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—— Abstract

In the course of providing an (infinitary) axiomatization of the equational theory of the class of
context-free languages, Grathwohl, Kozen and Henglein (2013) have introduced the class of u-
continuous Chomsky algebras. These are idempotent semirings where least solutions for systems
of polynomial inequations (i.e. context-free grammars) can be computed iteratively and where
multiplication is continuous with respect to the least fixed point operator u. We prove that the
matrix ring of a u-continuous Chomsky algebra also is a p-continuous Chomsky algebra.
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1 Introduction

The set of context-free languages over an alphabet X has been characterized algebraically by
Gruska [4] as the closure of the finite languages over X under (binary) union +, elementwise
concatenation -, and a least fixed point operator p. The natural definition of a context-free
language is by a simultaneous definition involving auxiliary languages, which suggests using an
n-ary fixed point operator to denote the solution of a system z; > p;(z1,...,z,), 1 <i<mn,
of polynomial inequations. Bekié [1], deBakker and Scott [3] noticed that a unary least fixed
point operator suffices to name the components of an n-ary least fixed point, provided (i)
every countable ascending chain has a supremum in the underlying partial order, and (ii)
the functions p; in the systems z; > p; are componentwise continuous, i.e. map the sup of
an ascending chain to the sup of the image of the chain.

Terms involving a unary fixed point operator u in addition to semiring operations +, -, 0,
1, here called p-terms, are therefore a means to name the context-free languages. Kleene’s
iteration operator * amounts to a special case of recursion i, namely to head- or tail recursion,
r* = px(re 4+ 1). Small fragments of the equational theory of context-free languages using
p-terms had been studied in [9, 10], but only recently a complete (infinitary) axiomatization
has been given by Grathwohl, Henglein and Kozen [11]. Essentially, it says that pat is the
sup of all finite iterations of ¢ and that the semiring operations are continuous with respect to
definable increasing chains. In the models of this theory, the p-continuous Chomsky algebras
of [11], the partial order derived from + need not be complete.

Simple equations between p-terms relate head- to tail recursion and reflexive transitive
closure [9], and most of the context-free grammar normalization algorithms can be derived
as equations between py-terms from minimality assumptions on p and the semiring properties
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of 4+, -, 0, 1 [10]. In particular, one can express the elimination of a head recursion by a tail
recursion as an equation between u-terms (assuming x is not an initial factor in s)

pr(ar +s) = prpy(yr + ) = px(s - r*) = pa(s - py(ry +1)),  (with fresh y)

and then obtain (an efficient algorithm for) the transformation of context-free grammars to
Greibach normal form as the matrix version of this equation; an example is given in [10].

It is therefore of some interest to know if a property involving the unary fixed point
operator lifts to the n-ary or the matrix (n2-ary) case. A related question, which we consider
here, is whether the matrix algebra of an idempotent semiring that is closed under least fixed
points is itself closed under least fixed points.

We will reduce the matrix case to the vector case, and the vector case to the unary
one by using the Beki¢-Scott equations. However, the algebras we are considering, like
the algebra of all context-free languages over X, are not closed under countable unions
of ascending chains. Therefore, we must take some care to show that all the least fixed
points involved in Beki¢’s reduction exist. We separate arguments about existence of least
fixed points from the question of iteratively computing them, restricting the p-continuity
condition of Grathwohl e.a.[11] to the second question. Thus, if M is a Chomsky algebra,
i.e. all polynomial inequation systems have least solutions, so is Mat, (M), and if M is a
p~continuous Chomsky algebra, Mat,, (M) also is. In particular, the p-continuity condition
gives rise to its own matrix version. For several conditions on Kleene’s iteration * in regular
algebra, Conway [2] had noted that the unary case implies the matrix case; likewise, Kozen’s
axioms for * imply their own matrix versions [8].

2 Park p-Semirings

» Definition 1. A semiring (M, +,-,0,1) is a set M with binary operations +,- on M and
elements 0,1 € M such that + is associative and commutative with neutral element 0, - is
associative with neutral element 1 and annihilator 0, and - distributes over + from both
sides. An idempotent semiring is a semiring where + is idempotent.

» Definition 2. Let X be a set of variables. The set of u-terms over X is defined by the
grammar

t:i=xz|0]1](s-t)|(s+1)]| pat.

A term not containing p will be called algebraic or (somewhat unprecise) a polynomial.
The free occurrences of variables in a term are defined as usual. By free(t) we denote the
set of variables having a free occurrence in ¢; in particular, free(uxt) = free(t) \ {z}. By
t(x1,...,x,) we indicate free(t) C {x1,...,2,}. In pat all free occurrences of z in ¢ are
bound by px. By t[z/s] we denote the result of substituting all free occurrences of « in t by
s, renaming bound variables of ¢ to avoid capture of free variables of s by bindings in ¢t. The
p~depth of a term is 0 for the terms z, 0, 1, is 1 plus the u-depth of ¢ for the term pxt, and
is the maximum of the p-depth of its immediate subterms, otherwise.

