A Parameterized Algorithmics Framework for
Degree Sequence Completion Problems in
Directed Graphs*

Robert Bredereck!, Vincent Froese?, Marcel Koseler3,
Marcelo Garlet Millani*, André Nichterlein'®, and
Rolf Niedermeier®

1 Institut fiir Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
robert.bredereck@tu-berlin.de

2 Institut fiir Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
vincent.froese@tu-berlin.de

3 Institut fiir Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
marcel.koseler@campus.tu-berlin.de

4 Institut fiir Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
marcelo.garletmillani@campus.tu-berlin.de

5 Institut fiir Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
andre.nichterlein@tu-berlin.de

6 Institut fiir Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
rolf.niedermeier@tu-berlin.de

—— Abstract

There has been intensive work on the parameterized complexity of the typically NP-hard task
to edit undirected graphs into graphs fulfilling certain given vertex degree constraints. In this
work, we lift the investigations to the case of directed graphs; herein, we focus on arc insertions.
To this end, our general two-stage framework consists of efficiently solving a problem-specific
number problem transferring its solution to a solution for the graph problem by applying flow
computations. In this way, we obtain fixed-parameter tractability and polynomial kernelizability
results, with the central parameter being the maximum vertex in- or outdegree of the output
digraph. Although there are certain similarities with the much better studied undirected case,
the flow computation used in the directed case seems not to work for the undirected case while
f-factor computations as used in the undirected case seem not to work for the directed case.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases NP-hard graph problem, graph realizability, graph modification, arc
insertion, fixed-parameter tractability, kernelization

Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.10

1 Introduction

Modeling real-world networks (e.g., communication, ecological, social) often requests directed
graphs (digraphs for short). We study a class of specific “network design” (in the sense of

* A full version of the paper is available at https://arxiv.org/abs/1604.06302.
t From Feb. 2016 to Jan. 2017 on postdoctoral leave to Durham University (GB), funded by DAAD.

© Robert Bredereck, Vincent Froese, Marcel Koseler, Marcelo Garlet Millani, André Nichterlein, and
5v Rolf Niedermeier;
licensed under Creative Commons License CC-BY
11th International Symposium on Parameterized and Exact Computation (IPEC 2016).
Editors: Jiong Guo and Danny Hermelin; Article No. 10; pp. 10:1-10:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.10
https://arxiv.org/abs/1604.06302
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2

A Framework for Degree Sequence Completion Problems in Directed Graphs

constructing a specific network topology) or “graph realization” problems. Here, our focus is
on inserting arcs into a given digraph in order to fulfill certain vertex degree constraints. These
problems are typically NP-hard, so we choose parameterized algorithm design for identifying
relevant tractable special cases. The main parameter we work with is the maximum in- or
outdegree of the newly constructed digraph. To motivate the problems we deal with, consider
the following three application scenarios.

1. Assume we are given a directed network representing a system’s current state. Then, each
individual node might have certain desired states of connectivity in terms of the numbers
of in- and outgoing arcs which we want to satisfy by inserting arcs between the nodes.
For instance, in a peer-review network we have an arc from one author reviewing a paper
of another author. Depending on research experience, the authors might have different
requests with respect to the number of own papers to be reviewed by others and other
papers which they are reviewing. This leads to the DIGRAPH DEGREE CONSTRAINT
COMPLETION problem as studied in Section 4.1.

2. Assume that we have two different data sources: A network which is an incomplete
measurement of some unreliable source and the true degree sequence of the target
network. The goal is to reconstruct the original network by inserting arcs such that we
obtain the target degree sequence (in a sense, the network matches the given degree
sequence). In the presence of labeled input networks this might for example reveal
communication patterns between users in social networks. The corresponding problem is
called DIGRAPH DEGREE SEQUENCE COMPLETION and studied in Section 4.2.

3. Assume we want to “k-anonymize” a social network, that is, after inserting a minimum
number of arcs each degree, that is, each combination of in- and outdegree, occurs either
zero or at least k times. This leads to the DIGRAPH DEGREE ANONYMITY problem as
studied in Section 4.3.

All three problems are NP-hard. Based on a general framework presented in Section 3, we
derive several fixed-parameter tractability results for them, mainly exploiting the parameter
“maximum vertex degree” in the output digraph. Moreover, the three problems above are
special cases of the DIGRAPH DEGREE CONSTRAINT SEQUENCE COMPLETION problem
which we will define next.

