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Abstract
Infinitary and regular proofs are commonly used in fixed point logics. Being natural intermediate
devices between semantics and traditional finitary proof systems, they are commonly found in
completeness arguments, automated deduction, verification, etc. However, their proof theory
is surprisingly underdeveloped. In particular, very little is known about the computational
behavior of such proofs through cut elimination. Taking such aspects into account has unlocked
rich developments at the intersection of proof theory and programming language theory. One
would hope that extending this to infinitary calculi would lead, e.g., to a better understanding of
recursion and corecursion in programming languages. Structural proof theory is notably based
on two fundamental properties of a proof system: cut elimination and focalization. The first
one is only known to hold for restricted (purely additive) infinitary calculi, thanks to the work
of Santocanale and Fortier; the second one has never been studied in infinitary systems. In
this paper, we consider the infinitary proof system µMALL∞ for multiplicative and additive
linear logic extended with least and greatest fixed points, and prove these two key results. We
thus establish µMALL∞ as a satisfying computational proof system in itself, rather than just an
intermediate device in the study of finitary proof systems.
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1 Introduction

Proof systems based on non-well-founded derivation trees arise naturally in logic, even more
so in logics featuring fixed points. A prominent example is the long line of work on tableaux
systems for modal µ-calculi, e.g., [16, 24, 14, 11], which have served as the basis for analysing
the complexity of the satisfiability problem, as well as devising practical algorithms for solving
it. One key observation in such a setting, and many others, is that one needs not consider
arbitrary infinite derivations but can restrict to regular derivation trees (also known as circular
proofs) which are finitely representable and amenable to algorithmic manipulation. Because
infinitary systems are easier to work with than the finitary proof systems (or axiomatizations)
based on Kozen-Park (co)induction schemes, they are often found in completeness arguments
for such finitary systems [16, 26, 27, 28, 15, 12]. We should note, however, that those
arguments are far from being limited to translations from (regular) infinitary to finitary
proofs, since such translations are very complex and only known to work in limited cases.
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42:2 Infinitary Proof Theory: the Multiplicative Additive Case

There are many other uses of infinite (or regular) derivations, e.g., to study the relationship
between induction and infinite descent in first-order arithmetic [9], to generate invariants for
program verification in separation logic [8], or as an intermediate between ludics’ designs
and proofs in linear logic with fixed points [5]. Last but not least, Santocanale introduced
circular proofs [22] as a system for representing morphisms in µ-bicomplete categories [21, 23],
corresponding to simple computations on (co)inductive data.

Surprisingly, despite the elegance and usefulness of infinitary proof systems, few proof
theoretical studies are directly targeting these objects. More precisely, we are concerned with
an analysis of proofs that takes into account their computational behaviour in terms of cut
elimination. In other words, we would hope that the Curry-Howard correspondence extends
nicely to infinitary proofs. In this line of proof-theoretical study, two main properties stand
out: cut elimination and focalization; we shall see that they have been barely addressed
in infinitary proof systems. The idea of cut elimination is as old as sequent calculus, and
at the heart of the proof-as-program viewpoint, where the process of eliminating cuts in
proofs is seen as computation. Considering logics with least and greatest fixed points, the
computational behavior of induction and coinduction is recursion and corecursion respectively,
two important and complex programming principles that would a logical understanding.
Note that the many completeness results for infinitary proof systems (e.g., for modal µ-
calculi) only imply cut admissibility, but say nothing about the computational process of
cut elimination. To our knowledge, leaving aside an early and very restrictive result of
Santocanale [22], cut elimination has only been studied by Fortier and Santocanale [13] who
considered an infinitary sequent calculus for lattice logic (purely additive linear logic with
least and greatest fixed points) and showed that certain cut reductions converge to a limit
cut-free derivation. Their proof involves a mix of combinatorial and topological arguments.
So far, it has resisted attempts to extend it beyond the purely additive case. The second key
property, much more recently identified than cut elimination, is focalization. It has appeared
in the work of [3] on proof search and logic programming in linear logic, and is now recognized
as one of the deep outcomes of linear logic, putting to the foreground the role of polarity
in logic. In a way, focalization generalizes the reversibility results that are notably behind
most deductive systems for classical µ-calculi, by bringing some key observations about
non-reversible connectives. Besides its deep impact on proof search and logical frameworks,
focalization resulted in important advances in all aspects of computational proof theory:
in the game-semantical analysis of logic [17, 19], the understanding of evaluation order of
programming languages, CPS translations, or semantics of pattern matching [10, 29], the
space compression in computational complexity [25, 7], etc. Briefly, one can say that while
proof nets have led to a better understanding of phenomena related to parallelism with
proof-theoretical methods, polarities and focalization have led to a fine-grained understanding
of sequentiality in proofs and programs. To the best of our knowledge, while reversibility
has since long been a key-ingredient in completeness arguments based on infinitary proof
systems, focalization has simply never been studied in such settings.

Organization and contributions of the paper. In this paper, we consider the logic µMALL,
that is multiplicative additive linear logic extended with least and greatest fixed point
operators. It has been studied in finitary sequent calculus [4]: it notably enjoys free-cut
elimination, and focalization has been shown to extend nicely (though not obviously) to it.
We give in Section 2 a natural infinitary proof system for µMALL, called µMALL∞, which
notably extends that of Santocanale and Fortier [13]. The system µMALL∞ is also related to
µMALL in the sense that any µMALL derivation can be turned into a µMALL∞ proof, with
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cuts. We study the focalization of µMALL∞ in Section 3. We find out that, even though
fixed point polarities are not forced in the finitary sequent calculus for µMALL, they are
uniquely determined in µMALL∞. Despite some novel aspects due to the infinitary nature
of our calculus, we are able to re-use the generic focalization graph argument [20] to prove
that focalized proofs are complete. We then turn to cut elimination in Section 4 and show
that (fair) cut reductions converge to an infinitary cut free derivation. We could not apply
any standard cut elimination technique (e.g., induction on formulas and proofs, reducibility
arguments, topological arguments as in [13]) and propose instead an unusual argument in
which a coarse truth semantics is used to show that the cut elimination process cannot
go wrong. We also note here that, even for the regular fragment of µMALL∞, it would
be highly non-trivial to obtain cut elimination from the result for µMALL, since it is not
known whether regular µMALL∞ derivations can be translated to µMALL derivations (even
without requiring that this translation preserves the computational behaviour of proofs).
We conclude in Section 5 with directions for future work. Technical details, proofs, and
additional background material can be found in the long version of this paper [6].