» Definition 3. A partially ordered p-semiring (M, +, -, 0, 1, <) is a semiring (M, +,-,0,1)
with a partial order < on M, where every term ¢ defines a function tM : (X — M) — M, so
that for all variables x € X and terms s,t we have:

1. for all valuations g : X — M,

0M(g) = 0, (s+0)"(g) = s"(g)+t"(g),
1Mg) = 1, (s-)™(g) = sM(g)-g"(9),
2M(g) = g(x), if M <tM_ then pxs™ < patM,
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2. tM is monotone with respect to the pointwise order on X — M,
3. tM(g) = tM(h), for all valuations g, h : X — M which agree on free(t),
4. tlz/s]M(g) = tM(glx/sM(g)]), for all valuations g: X — M.
When free(t) C {z1,...,2,} and g(z;) = a; for 1 < i < n, instead of t*(g) we often write
tMlxy/ay, ...,z /a,] or just tM(ay,. .., a,).
The final two conditions above are called the coincidence and substitution properties;

in the latter, g[x/a] denotes the valuation that agrees with g, except that it assigns a to .
Clearly, the substitution property extends to simultaneous substitutions [z1/s1,...,%n/Ss)].

A first-order formula built from equations and inequations between u-terms holds in M if
it is true for every valuation g : X — M.

» Definition 4. A Park u-semiring is a partially ordered p-semiring M where for all terms
t and variables z,y, the following hold in M:

tlz/pat] < pat, (1)
tlz/y <y — pxt<y. (2)

It follows easily that t[x/pxt] = pat holds in M, as well as py.tlx/y] = pat, for y & free(t).
Conditions (1) and (2) imply that uxt?(g) is the least solution of t < x in M, g, i.e. the
least @ € M such that t(g[z/a]) < a.

3 Chomsky Algebras

» Definition 5 ([11]). A Chomsky algebra (M, +,-,0,1) is an idempotent semiring where
every finite system of polynomial inequations

T 2 pl(x17"'7$n7y17"‘7ym)7
: (3)
T 2 Dul@1ye ey Ty Yls ey Ym), abbreviated Z > p(Z, y),
has least solutions, i.e. for all b € M™ there is a least a = ai,...,a, € M™ such that

a; > pM(a, b) for i = 1,...,n, where < is the natural partial order on M defined by a < b iff
a + b =b. Of course, for each b the least solution a is unique.

» Example 6. Let (X*,-,¢) be the monoid of all finite words of elements of X, with
concatenation - as product and the empty string € as unit. Its power set PX™, the set of all
languages over X, is an idempotent semiring (PX*,+,-,0,1), where 0 := 0, 1 := {¢}, and for
A BCX* A+ B:=AUDB isset unionand A-B:={a-b|a € A,b € B} the elementwise
concatenation. A finite system of polynomial inequations (3) is a context-free grammar
with nonterminals z1, ..., z, and terminals y1,...,ym. For a vector B of m languages, it
leads to an increasing sequence A = (Ag1,...,Arn) of language vectors by

AO,i = ®7 Ak+l,i = pZDX*(Aka B)a 1= 17 ceey .

Clearly, any solution A of # > pPX"[y/B] must satisty A D |J{A}, | k € N}, where union
and subsumption are meant componentwise. The least solution of the inequation system,
relative to B, is A := |J{A | k € N}, since + and - are compatible with arbitrary unions, i.e.
for languages A, B C X* and () # C C PX*,

A+ Je = Ja+clcecy,
A-lJe-B = | J{4a-Cc-B|CEeC,

which implies A D p7X" (A, B). Therefore, (PX*,U, -, 0, {¢}) is a Chomsky algebra.

6:3
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Another example is the set Rel (S) of all binary relations over a set S with empty relation
as 0, the identity relation as 1, union as + and relation product as -. The standard example
of a Chomsky algebra is the algebra of context-free languages over the alphabet X.

» Example 7. The set CX™* of context-free languages over X is the smallest set L C PX*
such that (i) each finite subset of X U{e} isin £ and (ii) if Z > p(Z, y) is a polynomial system,
and B = By,...,B,, € L, then the components A; of the least A = A;,..., A, € PX* with
A D pPX (A, B) belong to £. With the operations inherited from PX*, (CX*,+,-,0,1) is a
Chomsky algebra. For example, {a™b" | n € N} is a context-free language over X D {a,b}; it
is the least solution of x > axb + 1 relative to the standard valuation g(a) = {a}, g(b) = {b}.

Of course, the regular languages over X do not form a Chomsky algebra, as they don’t

have solutions for inequations like axb + 1 < x.

The next lemma is a slight improvement of Lemma 2.1 in [11] in that it cares about the
well-definedness of pzt™ (g) and the partial order.

» Lemma 8. Fvery Chomsky algebra M is an idempotent, partially ordered ji-semiring, if
for all terms t, variables x and valuations g : X — M we take

pat™ (g) := the least a € M such that t™ (g[z/a]) < a. (4)

Moreover, every inequation system t(Z,y) < T with u-terms t(z,7) has least solutions in M,
i.e. for all parameters b from M there is a least tuple a in M such that t™(a,b) < a.

Proof. We define term functions t™ : (X — M) — M by induction on the y-depth of t. The

cases for terms of the forms 0, 1, z, (s +t), and (s - t) are obvious; for pxt we need to show

that ¢+ < z has least solutions in M, so that the definition of pxt™(g) via (4) is well-defined.