These three problems as well as DIGRAPH DEGREE CONSTRAINT SEQUENCE COMPLETION
are special graph modification problems: given a graph, can it be changed by a minimum
number of graph modifications such that the resulting graph adheres to specific constraints
for its degree sequence?

In the most basic variant a degree sequence is a sequence of positive integers specifying
(requested) vertex degrees for a fixed ordering of the vertices. Typically, the corresponding
computational problems are NP-hard. In recent years, research in this direction focused
on undirected graphs [8, 10, 11, 14, 18, 20]. In this work, we investigate parameterized
algorithms on digraphs. As Gutin and Yeo [12] observed, much less is known about the
structure of digraphs than that of undirected graphs making the design of parameterized
algorithms for digraphs more challenging. In particular, we present a general framework for
a class of degree sequence modification problems, focusing on the case of arc insertions (that
is, completion problems).

The most general degree completion problem for digraphs we consider in this work is as
follows.

R. Bredereck et al.

DIGRAPH DEGREE CONSTRAINT SEQUENCE COMPLETION (DDCONSEQC)

Input: A digraph D = (V,A), a non-negative integer s, a “degree list function”
T:V = 2{0""’T}2, and a “sequence property” II.

Question: s it possible to obtain a digraph D’ by inserting at most s arcs in D such that
the degree sequence of D’ fulfills IT and degp, (v) € 7(v) for allv € V?

We emphasize that there are two types of constraints — one (specified by the function 7)
for the individual vertices and one (specified by II) for the whole list of degree tuples. For
instance, a common II as occurring in the context of data privacy applications is to request
that the list is k-anonymous, that is, every combination of in- and outdegree that occurs in
the list occurs at least k times (see the third motivating example before).

Since DDCONSEQC and its special cases as studied here all turn out to be NP-hard [19, 15],
a parameterized complexity analysis seems the most natural fit for understanding the
computational complexity landscape of these kinds of problems — this has also been observed
in the above mentioned studies for the undirected case. Our main findings are mostly on the
positive side. That is, although seemingly more intricate to deal with due to the existence of
in- and outdegrees, many positive algorithmic results which hold for undirected graphs can
also be achieved for digraphs (albeit using different techniques). In particular, we present a
maximum-flow-based framework that, together with the identification and solution of certain
number problems, helps to derive several fixed-parameter tractability results with respect to
the parameter maximum possible in- or outdegree A* in any solution digraph. Notably, the
corresponding result in the undirected case was based on f-factor computations [8] which do
not transfer to the directed case, and, vice versa, the flow computation approach we present
for the directed case seemingly does not transfer to the undirected case. For special cases of
DDCONSEQC, we can move further and even derive some polynomial-size problem kernels,
again for the parameter A*.

We consider the parameter A* for the following reasons. First, it is always at most 7,
a natural parameter in the input. Second, in combination with I, we might get an even
smaller upper bound for A*. Third, bounded-degree graphs are well studied and our work
extends this since we only require A* to be small, not to be constant.

Related Work. Most of the work on graph modification problems for realizing degree
constraints has focused on undirected graphs [8, 10, 11, 14, 18, 20]. Closest to our work is
the framework for deriving polynomial-size problem kernels for undirected degree sequence
completion problems [8], which we complement by our results for digraphs. Generally, we can
derive similar results, but the technical details differ and the landscape of problems is richer in
the directed case. As to digraph modification problems in general, we are aware of surprisingly
little work. We mention work studying arc insertion for making a digraph transitive [22] or
for making a graph Eulerian [7], both employing the toolbox of parameterized complexity
analysis. Somewhat related is also work about the insertion of edges into a mixed graph to
satisfy local edge-connectivity constraints [1] or about orienting edges in a partially oriented
graph to make it an oriented graph [2].