2 µMALL and its infinitary proof system µMALL∞

In this section we introduce multiplicative additive linear logic extended with least and
greatest fixed point operators, and an infinitary proof system for it.

I Definition 1. Given an infinite set of propositional variables V = {X,Y, . . . }, µMALL∞

pre-formulas are built over the following syntax:

ϕ,ψ ::= 0 | > | ϕ⊕ ψ | ϕNψ | ⊥ | 1 | ϕOψ | ϕ⊗ψ | µX.ϕ | νX.ϕ | X with X ∈ V.

The connectives µ and ν bind the variable X in ϕ. From there, bound variables, free variables
and capture-avoiding substitution are defined in a standard way. The subformula ordering is
denoted ≤ and fv(•) denotes free variables. Closed pre-formulas are simply called formulas.
Note that negation is not part of the syntax, so that we do not need any positivity condition
on fixed point expressions.

I Definition 2. Negation is the involution on pre-formulas written ϕ⊥ and satisfying
(ϕOψ)⊥ = ψ⊥⊗ϕ⊥, (ϕ⊕ ψ)⊥ = ψ⊥Nϕ⊥, ⊥⊥ = 1, 0⊥ = >, (νX.ϕ)⊥ = µX.ϕ⊥, X⊥ = X.

Having X⊥ = X might be surprising, but it is harmless since our proof system will
only deal with closed pre-formulas. Our definition yields, e.g., (µX.X)⊥ = (νX.X) and
(µX.1⊕X)⊥ = (νX.XN⊥), as expected [4]. Note that we also have (ϕ[ψ/X])⊥ = ϕ⊥[ψ⊥/X].

Sequent calculi are sometimes presented with sequents as sets or multisets of formulas, but
most proof theoretical observations actually hold in a stronger setting where one distinguishes
between several occurrences of a formula in a sequent, which gives the ability to precisely trace
the provenance of each occurrence. This more precise viewpoint is necessary, in particular,
when one views proofs as programs. In this work, due to the nature of our proof system and
because of the operations that we perform on proofs and formulas, it is also crucial to work
with occurrences. There are several ways to formally treat occurrences; for the sake of clarity,
we provide below a concrete presentation of that notion which is well suited for our needs.

I Definition 3. An address is a word over Σ = {l, r, i}, which stands for left, right and
inside. We define a duality over Σ∗ as the morphism satisfying l⊥ = r, r⊥ = l and i⊥ = i.
We say that α′ is a sub-address of α when α is a prefix of α′, written α v α′. We say that α
and β are disjoint when α and β have no upper bound wrt. v.

CSL 2016



42:4 Infinitary Proof Theory: the Multiplicative Additive Case

` F,Γ ` G,Γ
(N)

` FNG,Γ
` F,G,Γ

(O)
` FOG,Γ

` Fi,Γ
(⊕i)` F1 ⊕ F2,Γ

` F,Γ ` G,∆
(⊗)

` F⊗G,Γ,∆
(>)

` >,Γ
` Γ

(⊥)
` ⊥,Γ (no rule for 0) (1)

` 1

` F [µX.F/X],Γ
(µ)

` µX.F,Γ
` G[νX.G/X],Γ

(ν)
` νX.G,Γ

F ≡ G
(Ax)

` F,G⊥
` Γ, F ` F⊥,∆

(Cut)
` Γ,∆

Figure 1 Rules of the proof system µMALL∞.

I Definition 4. A (pre)formula occurrence (denoted by F , G, H) is given by a (pre)formula
ϕ and an address α, and written ϕα. We say that occurrences are disjoint when their
addresses are. The occurrences ϕα and ψβ are structurally equivalent, written ϕα ≡ ψβ , if
ϕ = ψ. Operations on formulas are extended to occurrences as follows: (ϕα)⊥ = (ϕ⊥)α⊥ ;
for any ? ∈ {O,⊗,⊕,N}, F ? G = (ϕ ? ψ)α if F = ϕαl and G = ψαr; for any σ ∈ {µ, ν},
σX.F = (σX.ϕ)α if F = ϕαi; we also allow ourselves to write units as formula occurrences
without specifying their address, which can be chosen arbitrarily. Finally, substitution of
occurrences forgets addresses: (ϕα)[ψβ/X] = (ϕ[ψ/X])α.

I Example 5. Let F = ϕαl and G = ψαr. We have, on the one hand, (F⊗G)⊥ =
((ϕ⊗ψ)α)⊥ = (ψ⊥Oϕ⊥)α⊥ and, on the other hand, G⊥OF⊥ = (ψ⊥)α⊥lO(ϕ⊥)α⊥r =
(ψ⊥Oϕ⊥)α⊥ . Thus, (F⊗G)⊥ = G⊥OF⊥. We could have designed our system to obtain
(F⊗G)⊥ = F⊥OG⊥ instead; this choice is inessential for the present work but makes our
definitions suitable, in principle, for a treatment of non-commutative logic.

I Definition 6. The Fischer-Ladner closure of a formula occurrence F , denoted by FL(F ),
is the least set of formula occurrences such that F ∈ FL(F ) and, whenever G ∈ FL(F ),

G1, G2 ∈ FL(F ) if G = G1 ? G2 for any ? ∈ {⊕,N,O,⊗};
B[G/X] ∈ FL(F ) if G = σX.B for σ ∈ {ν, µ}.