More generally, we simultaneously prove by induction on k:

1. every inequation system ¢ < Z has least solutions in M, for terms ¢ of pu-depth < k,

2. term functions tM for terms t of u-depth < k satisfy the properties of term functions in
partially ordered p-semirings (cf. Definition 3).

Let t(Z,y) < & be a system of term inequations

tl(xla"'axnvyla"'aym) S T1
(5)

tn(xla”'vxnayla”'vym) S T

where each t; has p-depth < k. We may assume that bound variables in ¢(z,y) < T are
pairwise distinct and distinct from Z,%. If k = 0, t < T is a system of polynomial inequations
and therefore has least solutions in M. If k£ > 0, we may assume that ¢, < x,, is an inequation
where t,, is of maximal p-depth. Then ¢, can be written as ¢, =t/ [Tp+1/p%nt1tn+1] Where
Uy 1tna1 is of maximal u-depth. Consider the inequation system ¢’ < #’ obtained from t < Z
by replacing ¢,, < z,, by the two inequations ¢/, < x,, and ¢, 11 < Zp41. Its maximal p-depth,
or its number of terms of maximal p-depth, is less than that of ¢ < Z. Hence, by induction,
' < 7' has least solutions in M. Fix parameters b and let (@, a,,1) be the least elements
of M such that ¥ (@, an41,b) < (@,any1). Then, by definition, ani1 = pzpi1tnr1™(a,b),
hence by the substitution property for terms of u-depth < k,
tn' (@,0) =ty [Tni1/prnritn 1] (@,0) = 61 (@, ang1,0) < an.

This gives t™(a,b) < @, and so a is a solution of ¥ < z relative to b. If ¢ is another
one, take ¢, 11 := uTpi1tn1™ (¢,0). Then t24 (€, cny1,b) < cps1 and, by the substitution
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property, t'M (¢, c,i1,b) = tM(¢,b) < ¢,. Therefore, ¢ Cnt1,b0) < (¢ ,¢ny1), whence

(@,ant+1) < (¢,cnt1) and @ < €. Thus, a is the least solution of t < T in M relative to b.
We leave it to the reader to check that the properties of term functions in partially

ordered p-semirings hold in M for terms of u-depth < k. |

lT/M(

» Corollary 9. Under the interpretation of p-terms in (4), every Chomsky algebra M is a
Park p-semiring. In particular, the context-free languages CX™* form a Park p-semiring.

Proof. Since pxtM(g) is the least a € M with t*(g[z/a]) < a and the substitution property
holds in M, we have

tla/pxt)™ (g) = tM (gla/pat™ (9)]) < pat™(g).

Suppose t[z/y]M(g) < y™(g) = g(y) for some g : X — M and some variable y. Then by the
substitution property,

tM(glz/g(W)]) = tlz/y]M (9) < 9(y) = =™ (g[z/9(v)]),

so g(y) is a solution of ¢t < x in M relative to g, and by comparison with the least solution,
pxt™(g) < g(y)- <

» Lemma 10. If g: X — CX*, then t°X (g) = t7X"(g) for each p-term t.

Proof. By induction on the structure of ¢. For uxt, let £ > py(Z, y) be the polynomial system
obtained from t(z,¥) in the proof of Lemma 8 such that

pat?X" (g) = the least A C X* such that 7% (g[z/A]) C A (6)

is a component of the least A in PX* with A D pJ X (A, B) and B = g(9). By definition of
CX*, A and hence A := pxt?X"(g) belong to CX*. By induction,

% (gl /A]) = t7X (gla/A]) C A,

so by Park’s axioms, uztX (g) € A = pxtPX"(g). The converse uxt?X (g) C uxt®* (g)
follows from the induction hypothesis and the fact that CX* C PX*. <

4 \ector Versions

To denote the least simultaneous fixed point of an inequation system Z > ¢, one might
introduce terms pzt where p is an n-ary fixed-point operator, accompanied by projection
functions 7! to get the i-th component of the fixed point. As has been observed by Beki¢[1], de
Bakker, Scott around 1970, it is sufficient to have a unary fixed point operator. Components

of a simultaneous fixed point can be named by terms using the unary p in a nested fashion.

» Theorem 11 (Beki¢ [1]). Let (M, <) be a partially ordered set in which every countable
increasing chain {a; | i € N} has a least upper bound, Y, a;. Suppose f,g : M? — M
are continuous in each component, i.e. map the least upper bound of countable increasing
chains to the least upper bound of the images of the chain elements. Then the least solution
of the system (xz,y) > (f(x,y),g(x,y)) can be obtained by taking the least solution of each
inequation separately, plugging it into the other equation and taking the least solutions of the
resulting equations separately. Ie., the binary and unary fized point operators are related by

wlx,y)(f(z, ), 9(z,y)) = (pz.f (2, py-g9(2,y)), py-g(pe.f(2,9), ). (7)

6:5
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For an n-dimensional inequation system Z > ¢, we define an n-tuple pZt of u-terms by
recursively using Bekié’s equations (7).