Our Results. In Section 3, we present our general framework for DDCONSEQC. That is,
based on flow computations, in a two-stage approach we show that it is fixed-parameter
tractable with respect to the parameter A*. To this end, we identify a specific pure number
problem that needs to be fixed-parameter tractable with respect to the largest integer in the
input. Next, presenting applications of the framework, in Section 4.1, we show that if there
is no constraint IT concerning the degree sequence (that is, DIGRAPH DEGREE CONSTRAINT

10:3

IPEC 2016

10:4

A Framework for Degree Sequence Completion Problems in Directed Graphs

COMPLETION), then we not only obtain fixed-parameter tractability but also a polynomial-
size problem kernel for parameter A* can be obtained. Then, in Section 4.2 we show an
analogous result if there is one exactly specified degree sequence to be realized (DIGRAPH
DEGREE SEQUENCE COMPLETION). Finally, in Section 4.3, we show that if we request the
degree sequence to be k-anonymous (that is, DIGRAPH DEGREE ANONYMITY), then we can at
least derive a polynomial-size problem kernel for the combined parameter (s, Ap), where Ap
denotes the maximum in- or outdegree of the input digraph D. Also, we take a first step
outlining the limitations of our framework for digraphs. In contrast to the undirected case
(which is polynomial-time solvable [17]), the corresponding number problem of DIGRAPH
DEGREE ANONYMITY surprisingly is weakly NP-hard and presumably not polynomial-time
solvable. Due to lack of space, several proofs are deferred to a full version (available at
https://arxiv.org/abs/1604.06302).

2 Preliminaries

We consider digraphs (without multiarcs or loops) D = (V, A) with n := |V| and m := |A|.
For a vertex v € V, degp,(v) denotes the indegree of v, that is, the number of incoming
arcs of v. Correspondingly, degE (v) denotes the outdegree, that is, the number of outgoing
arcs of v. We define the degree degp(v) := (degp(v),degh (v)). The set V(A') :={v € V |
((v,w) € A"V (w,v) € A’) Nw € V} contains all vertices incident to an arc in A’ C V2.
For a set of arcs A’ C V2, D + A’ denotes the digraph (V, AU A’), while D[A’] denotes
the subdigraph (V(A’), A’). Analogously, for a set of vertices V' C V, D[V’] denotes
the induced subdigraph (V’, AN (V’)?) which only contains the vertices V’ and the arcs
between vertices from V’. The set Njj(v) := {w € V | (v,w) € A} denotes the set
of outneighbors of v. Analogously, N (v) := {w € V | (w,v) € A} denotes the set of
inneighbors. Furthermore, we define the maximum indegree Aj, := max,cy degp(v), the
maximum outdegree Al := max,cy deg},(v), and Ap := max{A}, AL}

A digraph degree sequence o = {(dy,df),...,(d;,d})} is a multiset of nonnegative

n»-n

integer tuples, where d; ,d;” € {0,...,n — 1} for all i € {1,...,n}. We define

A i=max{dy,...,d,}, AF:=max{d],...,d}}, and A, :=max{A, AT}
For a digraph D = ({v1,...,v,}, A) we denote by o(D) := {degp(v1), ..., degp(vn)},
the digraph degree sequence of D. Let d = (d,d") be a nonnegative integer tuple. For
a digraph D, the block Bp(d) of degree d is the set of all vertices having degree d, for-
mally Bp(d) :={v € V | degp(v) = d}. We define Ap(d) as the number of vertices in D
with degree d, that is, Ap(d) := |Bp(d)|. Similarly, we define B, (t) as the multiset of all
tuples equal to ¢ and A, (t) as the number of occurrences of the tuple ¢ in the multiset o. For
two integer tuples (z1,y1), (22, y2), we define the sum (z1,y1) + (22, y2) := (1 + 22, y1 + Y2).

3 The Framework

Our goal is to develop a framework for deriving fixed-parameter tractability for a general
class of completion problems in directed graphs. To this end, recall our general setting for
DDCONSEQC which is as follows. We are given a digraph and want to insert at most s
arcs such that the vertices satisfy certain degree constraints 7, and additionally, the degree
sequence of the digraph fulfills a certain property II. Formally, the sequence property II
is given as a function that maps a digraph degree sequence to 1 if the sequence fulfills the
property and otherwise to 0. We restrict ourselves to properties where the corresponding

https://arxiv.org/abs/1604.06302

R. Bredereck et al.

function can be encoded with only polynomially many bits in the number of vertices of the
input digraph and can be decided efficiently.! We remark that it is not always the case that
there are both vertex degree constraints (as defined by 7) and degree sequence constraints (as
defined by IT) requested. This can be handled by either setting 7 to the trivial degree list
function with 7(v) = {0,...,n — 1}? for all v € V or setting II to allow all possible degree
sequences.