We say that G is a sub-occurrence of F if G ∈ FL(F ). Note that, for any F and α, there is
at most one ϕ such that ϕα is a sub-occurrence of F .

We are now ready to introduce our infinitary sequent calculus. Details regarding formula
occurrences can be ignored at first read, and will only make full sense when one starts
permuting inferences and eliminating cuts.

I Definition 7. A sequent, written ` Γ, is a finite set of pairwise disjoint formula occurrences.
A pre-proof of µMALL∞ is a possibly infinite tree, coinductively generated by the rules
of Figure 1, subject to the following conditions: any two formulas occurrences appearing
in different branches must be disjoint except if the branches first differ right after a (N)
inference; if ϕα and ψα⊥ occur in a pre-proof, they must be the respective sub-occurrences
of the formula occurrences F and F⊥ introduced by a (Cut) rule.

The disjointness condition on sequents ensures that two formula occurrences from the
same sequent will never engender a common sub-occurrence, i.e., we can define traces uniquely.
The disjointness condition on pre-proofs is there to ensure that the proof transformations
used in focusing and cut elimination preserve the disjointness condition on sequents. Note
that these conditions are not restrictive. Clearly, the condition on sequents never prevents
the (backwards) application of a propositional rule. Moreover, there is an infinite supply of
disjoint addresses, e.g., { rnl : n > 0 }. One may thus pick addresses from that supply for



D. Baelde, A. Doumane, and A. Saurin 42:5

the conclusion sequent of the derivation, and then carry the remaining supply along proof
branches, splitting it on branching rules, and consuming a new address for cut rules.

Pre-proofs are obviously unsound: the pre-proof schema shown below allows one to
derive any formula. In order to obtain proper proofs from pre-proofs, we will add a validity
condition. This condition will reflect the nature of our two fixed point connectives.

...
(µ)

` µX.X

...
(ν)

` νX.X, F
(Cut)

` F

I Definition 8. Let γ = (si)i∈ω be an infinite branch in a pre-proof of µMALL∞. A thread
t in γ is a sequence of formula occurrences (Fi)i∈ω with Fi ∈ si and Fi v Fi+1. The set of
formulas that occur infinitely often in (Fi)i∈ω (when forgetting addresses) admits a minimum
wrt. the subformula ordering, denoted by min(t). A thread t is valid if min(t) is a ν formula
and the thread is not eventually constant, i.e., the formulas Fi are always eventually principal.

I Definition 9. The proofs of µMALL∞ are those pre-proofs in which every infinite branch
contains a valid thread.

This validity condition has its roots in parity games and is very natural for infinitary
proof systems with fixed points. It is somehow independent of the ambient logic, and only
deals with fixed points. It is commonly found in deductive systems for modal µ-calculi: see
[11] for a closely related presentation, which yields a sound and complete sequent calculus
for linear time µ-calculus. The validity conditions of Santocanale’s circular proofs [22, 13],
with and without cut, are also instances of the above notion.

In the rest of the paper, we work mostly with formula occurrences and will often simply
call them formulas when it is not ambiguous. As usual in sequent calculus, (Ax) on a formula
F can be expanded into axioms on its immediate subformulas. Repeating this process, one
obtains an axiom-free and valid proof of the original sequent. In fact, this construction yields
a regular derivation tree, the simplest kind of finitely representable infinite derivation.

I Proposition 10. Rule (Ax) is admissible in µMALL∞.

This basic observation, proved in [6], justifies that the (Ax) rule will be ignored in the rest
of the paper. In particular, we consider that axioms are expanded away before dealing with
cut elimination. Our system µMALL∞ is naturally equipped with the cut elimination rules
of MALL, extended with the obvious principal and auxiliary rules for fixed point connectives
(we do not show symmetric cases):

` Γ, F [µX.F/X]
(µ)

` Γ, µX.F

` F⊥[νX.F⊥/X],∆
(ν)

` νX.F⊥,∆
(Cut)

` Γ,∆

` Γ, F [µX.F/X], G
(µ)

` Γ, µX.F,G ` G⊥,∆
(Cut)

` Γ, µX.F,∆
↓ ↓

` Γ, F [µX.F/X] ` F⊥[νX.F⊥/X],∆
(Cut)

` Γ,∆

` Γ, F [µX.F/X], G ` G⊥,∆
(Cut)

` Γ, F [µX.F/X],∆
(µ)

` Γ, µX.F,∆

Natural numbers may be expressed as ϕnat := µX.1⊕X. Occurrences of that formula will
be denoted N , N ′, etc. We give below a few examples of proofs/computations on natural
numbers, shown using two sided sequents for clarity: F1, . . . , Fn ` Γ should be read as
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42:6 Infinitary Proof Theory: the Multiplicative Additive Case

` Γ, F⊥1 , . . . , F⊥n as usual. The proof πsucc, shown below, computes the successor on natural
numbers: if we cut it against a (necessarily finite) cut-free proof of N we obtain after a finite
number of cut elimination steps a proof of N ′ which is the right injection (rule (µ) followed
by (⊕2), which represents the successor) of the original proof of N , relocated at the address
of N ′′.

(Ax)
N ` N ′′

(⊕2)
N ` 1⊕N ′′

(µ)
N ` N ′

Consider now the following pre-proof, called πdup:

(µ),(⊕1),(1)
` N1

(µ),(⊕1),(1)
` N2

(⊥),(⊗)
1 ` N1⊗N2

(?)
N ′ ` N ′1⊗N ′2

πsucc πsucc
(O),(⊗)

N ′1⊗N ′2 ` N1⊗N2
(Cut)

N ′ ` N1⊗N2
(ν),(N)

(?) N ` N1⊗N2

Here, (?) represents the cyclic repetition of the same proof, on a structurally equivalent
sequent (same formulas, new addresses). The resulting pre-proof has exactly one infinite
branch, validated by the thread starting with N . If we cut that proof against an arbitrary
cut-free proof of N , and perform cut elimination steps, we obtain in finite time a cut-free
proof of N1⊗N2 which consists of two copies (up-to addresses) of the original proof of N .

