Definitions 11 and ?? induce the same pseudo-experiment
€ for an experiment e.

B  Untyped framework (Remark 6)

Since there is no type, we define (differential) ground-structures via the auxiliary definition
of (differential) pre-ground-structures. We set ' = {®, %, 1, 1,1,?, o, az}.

» Definition 42. A differential pre-ground-structure is a 6-tuple G = (W, P, 1, t, L, A), where
P is a finite set; the elements of P(G) are the ports of G;
[ is a function P — ¥';the element I(p) of T’ is the label of p in G;
W is a subset of {p € P;l(p) # o}; the elements of W(G) are the wires of G;
t is a function W — {p € P;l(p) ¢ {1, L, az}} such that, for any port p of G, we have
(I(p) € {®, B} = Card {w € W;t(w) = p}) = 2); if t(w) = p, then w is a premise of p;
the arity ag(p) of p is the number of its premises;
L is a subset of {w € W;Il(t(w)) € {®,%}} such that (Vp € P) (I(p) € {®,%} =
Card ({w € L;t(w) =p}) = 1); if w € L s.t. t(w) = p, then w is the left premise of p;
and A is a partition of {p € P;l(p) = az} such that, for any a € A, Card (a) = 2; the
elements of A are the azioms of G.
We set W(G) =W, P(G) =P, lg =1,tg =t, L(G) = L, A(G) = A. The set PF(G) =P\ W
is the set of conclusions of G. For any t € T, we set PH(G) = {p € P;I(p ) = t}; we set
P™G) = P2(G)UP?(G); the set P4(G) of exponential ports of G is P(G) UP*(G) UP°(G).
A pre-ground-structure is a differential pre-ground-structure G such that im(tg) N (P'(G)U
P°(G)) = 0.
A differential ground-structure (resp. a ground-structure) is a differential pre-ground
structure (resp. a pre-ground structure) G such that the reflexive transitive closure <g of
the binary relation < on P(G) defined by p < p’ iff p = tg(p’) is antisymmetric.

For the semantics of PS’s, we are given a set A that does not contain any couple nor any
3-tuple and such that * ¢ A. We define, by induction on n, the set D4, for any n € N:
Dao={+, -} x(Au{x})
Dang1=DapgU({+, =} XxDap xDap)U({+, =} x Mgaa(Dan))
We set D = ey Dan-
Definition 44 is an adaptation of Definition 10 in an untyped framework.
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» Definition 43. For any o € D4, we define a+ € Dy with ++ = — and —+ = +:
if o € AU{*} and 6 € {+,—}, then (§,0)* = (6+,a);
if a = (0, a1, 0) with 6 € {4+, —} and oy, a9 € D4, then at = (6%, 011, ast);
ifa=(6[a1,...,m]) withd € {+,—}and a1, ..., € Da, then at = (61, (a1, ..., ant]).

» Definition 44. For any differential o-PS R, we define, by induction on depth(R) the
set of experiments of R: it is is the set of triples (R,ep,eg), where ep is a function
Po(R) = DaUMgn(Da) and ep is a function which associates to every o € By(R) a finite
multiset of experiments of Bg(0) such that

for any {p,q} € A(G(R)), we have ep(p) = a, ep(q) = a for some o € Da;

for any p € P (R) (resp. p € Py (R)), for any wy,ws € Wy(R) such that tg(gy(wi) =

p = tgry(w2), w1 € L(G(R)) and wa ¢ L(G(R)), we have ep(p) = (+,ep(w1), ep(ws))

(resp. ep(p) = (— ep(w1), ep(w2)));

for any p € P3(R) (resp. p € Py (R)), we have ep(p) = (+,*) (resp. ep(p) = (—, *));

a if p € PI(R);
for any p € P§(R), we have e(p (—, if p € PS(R); where
(+ a) prG'PO( )i
a = ) >
w e WO(R) o€ B (R) ¢ €Supples(o)
tg(r)(w) =p

> es(0)(e') - [¢'p(q)] + 3 es(0)(¢) - ¢'p(q)

q € P(Br(0)) q € P{(Br(0))
br(0)(q) = p br(0)(q) =p
For any experiment e = (R, ep,ep), we set P(e) = ep and B(e) = ep.