» Definition 12. ([10]) For vectors t = ty,...,t, of terms and T = z1,...,x, of pairwise
different variables, we define the term vector uZt as follows. If n = 1, then pZt := puxit;. If
n>1,7 = (y,z) and t = (7,5) with term vectors 7, 5 of lengths |y], |2| < n, then pzt is'

(0. 2) 7 5) 2= (23], 102503 ). ®
A Chomsky algebra need not be closed under unions of countable increasing chains. For
example, the set CX™* of all context-free languages over X has increasing chains of finite
languages whose unions are not context-free. So one cannot apply Beki¢’s theorem literally
to prove that uZt denotes the least solution of > t in Chomsky algebras. Instead, we prove
the Park axioms for term vectors by induction on the dimension.

For term vectors 3, t of the same dimension, let 5 = ¢ resp. 5 < ¢ be the conjunction of

the equations resp. inequations of corresponding components. For ¢ = (¢1,...,t,) we write
tM(g) for (tM(g),...,tM(g)). The following property can be shown by induction on |z|.

» Lemma 13. If none of the variables in T occurs free in the terms of §, then

pxt[y/s) = pa.tly/s),
A proof of this and the next lemma is given in the appendix.
» Lemma 14. Let M be a Park p-semiring. For all vectors t of terms and vectors T,y of
variables of the same dimension, the vector versions of (1) and (2),

tlz/pzt] < pat, (9)

te/gl<y — pat<y, (10)

hold in M. Hence, for any Chomsky algebra M and valuation g : X — M, uzt™(g) is the

least a such that tM(g[z/a]) < a.

One shows (9) and (10) simultaneously with a vector version of the substitution property,
using lemma 13: in any Park p-seminiring M and for any g : X — M,

pzt[y/5M (g) = pzt™ (gly/5M (9)]), if no variable of 7 is free in the terms 5. (11)

» Corollary 15. If M is a Park p-semiring, the vector version of the p-rule holds: for vectors
5, t of terms and T of different variables, all of the same dimension, if 3 < tM, then
pzsM <zt

5 p-Continuity

The usual way to compute the simultaneous least fixed point A of & > #(, ) in PX* relative
to B is to approximate it by its finite stages A,, and (componentwise) take their union, i.e.

A= U A, where  Ag := @, Apg1 = t_PX*(/_lm,B).
meN

*

As shown below, the continuity of + and - in PX* imply that A equals uzt PX (B) .

! To distinguish pxt[y/s] from pz(t[y/s]), we write pxz.t[y/s] for the latter, using . to save the brackets of
the metalanguage. We have no . in the object language’s u-terms, preferring px(t + s) over pz.t + s.
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» Lemma 16. In M = PX* or M = CX*, all term functions are continuous: for any
term t, valuation g : X — M and increasing chain {A; | i € N} of elements with union in
M,
M (gly/ | J A = | t™ (gly/Ai]). (12)
i€N ieN
Proof. This is clear when ¢ is one of x,y,0,1. For (¢t + t2) and (¢ - t2) use induction, the

continuity of + and - in M, and the fact that the A; form an increasing chain. For uxt, by
the monotonicity of pat™ it is sufficient to show

pat (gly/ | A)) € | pat™ (gly/As). (13)
ieN ieN
Let B; := pxt™(g[y/A;]) for i € N, and let A and B be the unions of the increasing chains
{4; |i e N} and {B; | i € N}, respectively. If M = PX*, then B € M and
tM(gly/Allz/B]) = U, jent" (g9ly/Aillz/B;]) (by induction)
Usent™ (9ly/Ai][z/B;])  (by monotonicity, increasing chains)
Usen tlz/uat]™ (gly/Ai])  (by the substitution property)
(

C Uy natM(gly/Ai]) by Park’s inequation)

= Uien Bi = B.
By the Park rule, uzt? (g[y/A]) C B follows, which proves (13) for M = PX*. By lemma 10,
we can transfer (12) from M = PX* to M = CX™*. <

The power set semiring (PM,U,-,0,{1}) of a monoid (M,-™ 1), a generalization of
Example 6, and the semiring Rel (S) of all binary relations on a set S are continuous: their
operations + and - are continuous and the partial order C is complete (all directed subsets
have suprema). The semiring CX* of context-free languages over X is not complete.

» Definition 17 ([11]). A Chomsky algebra M is u-continuous, if for all y-terms t(x,y)
and all a,b,c € M,

a-pat" /e b= {a- (mat)[g/d-b| m € N}, (14)

where the term mat, the m-fold iteration of ¢ in z, is defined by Ozt := 0, (m + 1)zt :=
t[z/mat]. In particular, the supremum on the right hand side of (14) must exist.

As has been mentioned in [11] without proof, we have:

» Theorem 18. The Chomsky algebra CX™* of all contexrt-free languages over X is u-
continuous. In particular, for all terms t and valuations g : X — CX™,

pat X (g) = | J{mat ¥ (g) | m € N}.

Proof. We first consider M = PX* and then transfer the result to CX* by Lemma 10.
From 0xt™(g) C 1xtM(g) and 0xtM(g) C pxtM(g), by induction we get matM(g) C
(m + DatM(g) C pxt™(g) for all m, using monotonicity, the substitution property, and the
Park inequation. Therefore, |J{mat™ (g) | m € N} C pxt™ (g). For the converse,

M (gla/ U{(mat) (g) [ m e N})) = U{tM (gla/ (mat) (g)]) | m € N} (by (12))
= U{tlz/mat]" (g) | m € N}

U{((m + D) (g) | m € N}

= U{(mat)™(g) | m € N}.