Now let ϕstream = νX.ϕnat⊗X be the formula representing infinite streams of natural
numbers, whose occurrences will be denoted by S, S′, etc. Let us consider the derivation
shown below, where F is an arbitrary, useless formula occurrence for illustrative purposes.

πdup

N ` N1⊗N2

(Ax)
N1 ` N ′

πsucc

N2 ` N ′′
(?)

N ′′, F ` S′
(Cut)

N2, F ` S′

N1, N2, F ` N ′⊗S′

N1⊗N2, F ` N ′⊗S′
(Cut)

N,F ` N ′⊗S′

(?) N,F ` S

It is a valid proof thanks to the thread on S. By cut elimination, the computational behaviour
of that proof is to take a natural number n, and some irrelevant f , and compute the stream
n :: (n+ 1) :: (n+ 2) :: . . .. However, unlike in the two previous examples, the result of the
computation is not obtained in finite time; instead, we are faced with a productive process
which will produce any finite prefix of the stream when given enough time. The presence of
the useless formula F illustrates here that weakening may be admissible in µMALL∞ under
some circumstances, and that cutting against some formulas (F in this case) will form a
redex that will be delayed forever. These subtleties will show up in the next two sections,
devoted to showing our two main results.

3 Focalization

Focalization in linear logic. MALL connectives can be split in two classes: positive
(⊗,⊕,0,1) and negative (O,N,>,⊥) connectives. The distinction can be easily understood
in terms of proof search: negative inferences (O), (N), (>) and (⊥) are reversible (meaning
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that provability of the conclusion transfers to the premisses) while positive inferences require
choices (splitting the context in (⊗) or choosing between (⊕1) and (⊕2) rules) resulting in a
possible of loss of provability. Still, positive inferences satisfy the focalization property [3]:
in any provable sequent containing no negative formula, some formula can be chosen as a
focus, hereditarily selecting its positive subformulas as principal formulas until a negative
subformula is reached. It induces the following complete proof search strategy:

Sequent Γ contains a negative formula Sequent Γ contains no negative formula
Choose any negative formula (e.g., the Choose some positive formula and decompose
leftmost one) and decompose it using it (and its subformulas) hereditarily until

the only possible negative rule. we get to atoms or negative subformulas.

Focalization graphs. Focused proofs are complete for proofs, not only provability: any
linear proof is equivalent to a focused proof, up to cut-elimination. Indeed, focalization can
be proved by means of proof transformations [18, 20, 7] preserving the denotation of the
proof. A flexible, modular method for proving focalization that we shall apply in the next
sections has been introduced by Miller and the third author [20] and relies on focalization
graphs. The heart of the focalization graph proof technique relies on the fact the positive
inference, while not reversible, all permute with each other. As a consequence, if the positive
layer of some positive formula is completely decomposed within the lowest part of the proof,
below any negative inference, then it can be taken as a focus. Focalization graphs ensure
that it is always possible: their acyclicity provides a source which can be taken as a focus.

Focusing infinitary proofs. The infinitary nature of our proofs interferes with focalization
in several ways. First, while in µMALL µ and ν can be set to have an arbitrary polarity,
we will see that in µMALL∞, ν must be negative. Second, permutation properties of the
negative inferences, which can be treated locally in µMALL, now require a global treatment
due to infinite branches. Last, focalization graphs strongly rely on the finiteness of maximal
positive subtrees of a proof: this invariant must be preserved in µMALL∞. For simplicity
reasons, we restrict our attention to cut-free proofs in the rest of this section. The result
holds for proofs with cuts thanks to the usual trick of viewing cuts as ⊗.

3.1 Polarity of connectives
Let us first consider the question of polarizing µMALL∞ connectives. Unlike in µMALL, we
are not free to set the polarity of fixed points formulas: consider the proof π of sequent
` µX.X, νY.Y which alternates inferences (ν) and (µ). Assigning opposite polarities to
dual formulas (an invariant necessary to define properly cut-elimination in focused proof
systems), this sequent contains a negative formula; each polarization of fixed points induces
one focused pre-proof, either πµ which always unrolls µ or πν which repeatedly unrolls ν.
Only πν happens to be valid, leaving but one possible choice, νX.F negative and µX.F

positive, resulting in the following polarization:

I Definition 11. Negative formulas are formulas of the form νX.F , FOG, FNG, ⊥ and
>, positive formulas are formulas of the form µX.F , F⊗G, F ⊕ G, 1 and 0. A µMALL∞

sequent containing only positive formulas is said to be positive. Otherwise, it is negative.

The following proposition will be useful in the following:

I Proposition 12. An infinite branch of a pre-proof containing only negative (resp. positive)
rules is always valid (resp. invalid).

CSL 2016
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3.2 Reversibility of negative inferences

The example shown below with F = νX.(XNX)⊕ 0 shows that, unlike in (MA)LL, negative
inferences cannot be permuted down locally: no occurrence of a negative inference (O) on
POQ can be permuted below a (N) since it is never available in the left premise.

(?)
` F, POQ

π′

` F, P,Q
(O)

` F, POQ
(N)

` FNF, POQ
(⊕1)

` (FNF )⊕ 0, POQ
(ν)

(?) ` F, POQ

We shall thus introduce a global proof transformation (which could be realized by means of
cut, as is usual). In order to define this transformation at once for all negative connectives,
we rely on the uniform structure of negative inferences, which can be written as follows:

(` Γ,NN
i )1≤i≤n

(rN)
` Γ, N

Sub-occurrence families of N are then defined as N (N) = (NN
i )1≤i≤n, its slicing index being

sl(N) = #N (N).

N F1OF2 ⊥ F1NF2 > νX.F

N (N) {1 7→ {F1, F2}} {1 7→ ∅} {1 7→ {F1}, 2 7→ {F2}} ∅ {1 7→ {F [νX.F/X]}}

We can now define, in two steps, how to transform any proof π into a proof rev(π) where
all negative inferences are reversed.