In this section, we show how to derive (under certain conditions) fixed-parameter trac-
tability with respect to the maximum possible in- or outdegree A* of the output digraph
for DDCONSEQC. Note that A* in general is not known in advance. In practice, we might
therefore instead consider upper bounds for A* which depend on the given input. For
example, it always holds A* < min{r, Ap + s} since we are only inserting at most s arcs
in D. Clearly, A* might also be upper-bounded depending on II (or even depending on r,
s, Ap, and II) in some cases. Our generic framework consists of two main steps: First,
we prove fixed-parameter tractability with respect to the combined parameter (s, Ap) in
Section 3.1. This step generalizes ideas for the undirected case [8]. Note that Ap < A*
trivially holds. Second, we show in Section 3.2 how to upper-bound the number s of arc
insertions polynomially in A* by solving a certain problem specific numerical problem. For
this step, we develop a new key argument based on a maximum flow computation (the
undirected case was based on f-factor arguments).

3.1 Fixed-parameter tractability with respect to (s, Ap)

We show that DDCONSEQC is fixed-parameter tractable with respect to the combination
of the maximum number s of arcs to insert and the maximum in- or outdegree Ap of
the input digraph D. The basic idea underlying this result is that two vertices v and w
with degp, (v) = degp(w) and 7(v) = 7(w) are interchangeable. Accordingly, we will show that
it suffices to consider only a bounded number of vertices with the same “degree properties”.
In particular, if there is a solution, then there is also a solution that only inserts arcs between
a properly chosen subset of vertices of bounded size. To formalize this idea, we introduce the
notion of an a-block-type set for some positive integer .

To start with, we define the types of a vertex via the numbers of arcs that 7 allows
to add to this vertex. Let (D, s, 7,II) be a DDCONSEQC instance. A vertex v is of type
t €{0,...,A*}? if degp(v) +t € 7(v). Observe that one vertex can be of several types.
The subset of V(D) containing all vertices of type t is denoted by Tp ,(t). A vertex v of
type (0,0) (that is, degp(v) € 7(v)) is called satisfied. A vertex which is not satisfied is
called unsatisfied. We next define our notion of a-block-type sets and its variants.

» Definition 1. Let « be a positive integer and let U C V(D) denote the set of all unsatisfied
vertices in D. A vertex subset C' C V(D) with U C C is called
a-type set if, for each type ¢ # (0,0), C contains exactly min{|Tp -(t) \ U|, a} satisfied
vertices of type ¢;
a-block set if, for each degree d € o(D), C contains exactly min{|Bp(d) \ U|, a} satisfied
vertices with degree d;
a-block-type set if, for each degree d € o(D) and each type t # (0,0), C' contains exactly
min{|(Bp(d) NTp -(t)) \ U|, o} satisfied vertices of degree d and type ¢.

L All specific properties in this work can be easily decided in polynomial time. Indeed, in many cases
even fixed-parameter tractability with respect to the maximum integer in the sequence would suffice.

10:5

IPEC 2016

10:6

A Framework for Degree Sequence Completion Problems in Directed Graphs

As a first step, we prove that these sets defined above can be computed efficiently.

» Lemma 2. An a-type/a-block/a-block-type set C' as described in Definition 1 can be
computed in O(m + |7| +712) /O(m+n+A%) /O(m+ |7| + A%r?) time.

We move on to the crucial lemma stating that a solution (that is, a set of arcs), if existing,
can always be found in between vertices of an a-block-type set C given that C contains
“enough” vertices of each degree and type. Here, enough means « := 2s(Ap + 1).

» Lemma 3. Let (D,s,7,II) be a DDCONSEQC instance and let C C V(D) be a 2s(Ap +
1)-block-type set. If (D,s,7,11) is a yes-instance, then there ewists a solution A* C C?
for (D, s, 7,1I), that is, |A*| < s, o(D + A*) fulfills I, and degp 4-(v) € T(v) for allv €
V(D).