Hence, by the Park rule, uzt (g) C J{(mat)M(g) | m € N}. It follows that for A, B € M,
A-pxtM(g) - B =J{A -matM(g)- B | m € N}. <
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The iterative computation of least fixed points is used in [11] to interpret p-terms in the
semiring CX*:

» Example 19. ([11]) The canonical interpretation L of y-terms over X in CX* is

L(z) = {z} L(s+t) = L(s)UL(Y)
LO) = 0 L(s-t) = {ww|ueL(s),veL(t)}
L(1) = {e} L(pxt) = |U{L(mat)|m e N}.

By Theorem 18, the canonical interpretation L of py-terms in the semiring CX™* coincides with
the interpretation in the Chomsky algebra CX* under the valuation L, i.e. L(t) =t (L)
for all terms ¢. This can be proven by induction on the well-founded relation < of terms
from [7] were t; < (t1 + t2), t; < (t1 - t2), and mat < pxt.

» Remark. Grathwohl e.a. [11], Theorem 3.2, prove that an idempotent semiring M with an
interpretation of p-terms satisfying the u-continuity condition also satisfies the Park axioms,
hence makes puxt™ (g) the least fixed point of z >t in M relative to g.

For a vector of terms t = (t1,...,t,), put L(t) := (L(t1),...,L(t,)). The m-th iteration
of t in T can be expressed syntactically by a term vector m¥t, where || = |t| and

0zt :=0,  (m+ 1)zt := t[z/mzt]. (15)
Vector versions of substitution and other properties of term functions in CX™* will be used
for L, based on (11) and theorem 18.

We now prove a vector version of (the main part of) the p-continuity condition for CX*,
i.e. that the least fixed point of a system > ¢, as determined by the Bekié-Scott equations
embodied in p¥t, is the supremum of its approximations by iterations mzt. In particular,
Bekié¢’s reduction works in CX™*, where not every ascending chain has a supremum.

» Lemma 20. For all vectors Z,4,z of pairwise distinct variables and vectors t,7,5 of
u-terms such that |z| = |t|, |y| = |F| and |Z| = |5|, we have:

1. L(uzt) = J{L(mzt) | m € N},

2. L(8[z/pxt]) = U{L(8]z/mzt]) | m € N},

3. L(MZ~S[Z//M/7"]) = U{L(mz.s[y/kyr]) | m,k € N}.

Proof. Proof by simultaneous induction on the vector length of |Z| = |y|+]|z| with |g], |z| < |Z|.
1. For |z| = 1, the claim holds by definition of L, so suppose |z| > 1.

(a) U,, L(mzt) C L(uzt): Clearly, L(0zt) = 0 C L(pat). If L(mat) C L(uzt), then

L((m+1zt) = L(t[z/mzt])  ((15))
= L[JE/L(mi}f)] 7) (substitution property)
- L[@/L(uﬁcftﬂ(t) (induction hypothesis)
= L(t[z/ut)) (substitution property)
C  L(pzt) (Lemma 14, (9)).

(b) L(pzt) CU{L(mzt) | m € N}. By induction, claim 3. holds with |g|,|z] < |z|, so

L(pzt) = Lu(y,?)(F5)) = (9, 2),t = (7,3))
= L(py.r[z/unzs], pz.sly/pyr)) deﬁnltlon of uzt)
= (Upx Lmy.7[z/k25]),U,, » L(mz.5[y/kyr])) (induction hypothesis 3.)
= Uy L(my.7l2/kz5], mz.5[5/ kyr))

AA,_\,_\

monotonicity).
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It is therefore sufficient to show
L(my.r[z/kzs], mz.5[y/kyr]) € L(mi(y,2)(7,5)), for my, = m(k +1). (16)
Put (A,, B,) := L(nzt) = L(n(y, 2)(7, 5)). By induction on k one obtains
L[y/An)(kz5) C Boyx  and  L[Z/Bp](kyr) C Anr, (17)

using monotonicity of X" and 7°X" and the substitution property. To see (16), put
Ti(y) := 7[2/kzs] and s, (Z) := §[y/kyr]. Suppose that for some m we have

L(myry, mz5) C (An, B,)  with n = m(k + 1). (18)

which is clearly true for m = 0. Then, using the monotonicity of 7°X  and X",

L((m + 1)y7g, (m + 1)z5;)
L(Fk[g/mgfk],Ek[Z[m2§k})
(Lly/An](7x), L[Z/ Bn)(5k))
(L[/An, 2/ Busk) (7), L[5/ Ansr, 2/ Bn)(5))
(L) Anti 2/ Bus)(7), L[5/ Ani, 2/ Bui](5))
( n+k+1; n+kj—1)
(A1) (k1) Bamt1)(o41))-

Thus, we have (16), and hence L(uzt) C J{L(mat) | m € N}.
2. This is a vector version of lemma 2.5 of [11]. Since [J on (CX*)I*l, substitution 5[z /uit]

and evaluation L(S) is done componentwise, it is sufficient to consider |s| = 1.
By 1., L(uat) = U{A,, | m € N}, where A,, = L(mat) is a vector of (definable, hence)

definition)
substitution, (18))

(17))

increasing chains)