I Definition 13 (π(i,N)). Let π be a proof of ` Γ of last rule (r) and premises π1, . . . , πn.
If 1 ≤ i ≤ sl(N), we define π(i,N) coinductively:

if N does not occur in ` Γ, then π(i,N) = π;
if r is the inference on N , then π(i,N) = πi (which is legal since in this case n = sl(N));
if r is not the inference on N , then

π(i,N) =
π1(i,N) . . . πn(i,N)

(r)
` Γ,NN

i

.

I Definition 14 (rev(π)). Let π be a µMALL∞ proof of ` Γ. Then rev(π) is a pre-proof non-
deterministically defined as π if ` Γ is positive and, otherwise, when N ∈ Γ and n = sl(N),
as

rev(π) = rev(π(1, N)) . . . rev(π(n,N))
(rN)

` Γ
.

Reversed proofs formalize the requirement for the whole negative layer to be reversed:

I Definition 15. Reversed pre-proofs are defined to be the largest set of pre-proofs such that:
(i) every pre-proof of a positive sequent is reversed; (ii) a pre-proof of a negative sequent is
reversed if it ends with a negative inference and if each of its premises is reversed.
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I Example 16. We illustrate rev on the proof π starting this subsection. We have sl(POQ) = 1
and:

rev(π) =
π(1, POQ)

(O)
` F, POQ

=

(?)
` F, P,Q

π′

` F, P,Q
(N)

` FNF, P,Q
(⊕1)

` (FNF )⊕ 0, P,Q
(ν)

(?) ` F, P,Q
(O)

` F, POQ

I Theorem 17. If π is a µMALL∞ proof, then rev(π) is a reversed proof of the same sequent.

3.3 Focalization Graph
In this section, we adapt the focalization graphs introduced in [20] to our setting. Considering
the permutability properties of positive inferences in µMALL∞, finiteness of positive trunks
and acyclicity of focalization graphs will be sufficient to make the proof technique of [20]
applicable. In order to illustrate this subsection, an example is fully explained in [6].

I Definition 18 (Positive trunk, positive border, active formulas). Let π be a µMALL∞ proof
of S. The positive trunk π+ of π is the tree obtained by cutting (finite or infinite) branches
of π at the first occurrence of a negative rule. The positive border of π is the collection of
lowest sequents in π which are conclusions of negative rules. P-active formulas of π are those
formulas of S which are principal formulas of an inference in π+.

I Proposition 19. The positive trunk of a µMALL∞ proof is always finite.

I Definition 20 (Focalization graph). Given a µMALL∞ proof π, we define its focalization
graph G(π) to be the graph whose vertices are the P-active formulas of π and such that there
is an edge from F to G iff there is a sequent S ′ in the positive border containing a negative
sub-occurrence F ′ of F and a positive sub-occurrence G′ of G.

µMALL∞ positive inferences are those of MALL extended with (µ) which is not branching:
this ensures both that any two positive inferences permute and that the proof of acyclicity of
MALL focalization graphs can easily be adapted, from which we conclude that:

I Proposition 21. Focalization graphs are acyclic.

Acyclicity of the focalization graph implies in particular that it has a source, that is a
formula P of the conclusion sequent such that whenever one of its subformulas F appears in
a border sequent, F is negative. This remark, together with the fact that the trunk is finite
ensures that the positive layer of P is completely decomposed in the positive trunk.

I Definition 22 (foc(π, P )). Let π be a µMALL∞ proof of ` Γ, P with P a source of π’s
focalization graph. One defines foc(π, P ) as the µMALL∞ proof obtained by permuting down
all the positive inferences on P and its positive subformulas (all occurring in π+).

I Proposition 23. Let S be a lowest sequent of foc(π, P ) which is not the conclusion of a
rule on a positive subformula of P . Then S contains exactly one subformula of P , which is
negative.

3.4 Productivity and validity of the focalization process
Reversibility of the negative inferences and focalization of the positive inferences allows one
to consider the following (non-deterministic) proof transformation process:
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Focalization Process: Let π be a µMALL∞ proof of S. Define Foc(π) as follows:
Asynchronous phase: If S is negative, transform π into rev(π) which is reversed. At least
one negative inference has been brought to the root of the proof. Apply (corecursively)
the synchronous phase to the proofs rooted in the lowest positive sequents of rev(π).
Synchronous phase: If S is positive, let P ∈ S be a source of the associated focalization
graph. Transform π into a proof foc(π, P ). At least one positive inference on P has been
brought to the root of the proof. Apply (corecursively) the asynchronous phase to the
proofs rooted in the lowest negative sequents of foc(π, P ).

Each of the above phases produces one non-empty phase, the above process is thus productive.
It is actually a pre-proof thanks to Theorem 17 and by definition of foc(π, P ). It remains to
show that the resulting pre-proof is actually a proof. The following property is easily seen to
be preserved by both transformations foc and rev and thus holds for Foc(π):

I Proposition 24. Let π be a µMALL∞ proof, r a positive rule occurring in π and r′ be a
negative rule occurring below r in π. If r occurs in Foc(π), then r′ occurs in Foc(π), below r.

I Lemma 25. For any infinite branch γ of Foc(π) containing an infinite number of positive
rules, there exists an infinite branch in π containing infinitely many positive rules of γ.

I Theorem 26. If π is a µMALL∞ proof then Foc(π) is also a µMALL∞ proof.

Proof sketch. An infinite branch γ of Foc(π) may either be obtained by reversibility only
after a certain point, or by alternating infinitely often synchronous and asynchronous phases.
In the first case it is valid by Proposition 12 while in the latter case, Lemma 25 ensures the
existence of a branch δ of π containing infinitely many positive rules of γ, with a valid thread
t of minimal formula Fm: every rule r of δ in which Fm is principal is below a positive rule
occurring in γ. Thus r occurs in γ, which is therefore valid. J

4 Cut elimination

In this section, we show that any µMALL∞ proof can be transformed into an equivalent
cut-free derivation. This is done by applying the cut reduction rules described in Section 2,
possibly in infinite reductions converging to cut-free proofs. As usual with infinitary reductions
it is not the case that any reduction sequence converges: for instance, one could reduce
only deep cuts in a proof, leaving a cut untouched at the root. We avoid this problem by
considering a form of head reduction where we only reduce cuts at the root.