For any differential o-PS R, we set [R]4 = {P(e)|pr gy € is an experiment of R}.

» Definition 45. Let r € Mg, (D4). We say that r is injective if, for every v € A, there are
at most two occurrences of 7 in 7.

For any set P, for any function x : P — Da, we say that x is injective if > _p[z(p)]
is injective. An experiment e of a differential o-PS S is said to be injective if P(e)|prg) is
injective.

» Definition 46. Let 0 : A — D 4. For any o € Dy, we define - a € D4 as follows:

if « € AU {}, then ¢ - (+,a) = o(a) and 7 - (—, a) = o(a)*;

ifd € {+,-} and ay, a9 € D4, then o - (§,a1,2) = (6,0 - 1,0 - az);

ifée{+,-}and aq,...,am € Da, then o- (4, [a1,...,am]) = (0, [0 a1,...,0 - ap)).
For any set P, for any function = : P — D4, we define a function o - x : P — D 4 by setting:
(o -z)(p) =0 - z(p) for any p € P.

» Remark 7. For any functions 0,0’ : A — D, for any function z : P — D4, we have
c-(c-2)=(c-0)-x.

» Definition 47. Let S be a differential o-PS. Let e be an experiment of S. Let 0 : A — D 4.
We define, by induction of depth(S), an experiment o - e of S by setting P(o -e) = o - P(e)
and B(o - €)(0) = D_., csupp(B(e)(or)) Bl€)(01)(€1) - [0 - 1] for any o1 € By(S).

Since we deal with untyped proof-nets, we cannot assume that the proof-nets are 7-

expanded and that experiments label the axioms only by atoms. That is why we introduce
the notion of atomic experiment:
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Figure 17 PS R".

» Definition 48. For any differential o-PS R, we define, by induction on depth(R), the set
of atomic experiments of R: it is the set of experiments e of R such that
for any {p, ¢} € A(G(R)), we have P(e)(p),P(e)(q) € {+,—} x A;
and, for any o1 € By(R), the multiset B(e)(o01) is a multiset of atomic experiments of
BR(Ol).

» Definition 49. Let P be a set. Let D C (DA)P. Let = € D, we say that x is D-atomic if
we have (Vo € (D4)?)(Vy € D)(o -y =z = (Vy € At(y))o(v) € A), where At(y) is the set
of atoms occurring in im(y).

We denote by D 4; the subset of D consisting of the D-atomic elements of D.

For any PS R, any [R] a-atomic injective point is the result of some atomic experiment
of R:

» Fact 50. Let R be a o-PS. Let x € ([R]a),, injective. Then there exists an atomic
experiment e of R such that e prry = x.

The converse does not necessarily hold: for some PS’s R, there are results of atomic
injective experiments of R that are not [R]s-atomic. Indeed, consider Figure 17.

There exists an atomic injective experiment e of R such that

P(e)(pl) = (_’ [(+7 '71)’ ) (+’ 77>7 (+, (+?78)7 (+7 79))’ o ( (+,'722>7 (+7'723))D7

P(e)(pQ) = (_’ [(_771)a T (_’77>7 (_7 (_a78)7 (_’79»’ te (_7 (_a'722>7 (_7723))})

and P(e)(ps) = (= [(+, [+, %), ( 2)]), (4 [(+#), (+,9), (H D)),
where {1,...,723} € A. But €|{p, p, ps} is D0t in ([R"]4) 4,: there exists an atomic injective
experiment €’ of R’ such that

P(e/)(pl) = (_7 [("1')71)’ R (+7’YS)7 (+7 (+’710)7 (+7711))7 EER (+a (+’722)7 (+a723))])7
P(e/)(pQ) = (_7 [(_771)’ R (_778)7 (_v (_’710)7 (_3711))7 EER (_a (_’722)7 (_a723))])
and P(€’)(ps) = (=, [(+, [(+ %), (£, )]), (4, [(+ %), (%), (£, )])]);

we set o () = iy e A\t

v
<+,<+778)7(+a79>) Zf7:787
But it does not matter, because there are many enough atomic points:

we have a~e’\{

» Fact 51. Let R be a o-PS. For any y € [R]a, there exist x € ([R]a),, and 0 : A — Dy
such that o -x =y.

p1,p2,p3t — €l{p1,p2,p3}
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