_

N inin

context-free languages. By induction, A,, C A,,; for all m, componentwise. Then

(s[z/nxt]) L[a?/L(;@f)](s) (substitution property)
Liz/ U{L(mi_t) | m € N}|(s) (claim 1.)
U{L[z/L(mzt)](s) | m € N} (Lemma 16)

= U{L(s[z/mzt]) | m € N} (substitution property)

3. To prove claim 1. for |Z| > 1, we used claim 3. with |y| + |z| = |Z| and 0 < |g], |Z| < |Z|.
Hence, to prove claim 3. for dimension |y| + |Z|, we have claim 1. for smaller dimensions
as induction hypothesis. Therefore, an application of 1. (with uz.3[y/ugyr] as uxt) gives

L(pz.3[5/ pyr)) = | L(mz.3[y/ uyr).
To finish the proof of claim 3., it is now sufficient to show for all m:

L(mz.5[g/ pyr)) = | L(mz.5[y/kyr]). (19)
k

Equation (19) is clear for m = 0. Assume it is true for m. Then we proceed as follows,
using abbreviations 3, := §[y/uyr| and s := 8[y/kyr]:

L((m+1)z5,) = L(5u[z/mzs.))
L[z/L(mz5,)](5.)

Uy L2/ L(mZ5,)](55)
Uy L2/ Uy L(mZz5k)] (55)
U U [Z/L(mzswsl( )

definition)

substitution property)
induction hypothesis 2. for |y|)
induction hypothesis (19))
Lemma 16, componentwise)

Py

= Ui L[Z/L(mZz5)]( monotonicity)
= Ui L(5k[2/mZz5;]) substitution property)
Ui L((m + 1)25;,) definition).
Hence we have (19) for all m. <
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By the following lemma from [11] we can transfer the vector version of the p-continuity
condition from L resp. CX™* to an arbitrary u-continuous Chomsky algebra.

» Lemma 21 ([11], Lemma 3.1). Let M be a u-continuous Chomsky algebra, g : X — M a
valuation of terms in M, h : X — CX* be a valuation in the algebra CX* of context-free
languages over X, such that, for all x € X and u-terms s, u,

(szu) Z{ syu)™(g) | y € h(z)}.

Then, for all p-terms s,t,u,

(stu)™ Z{ syu)M(g) |y € tX (n)}.

Notice that the canonical interpretation L : X — CX™* satisfies the assumptions on the
valuation A of the lemma.

» Corollary 22. For any vectors 5,t, @ of u-terms of equal length, any u-continuous Chomsky-
algebra M and valuation g : X — M, under componentwise multiplication and supremum,

(5t =D {G-w-w)M(g) | we L@}, (20)

where, for 1 ---xp € X*, (z1---2x)M(g) := g(x1) M ... -M g(x).

This is clear since for each component, the equation follows from the lemma. The vector-
version of the p-continuity condition follows:

» Corollary 23. Let M be a u-continuous Chomsky algebra and g : X — M. Then
a - pzt™(g) 522{@ mztM (g) - b | m € N},

for any term vector t and vectors a,b of elements of M of the same length as t.

Proof. We may assume that there are suitable vectors 5,u of terms such that a = 5™ (g)
and b = @M (g). Then
a-pztM(g)-b = (5-pat-u)(g)
= Y{G-@-w)"(9) | we Lpzt)} (equation (20))
= YAG - w- ﬂ)M(g) | w e | J{L(mzt) | m € N}} (Lemma 20, 1.)
= UG @ a)"(9) | @ € L(mz)} | m € N}
= YAZ{G-@-0)"(g) | @ € L(mzt)} | m € N}
= Y A{(s-mzt- a)M(_g) | m € N} (equation (20))
= Y {a-matM(g)-b|meN}.
<

In particular, u-continuity of M implies that the least solution ,ui‘fM (g9) of a system t < &
relative to g is the supremum of the finite iterations mzt™ (g):

» Corollary 24. Let M be a p-continuous Chomsky algebra and g : X — M. Then

pztM™ (g) Z{mxtM ) | m e N}
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6 Closure under Matrix Rings

To prove the main result, that the square matrices over a p-continuous Chomsky algebra
form a p-continuous Chomsky algebra, we recall the case of Park p-semirings:

» Theorem 25 ([10], Theorem 7.6). If M is a Park p-semiring, so is Maty, ,(M).

Proof. Let M be a Park p-semiring and N = Mat,, ,,(M) the set of n x n matrices of elements
of M. Equipped with the usual matrix operations, (N, +,-,0,1) is a semiring, because M is.
To define the term functions ¢V : (X — N) — N, for each variable z € X we fix n? distinct
variables x; j, 1 <14, j < n, which also have to be distinct from all y; ; for variables y # x.
For each term ¢, define a vector ¢ of n? terms recursively by

o= (@), (s+1) = &+,
0 = Onpns (s-t)y = §-t,
1 = ln,na (/L.]?t)/ = /Jl‘/t/,

where 0, ,, and 1, ,, are the zero and unit matrices, + and - are the usual matrix addition
and multiplication operations applied to matrices of terms, and pz’t’ is the term vector uzt
defined recursively by Beki¢’s equation (8) from z’ and ¢'.