Cut reduction rules are of two kinds, principal reductions and auxiliary ones. In the
infinitary setting, principal cut reductions do not immediately contribute to producing a
cut-free pre-proof. On the contrary, auxiliary cut reductions are productive in that sense. In
other words, principal rules are seen as internal computations of the cut elimination process,
while auxiliary rules are seen as a partial output of that process. Accordingly, the former
will be called internal rules and the latter external rules.

When analyzing cut reductions, cut commutations can be troublesome. A common way
to avoid this technicality [13], which we shall follow, is to introduce a multicut rule which
merges multiple cuts, avoiding cut commutations.

s1 . . . sn
(mcut)

s

I Definition 27. Given two sequents s and s′, we say that they are cut-connected on a
formula occurrence F when F ∈ s and F⊥ ∈ s′. We say that they are cut-connected
when they are cut-connected for some F . We define the multicut rule as shown above with
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` Γ, F ` F⊥,∆
(Cut)

` Γ,∆ . . .
(mcut)

` Σ
−→ ` Γ, F ` F⊥,∆ . . .

(mcut)
` Σ

` Γ, F
` Γ, F ⊕G

` G⊥,∆ ` F⊥,∆
` G⊥NF⊥,∆ . . .

(mcut)
` Σ

−→ ` Γ, F ` F⊥,∆ . . .
(mcut)

` Σ

s1 . . . sn

` Γ, F ` Γ, G
(N)

` Γ, FNG
(mcut)

` Σ, FNG
−→

s1 . . . sn ` Γ, F
(mcut)

` Σ, F
s1 . . . sn ` Γ, G

(mcut)
` Σ, G

(N)
` Σ, FNG

Figure 2 (Cut)/(mcut) and (⊕1)/(N) internal reductions and (N)/(mcut) external reduction.

conclusion s and premisses {si}i, where the set {si}i is connected and acyclic with respect
to the cut-connection relation, and s is the set of all formula occurrences F that appear in
some si but such that no sj is cut-connected to sj on F .

From now on we shall work with µMALL∞m derivations, which are µMALL∞ derivations
in which the multicut rule may occur, though only at most once per branch. The notions
of thread and validity are unchanged. In µMALL∞m we only reduce multicuts, in a way that
is naturally obtained from the cut reductions of µMALL∞. A complete description of the
rules is given in [6]; only the (Cut)/(mcut) and (⊕1)/(N) internal reduction cases and the
(N)/(mcut) external reduction case are shown in Figure 2. As is visible in the last reduction,
applying an external rule on a multicut may yield multiple multicuts, though always on
disjoint subtrees.

We will be interested in a particular kind of multicut reduction sequences, the fair ones,
which are such that any redex which is available at some point of the sequence will eventually
have disappeared from the sequence (being reduced or erased), details are provided in [6].
We will establish that these reductions eliminate multicuts:

I Theorem 28. Fair multicut reduction sequences on µMALL∞m proofs produce µMALL∞

proofs.

Additionally, if all cuts in the initial derivation are above multicuts, the resulting µMALL∞

derivation must actually be cut-free: indeed, multicut reductions never produce a cut. Thus
Theorem 28 gives a way to eliminate cuts from any µMALL∞ proof π of ` Γ by forming
a multicut with conclusion ` Γ and π as unique subderivation, and eliminating multicuts
(and cuts) from that µMALL∞m proof. The proof of Theorem 28 is in two parts. We first
prove that fair internal multicut reductions cannot diverge (Proposition 40), hence fair
multicut reductions are productive, i.e., reductions of µMALL∞m proofs converge to µMALL∞

pre-proofs. We then establish that the obtained pre-proof is a valid proof (Proposition 41).
Regarding productivity, assuming that there exists an infinite sequence σ of internal

cut-reductions from a given proof π of Γ, we obtain a contradiction by extracting from π a
proof of the empty sequent in a suitably defined proof-system. More specifically, we observe
that no formula of Γ is principal in the subtree πσ of π visited by σ. Hence, by erasing every
formula of Γ from πσ, local correctness of the proof is preserved, resulting in a tree deriving
the empty sequent. This tree can be viewed as a proof in a new proof-system µMALL∞τ which
is shown to be sound (Proposition 37) with respect to the traditional Boolean semantics of
the µ-calculus, thus the contradiction. The proof of validity of the produced pre-proof is
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similar: instead of extracting a proof of the empty sequent from π we will extract, for each
invalid branch of π, a µMALL∞τ proof of a formula containing neither 1, >, nor ν formulas,
contradicting soundness again.

4.1 Extracting proofs from reduction paths
We define now a key notion to analyze the behaviour of multicut-elimination: given a
multicut reduction starting from π, we extract a (slightly modified) subderivation of π which
corresponds to the part of the derivation that has been explored by the reduction. More
precisely, we are interested in reduction paths which are sequences of proofs that end with
a multicut rule, obtained by tracing one multicut through its evolution, selecting only one
sibling in the case of (N) and (⊗) external reductions. Given such a reduction path starting
with π, we consider the subtree of π whose sequents occur in the reduction path as premises
of some multicut. This subtree is obviously not always a µMALL∞ derivation since some of
its nodes may have missing premises. We will provide an extension of µMALL∞ where these
trees can be viewed as proper derivations by first characterizing when this situation arises.