If there are no restrictions on the resulting degree sequence (as it is the case for the
DiGRAPH DEGREE CONSTRAINT COMPLETION problem (DDCONC) in Section 4.1), then
we can replace the 2s(Ap + 1)-block-type set in Lemma 3 by a 2s(Ap + 1)-type set:

» Lemma 4. Let (D,s,7) be a DDCONC instance and let C C V(D) be a 2s(Ap + 1)-type
set. If (D, s,T) is a yes-instance, then there exists a solution A* C C? for (D, s,T), that is,
|A*| < s and degp, 4-(v) € T(v) for allv € V(D).

Similarly, if there are no restrictions on the individual vertex degrees, that is, 7 is
the degree list function 7(v) = {0,...,n — 1}? for all v € V(D), then we can replace
the 2s(Ap + 1)-block-type set by a 2s(Ap + 1)-block set.

» Lemma 5. Let (D, s,7,11) be a DDCONSEQC instance where 7(v) = {0,...,n — 1}? for
allv e V(D) and let C C V(D) be a 2s(Ap + 1)-block set. If (D, s, r,1I) is a yes-instance,
then there exists a solution A* C C? for (D, s, 7,11), that is, |A*| < s and o(D+ A*) fulfills II.

Lemma 3 implies a fixed-parameter algorithm by providing a reduced search space for
possible solutions, namely any 2s(Ap + 1)-block-type set C: Simply try out all possibilities
to insert at most s arcs with endpoints in C' and check whether in one of the cases the degrees
and the degree sequence of the resulting graph satisfy the requirements 7 and II. As |C] <
25(Ap +1) - (Ap + 1)2(A*)2 and A* < Ap + s, there are at most O(22s(Ap+D*(Ap+9)%)%)
possible subsets of arcs to insert. Altogether, this leads to the following theorem.

» Theorem 6. If deciding Il is fized-parameter tractable with respect to the maximum integer
in the sequence, then DDCONSEQC is fized-parameter tractable with respect to (s, Ap).

3.2 Bounding the solution size s polynomially in A*

This subsection constitutes the major part of our framework. The rough overall scheme is
analogous to the undirected case as described by Froese et al. [8]. By dropping the graph
structure and solving a simpler problem-specific number problem on the degree sequence
of the input digraph, we show how to solve DDCONSEQC instances with “large” solutions
provided that we can solve the associated number problem efficiently. The number problem is
defined so as to simulate the insertion of arcs to a digraph on an integer tuple sequence. Note
that inserting an arc increases the indegree of a vertex by one and increases the outdegree
of another vertex by one. Inserting s arcs can thus be represented by increasing the tuple
entries in the degree sequence by an overall value of s in each component. Formally, the
corresponding number problem (abbreviated as #DDCONSEQC) is defined as follows.

R. Bredereck et al.

Figure 1 A flow network as described in Construction 8. For each vertex v; in the digraph D
there are two vertices v;” and v; . We connect a vertex v;| to a vertex vy if the arc (v;,v;) is not in

D. Inserting the arc (v;,v;) is then represented by setting the flow on the arc (v;", v;) to onme.

NUMBERS ONLY DIGRAPH DEGREE CONSTRAINT SEQUENCE COMPLETION

Input: A sequence o = (¢1,d1), ..., (cn,dy) of n nonnegative integer tuples, a positive
integer s, a “tuple list function” 7: {1,...,n} — 2{0""”“}2, and a sequence
property 1I.

Question: Is there a sequence o’ = (¢}, d}), ..., (¢, d,) such that >""" | cf—c; =Y 0 di—

d; =s,¢; <c,d; <d.,, and (c,,d}) € 7(i) for all 1 <14 < n, and o' fulfills II?

1)

If we plug the degree sequence of a digraph into #DDCONSEQC, then an integer tuple (¢}, d})
of a solution tells us to add z; := ¢, — ¢; incoming arcs and y; := d} — d; outgoing arcs to the
vertex v;. We call the tuples (z;,y;) demands. Having computed the demands, we can then
try to solve our original DDCONSEQC instance by searching for a set of arcs to insert that
exactly fulfills the demands. Such an arc set, however, might not always exist. Hence, the
remaining problem is to decide whether it is possible to realize the demands in the given
digraph. The following lemma shows (using flow computations) that this is in fact always

possible if the number s of arcs to insert is large compared to A*.