Any valuation g : X — N is obtained from a valuation § : X — M by g(z) = (a;;),
where a; j = §(z; ;) for 1 <i,j < n. Define the term function ¢V by

tN(g) := (t;ij(g)), where t; ; is the (i, j)-th entry of #'. (21)
Concerning the properties for partially ordered p-semirings, those for 0V, 1V, 2V, (s + )V
and (s-t)V are immediate from the definition. The p-rule holds in N, since, by corollary 15,
the vector version of the p-rule holds in M.

The monotonicity of the term function ¢V follows from the monotonicity of the term
functions t’ % Likewise for the coincidence property. By Lemma 13 and Lemma 14, the
vector versions of the substitution property and Park axioms hold in M these imply that
the substitution property and the Park axioms hold in V. <

» Theorem 26. If M is a (p-continuous) Chomsky algebra, so is Mat,, ,(M).

Proof. Let M be a Chomsky algebra and N := Mat, ,(M). By Corollary 9, M is an
idempotent Park p-semiring. Hence, by Theorem 25, N also is, and thus, by Lemma 14,
N satisfies the vector versions of Park’s axioms. In particular, every system z > p(z,7y)
of polynomial inequations does have, for any parameters B € N, a least solution in N,
(pzp)N (B). Hence, N is a Chomsky algebra.

Suppose, in addition, M is p-continuous. To show that N is p-continuous, we assume
n > 1, as Maty (M) is isomorphic to M. Let A = (a;;), B = (bi ;) € N, t(x,y) a p-term
and g : X — N coming from a valuation § : X — M as in (21). In order to show

A~,uxtN(g)-B:Z{A-mxtN(g)-B | m € N}, (22)
we first show

pat™ (g) =Y {mat"(g) | m € N}, (23)
By definition, pzt™ (g) = ((umt)’%(g)), where (uaxt)’ = pa't’ is obtained from the matrices

T1,1 e T1,n t171 tl,n

= and t' =

Tnl -+ Inn tn,l . tn,n

6:11

CSL 2016



6:12

The Matrix Ring of a u-Continuous Chomsky Algebra is p-Continuous

of pairwise different variables z; ; and of p-terms t; ;(2',y’) (with variables y' = (y; ;) for

parameters y in i) according to Definition 12 for the inequation system ¢’ < 2’ of size n?.

Accordingly, we have a square term matrix (mat)’ = ma’t’ for the m-th iteration of ¢’ in a’.
By Corollary 24, we get (23):

patN (g) = (pat)15(3) = > _{((mat), ;" (9)) | m € N} = {matV(g) | m € N}.
Concerning (22), it is sufficient to consider the (7, j)-th entry and use Corollary 23:
(A pat™(g) - B)m
= Z aip M (pat™ (9))es M by

k,Jl<n
= Z ai g M (uat) k:l( ) M b
kJ<n
= 3 S H{aiw M (mat))(3) M by, | m e N} (Corollary 23)
kJ<n
= DU ain M (mat)(8) M by |m € N}
k,l<n
= Z{ Z ai i M ((mat)™ (9))ka M biy | m € N}
k,l<n
= > {(A-matN(g)- B)i; | meN}
Hence, N also is p-continuous. |

7 Open Questions

In analogy to CX™, we can define the semiring of context-free subsets CM of an arbitrary
monoid M by closing the semiring F M of finite subsets of M under least solutions in PM
of polynomial inequations Z > p(Z,y) with parameters. Hopkins [5], [6] gives an elegant
algebraic generalization of formal language theory, where he defines, for each monoid M, a
dioid (= idempotent semiring) CM of context-free subsets of M in a different way. An open
question is whether the two definitions of CM agree, and whether p-continuous Chomsky
algebras coincide with Hopkins’ C-dioids, just as *-continuous Kleene algebras coincide with
his R-dioids [6]. Hopkins left open whether the class of C-dioids is closed under the matrix
ring construction.

Another open question is whether CM can be constructed as an ideal-closure for a suitable
notion of C- or p-ideal of M, if M is an idempotent semiring or a Kleene algebra.

Acknowledgements. I thank Mark Hopkins for comments and questions on drafts of this
paper, for providing unpublished material of his extending [5], [6], and for email discussions
on the subject. Thanks also to Dexter Kozen for making me aware of [11] and reviving my
interest in the subject.
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A Appendix

Proof of claims following the definition of Park p-semiring. For t[z/uzt] = pat, we only
need the >-inequation:

tofuat] < pat  (by (1))
= tla/tlx/pat]] < tlz/pzt] (by monotonicity)
<

- pet < tlafuet] (by (2)).

For py.tlx/y] = pat with y & free(t),

to/py-tlz/yl] = tla/ylly/pytlz/y]
< pyte/y] (by (1))
= prt < py.tla/yl (by (2)).
By symmetry, we have py.tlx/y] < px.tlx/y|[y/z] = pat. <

Proof of Lemma 8, properties of term functions. It remains to be seen that the properties
of term functions in partially ordered p-semirings hold in M for terms of p-depth < k. We
consider the substitution property. Suppose r[x/s] has p-depth < k, and the substitution
property holds for terms of p-depth < k. If 2 does not occur freely in r, then r[z/s] = r and g
agrees with g[xz/sM (g)] on free(r), hence r[x/s]™ (g) = 7™ (g) = r™(g[z/sM(g)]). Otherwise,
if r is one of 0,1,y, (r1 + 72), (r1 - 72), the claim holds by induction. So suppose r = uyt
with z different from y. We may assume that y ¢ free(s). Then r[x/s] = py.t[x/s], and by

6:13
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induction, t[x/s]M (h) M (h[z/sM(h)]) for all h : X — M. Therefore, the least a € M
with t[z/s]™ (h[y/a]) < a, is the least a with

t (hl/sM (W)ly/a)) = t" (hly/al[x/s™ (hly/a])]) = t[z/s]" (hly/a]) < a

which is pyt™ (h[z/sM (h)]). Hence, r[x/s]M (h) = rM (h[x/s™ (h)]).