I Definition 29 (Useless sequents, distinguished formula). Let R be a reduction path starting
with π. A sequent s = (` Γ, F ) of π is said to be useless with distinguished formula F when
in one of the following cases:
1. The sequent eventually occurs as a premise of all multicuts of R and F is the principal

formula of s in π. (Note that the distinguished formula F of a useless sequent s of sort
(1) must be a sub-occurrence of a cut formula in π. Otherwise, the fair reduction path
R would eventually have applied an external rule on s. Moreover, F⊥ never becomes
principal in the reduction path, otherwise by fairness the internal rule reducing F and
F⊥ would have been applied.)

2. At some point in the reduction, the sequent is a premise of (N) on FNF ′ or F ′NF which
is erased in an internal (N)/(⊕) multicut reduction. (In the (⊕1)/(N) internal reduction
of Figure 2, the sequent ` G⊥,∆ is useless of sort (2).)

3. The sequent is ignored at some point in the reduction path because it is not present
in the selected multicut after a branching external reduction on F ? F ′ or F ′ ? F , for
? ∈ {⊗,N}. (In the (N)/(mcut) external reduction of Figure 2, if one is considering a
reduction path that follows the multicut having ` Γ, F as a premise, then the sequent
` Γ, G is useless of sort (3), and vice versa.)

4. The sequent is ignored at some point in the reduction path because a (⊗)/(mcut) external
reduction distributes s to the multicut that is not selected in the path. This case will be
illustrated next, and is described in full details in [6].

Note that, although the external reduction for > erases sequents, we do not need to
consider such sequents as useless: indeed, we will only need to work with useless sequents in
infinite reduction paths, and the external reduction associated to > terminates a path.

I Example 30. Consider a multicut composed of the last example of Section 2 and an
arbitrary proof of ` F,∆ where F is principal. In the reduction paths which always select
the right premise of an external (⊗)/(mcut) corresponding to the N ′⊗S′ formulas, the
sequent ` F,∆ will always be present and thus useless by case (1). In the reduction paths
which eventually select a left premise, the sequent N2, F ` S′ is useless of sort (3) with S′
distinguished, and ` F,∆ is useless of sort (4) with F distinguished.

In order to obtain a proper pre-proof from the sequents occurring in a reduction path,
we need to close the derivation on useless sequents. This is done by replacing distinguished
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formulas by > formulas. However, a usual substitution is not appropriate here as we are
really replacing formula occurrence, which may be distributed in arbitrarily complex ways
among sub-occurrences.

I Definition 31. A truncation τ is a partial function from Σ∗ to {>,0} such that:
For any α ∈ Σ∗, if α ∈ Dom(τ), then α⊥ ∈ Dom(τ) and τ(α) = τ(α⊥)⊥.
If α ∈ Dom(τ) then for any β ∈ Σ+, α.β /∈ Dom(τ).

I Definition 32 (Truncation of a reduction path). Let R be a reduction path. The truncation
τ associated to R is defined by setting τ(α) = > and τ(α⊥) = 0 for every formula occurrence
ϕα that is distinguished in some useless sequent of R.

The above definition is justified because F and F⊥ cannot both be distinguished, by
fairness of R. We can finally obtain the pre-proof associated to a reduction path, in a proof
system slightly modified to take truncations into account.

I Definition 33 (Truncated proof system). Given a truncation τ , the infinitary proof system
µMALL∞τ is obtained by taking all the rules of µMALL∞, with the proviso that they only
apply when the address of their principal formula is not in the domain of τ , with the following
extra rule:

` τ(α)αi,∆
(τ)

` F,∆
if α ∈ Dom(τ)

The address α.i associated with τ(α) in the rule (τ) forbids loops on a (τ) rule. Indeed if
α ∈ Dom(τ) then α.i /∈ Dom(τ).

I Definition 34 (Truncated proof associated to a reduction path). Let R be a fair infinite
reduction path starting with π and τ be the truncation associated to it. We define TR(R)
to be the µMALL∞τ proof obtained from π by keeping only sequents that occur as premise of
some multicut in R, using the same rules as in π whenever possible, and deriving useless
sequents by rules (τ) and (>).

This definition is justified by definition of τ and because only useless sequents may be
selected without their premises (in π) being also selected. Notice that the dual F⊥ of a
distinguished formula F may only occur in R for distinguished formulas of type (1) and (4); in
these cases F⊥ is never principal in R by fairness. Thus, there is no difficulty in constructing
TR(R) with a truncation defined on the address of F⊥. Finally, note that TR(R) is indeed
a valid µMALL∞τ pre-proof, because its infinite branches are infinite branches of π.

I Example 35. Continuing the previous example, we consider the path where the left premise
of the tensor is selected immediately. The associated truncation is such that τ(S′) = > and
τ(F ) = > by (3) and (4) respectively. The derivation TR(R) is shown below, where Πax
denotes the expansion of the axiom given by Proposition 10:

(τ),(>)
` F,∆

Πdup

N ` N1⊗N2

Πax

N1 ` N ′
(τ),(>)

N2, F ` S′

N1, N2, F ` N ′⊗S′

N1⊗N2, F ` N ′⊗S′
(Cut)

N,F ` N ′⊗S′

N,F ` S
(mcut)

N ` S,∆
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4.2 Truncated truth semantics
We fix a truncation τ and define a truth semantics with respect to which µMALL∞τ will be
sound. The semantics is classical, assigning a Boolean value to formula occurrences. For
convenience, we take B = {0,>} as our Boolean lattice, with ∧ and ∨ being the usual meet
and join operations on it. The following definition provides an interpretation of µMALL
formulas which consists in the composition of the standard interpretation of µ-calculus
formulas with the obvious linearity-forgetting translation from µMALL to classical µ-calculus.