The other properties of term functions are shown similarly. Since M is an idempotent
semiring, + and - are monotone, hence t™ is monotone for any algebraic term ¢. By induction
on the p-depth, pxt™ is monotone, and if sM < M, we get pxs™ < paxtM | since any a with

tM(g[z/a]) < a satisfies sM (g[z/a]) < a. It is also clear that t*(g) = tM(h) if g agrees with

h on free(t). Hence, M is a partially ordered p-semiring. |
Proof of Lemma 13. By induction on |Z|. For |z \ 1, we have pxt[y/s] = px.t[y/s] by the
definition of [y/s]. For || > 1, assume Z = (y, 2), t = (r, s), and write @ for g, ¥ for 5. Then,

since y, z ¢ free(u),

pat[v/u] = ply, z)(r, s)[v/4]

(ny.r(z/pzs), pz.sly/pyr])[v/dl
((py-rlz/pes))[v/ul, (nz.sly/pyr))[v/u))
rlz/pzs][v/u], pe.sly/pyr][v/al)
r[o/ullz/pzs(v/ull, we.s[o/ully/ wyr(o/al])
(ny-r[v/al[z/ pz.s[v /)], pe.slo/ully/wy.r[v/a]])
1y, 2)(r[v/u], s[v/u)

I

(ny
(1y.
1y

Z.t[v/ul. <

Proof of Lemma 14. By induction on the dimension [t|, we prove (10), (9) and, moreover,
the substitution property for term vectors, for any ¢ : X — M, and § such that T ¢ free(s),

pat[y/3)M (g) = pat™ (9[5/5M (9)])-
We suppress parameters in the notation and consider z = (y, %), t= (f(y, Z),5(y, z)) with
19l, 2] < |Z|. For (10), suppose tuples a,b € A satisfy (7,5)™ (a,b) < (a,b). By induction,
pyr™Mz/b) < a and pzsMly/a) <b.
By the substitution property and monotonicity of term vectors of dimension < |t| via (11),
rlz/uzs)M(g/a] = [y/a,z/uzs"[y/a)
My /a, z/b]

INIA

.Q |

Using (10) inductively, ug.7[z/uzs|™ < a. Likewise, puz.5[y/pyr]™ < b, and so we obtain

(9, 2)(7, 5)M = (ng.7z/pzs)™, uz 5[5/ pgr)™) < (a,0).

To show (9), we improve readability by writing substitutions in place, i.e.
) = (a5 125) 2.5 2)) S5 128). 7.5 ).
As both components of t[z/uzt]™ < uzt™ can be treated alike, we only show the first one,

(g 7y, pzs), pz.5(pyr, 2))M < py.r(y, pzs)™. (24)
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By induction, 7(y, uz3)[y/py.7(y, pzs)|M < py.r(y, uzs)™, so for (24) it is sufficient to prove
F(py. 7 (g, pzs), pz.5(uyr, 2))M < 7y, pzs) g/ ny-r(y, pzs) ",

for which, by monotonicity of #™, it’s sufficient to show
pz.5(uyr, 2)M < pz.5(uyr(y, pzs), 2)M. (25)

Let @ = piy.7(y, uz5)™ and b the least V' with M (a,d') <V, i.e. b= puzsM[y/a). Then

™M(a,b) = 7lz/uzs]M(a) (by (11), inductively)
= 7(y,pzs)"[y/a]
< a (by (9), (11), inductively),

hence pyr™[2/b] < @ by an application of (10). By monotonicity, it follows that

M(a,b)

57 (7, 2), 7)™ [2/0] 8 _
b (by the choice of b).

ININA

An application of (10) to this gives puz.5(uy.7(y, 2), 7)™ < b, which is (25).
To show (11) for [¢| > 1, by induction it follows from Lemma 13 that

pztly/s)M (9) = (uztlg/s)™ (g)
the least @ such that t[y/5]™ (g[z/a]) < a

= uzt (gly/5" (9)]).
The case |t| = 1 is an instance of the substitution property for M. |

Omitted bits in the proof of Theorem 25. The properties of 0V, 1V 2N (s +¢)V and
(s-t)N are immediate from the definition. For example,

(s+ 0N (9) = (s +8)15(2) = (s'15(9) +M ' 15(@)) = sV (9) + '™ (g).

The p-rule holds in IV, since, by corollary 15, the vector version of the u-rule holds in M.

Namely, suppose s <tV and g: X — N. Then pxt™ (g) = pux't'™ () is the least @ such

that ' (g[2'/a]) < a by lemma 14. From sV <tV we get 5" (g[2'/a]) < "M (g[2'/a]) < a,

which implies pzs™ (g) < pzt™(g). <
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