I Definition 36. Let ϕα be a pre-formula occurrence. We call environment any function E
mapping free variables of ϕ to (total) functions of E := Σ∗ → B. We define [ϕα]E ∈ B, the
interpretation of ϕα in the environment E , by [ϕα]E = τ(α) if α ∈ Dom(τ), and otherwise:

[Xα]E = E(X)(α), [>α]E = [1α]E = > and [0α]E = [⊥α]E = 0.
[(ϕ? ψ)α]E = [ϕα.l]E ∧ [ψα.r]E , for ? ∈ {N,⊗}.
[(ϕ> ψ)α]E = [ϕα.l]E ∨ [ψα.r]E , for > ∈ {⊕,O}.
[(µX.ϕ)α]E = lfp(f)(α) and [(νX.ϕ)α]E = gfp(f)(α) where f : E → E is given by
f : h 7→ β 7→

(
τ(β) if β ∈ Dom(τ) and [ϕβ.i]E::X 7→h otherwise

)
.

When F is closed, we simply write [F ] for [F ]∅.

We refer the reader to the long version [6] for details on the construction of the interpret-
ation. We simply state here the main result about it.

I Proposition 37. If ` Γ is provable in µMALL∞τ , then [F ] = > for some F ∈ Γ.

We only sketch the soundness proof (see [6] for details) which proceeds by contradiction.
Assuming we are given a proof π of a formula F such that [F ] = 0, we exhibit a branch β
of π containing only formulas interpreted by 0. A validating thread of β unfolds infinitely
often some formula νX.ϕ. Since the interpretation of νX.ϕ is defined as the gfp of a
monotonic operator f we have, for each occurrence (νX.ϕ)α in β, an ordinal λ such that
[(νX.ϕ)α] = fλ(

∨
E)(α), where

∨
E is the supremum of the complete lattice E. We show

that this ordinal can be forced to decrease along β at each fixed point unfolding, contradicting
the well-foundedness of the class of ordinals.

I Definition 38. A truncation τ is compatible with a formula ϕα if α /∈ dom(τ) and, for any
α v β.d ∈ Dom(τ) where d ∈ {l, r, i}, we have that ϕα admits a sub-occurrence ψβ with ⊗ or
N as the toplevel connective of ψ, d ∈ {l, r}, and α.d′ /∈ Dom(τ) for any d 6= d′.

In other words, a truncation τ is compatible with a formula F if it truncates only sons of
⊗ or N nodes in the tree of the formula F and at most one son of each such node.

I Proposition 39. If F is a formula compatible with τ and containing no ν binders, no >
and no 1, then [F ] = 0.

4.3 Proof of cut elimination
We first show that multicut reduction is productive, then that the resulting (cut-free) pre-proof
is actually a valid proof.

I Proposition 40. Any fair reduction sequence produces a µMALL∞ pre-proof.

Proof. By contradiction, consider a fair infinite sequence of internal multicut reductions.
This sequence is a fair reduction path R. Let τ and TR(R) be the associated truncations
and truncated proof. Since no external reduction occurs, it means that conclusion formulas
of TR(R) are never principal in the proof, thus we can transform it into a proof of the empty
sequent, which contradicts soundness of µMALL∞τ . J
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I Proposition 41. Any fair mcut-reduction produces a µMALL∞ proof.

Proof. Let π be a µMALL∞m proof of conclusion ` Γ, and π′ the cut-free pre-proof obtained by
Proposition 40, i.e., the limit of the multicut reduction process. Any branch of π′ corresponds
to a multicut reduction path. For the sake of contradiction, assume that π′ is invalid. It
must thus have an invalid infinite branch, corresponding to an infinite reduction path R. Let
τ and θ := TR(R) be the associated truncation and truncated proof in µMALL∞τ .

We first observe that formulas of Γ cannot have suboccurrences of the form 1α or >α
that are principal in π′. Indeed, this could only be produced by an external rule (>)/(mcut)
in the reduction path R, but that would terminate the path, contradicting its infiniteness.

Next, we claim that all threads starting from formulas in Γ are invalid. Indeed, all rules
applied to those formulas are transferred (by means of external rules) to the branch produced
by the reduction path. The existence of a valid thread starting from the conclusion sequent
in θ would thus imply the existence of a valid thread in our branch of π′.

By the first observation, we can replace all 1 and > subformulas of Γ by 0 without changing
the derivation, and obviously without breaking its validity. By the second observation, we
can further modify Γ by changing all ν combinators into µ combinators. The derivation
is easily adapted (using rule (µ) instead of (ν)) and it remains valid, since the validity of θ
could not have been caused by a valid thread starting from the root. We thus obtain a valid
pre-proof θ′ of ` Γ′ in µMALL∞τ , where Γ′ contains no ν, 1 and >.

We finally show that τ is compatible with any formula occurrence from Γ. Indeed, if τ(β)
is defined for some suboccurrence ψβ of a formula ϕα ∈ Γ, then it can only be because of
a useless sequent of sort (3), i.e., a truncation due to the fact that the reduction path has
selected only one sibling after a branching external rule. We thus conclude, by Proposition 39,
that all formulas of Γ are interpreted as 0 in the truncated semantics associated to τ , which
contradicts the validity of θ′ and Proposition 37. J

5 Conclusion

We have established focalization and cut elimination for µMALL∞, the infinitary sequent
calculus corresponding to µMALL. Our cut elimination result extends that of Santocanale
and Fortier [13], but this extension has required the elaboration of a radically different proof
technique.

An obvious direction for future work is now to go beyond linear logic, and notably
handle structural rules in infinitary cut elimination. But many interesting questions are
also left in the linear case. First, it will be natural to relax the hypothesis on fairness in
the cut-elimination result. Other than cut elimination, the other long standing problem
regarding µMALL∞ and similar proof systems is whether regular proofs can be translated, in
general, to finitary proofs. Further, one can ask the same question, requiring in addition
that the computational content of proofs is preserved in the translation. It may well be that
regular µMALL∞ contains more computations than µMALL; even more so if one considers
other classes of finitely representable infinitary proofs. It would be interesting to study how
this could impact the study of programming languages for (co)recursion, and understanding
links with other approaches to this question [1, 2]. In this direction, we will be interested
in studying the computational interpretation of focused cut-elimination, providing a logical
basis for inductive and coinductive matching in regular and infinitary proof systems.
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