» Lemma 7. Let D = (V = {v1,...,0,}, A) be a digraph and let x1,...,Zn, Y1,--,Yn,
and A* be nonnegative integers such that

(I) A* S n—]-7

(1) degp(vs) + 2 < A* forallie{1,...,n},
(1) degh(vi) +y; < A* foralli € {1,...,n},
(V) Y@= yi=:s, and

(V) s>2(A%)2.

Then, there exists an arc set A’ C V2\ A of size s such that for the digraph D' := D + A’

it holds degp: (v;) = degp(v;) + (x4, ;) for all v; € V. Moreover, the set A’ can be computed
in O(n3) time.

Proof. The proof is based on a flow network which we construct such that the corresponding
maximum flow yields the set A’ of arcs to be inserted in D in order to obtain our target
digraph D’.

» Construction 8. We build a flow network N = (Vy, An) according to the following steps.
Add a source vertex v, and a sink verter vy to N;
for each vertex v; € V, add two vertices vf, v, to N;

for each i € {1,...,n}, insert the arc (vs,v;") with capacity y;;
for each i € {1,...,n}, insert the arc (v; ,v;) with capacity z;;
for each (vi,vj) € VZ\ A with i # j, insert the arc (vj',vj_) with capacity one.

The network N contains |[Vy| € O(n) vertices and |Ay| € O(n? — m) arcs (since
m < n? —n, we also have |Ayx| € Q(n)) and can be constructed in O(n?) time. See Figure 1

10:7

IPEC 2016

10:8

A Framework for Degree Sequence Completion Problems in Directed Graphs

for an illustration. Inserting an arc (v;,v;) in D corresponds to sending flow from Uf to v; .
Since, by definition, each vertex v;” will only receive at most y; flow from vs and each vertex
v; will send at most z; flow to v, we cannot insert more than s arcs (Condition (IV)).

We claim that for s > 2(A*)? (Condition (V)), the maximum flow in the network is
indeed s. To see this, let Vi := {v;" € Vi |i € {1,...,n}} and let Vy :={v; € Vy |i €
{1,...,n}}. In the following, a vertex v;” € V¥ (v; € Vi) is called saturated with respect
to a flow f: Ay — RT, if f(vs,v]") = y; (f(v;,vt) = z;). Suppose that the maximum
flow f has a value less than s. Then, there exist non-saturated vertices v;” € V5 and
€ Vy. Let X €V be the vertices to which v;" has an outgoing arc in the residual graph
; in the residual graph.
Observe that degf; (v;) = n—1—deg} (v;) and degy(v;) =n—1—degp(v;). Consequently,
|X| >n—1-degh(v;) —y; > n—1— A* holds due to Condition (III). Since v;" is not

J
and let Y C V¥ be the vertices which have an outgoing arc to v

v

1
saturated, we know that | X| > n — A* > 1 (due to Condition (I)). By the same reasoning
(using Conditions (II) and (I)) it follows that |Y| >n — A* > 1.

Remember that f is a flow of maximum value. Hence, each vertex in X and each vertex
in Y is saturated. Otherwise, there would be an augmenting path in the residual graph,
contradicting our assumption of f being maximal. If a vertex x € X would receive flow
from a vertex y € Y, then this implies a backward arc in the residual graph resulting in
;" — x — y — v; — v, again contradicting our maximality
assumption for f. Thus, we can conclude that all the flow that goes into X has to come from
the remaining vertices in V5 \ (Y U{v;"}). This set has size at most n—|Y| < n—(n—A*) = A*.
But since yp < A* for all £ € {1,...,n} (by Condition (III)), those A* vertices can cover at
most a flow of value (A*)? and hence,

Yo Y w2 1)

v €EX vievi\(vYu{v]})

an augmenting path vy, — v

Since X is saturated, and since also x, < A* holds for all £ € {1,...,n} (Condition (II)), we
obtain from Condition (IV)

- 1)
S:Zasi:in—&— Z z; < (A*)? + Z A*
i=1 v eX v eVI\X v €V\X

= (A7) +[Vy \ X|- A" = (A")" + (n — |X]) - A7

This contradicts s > 2(A*)? (Condition (V)) and hence proves the claim.

Now, let f be a maximum flow in N (computable in O(|Vx||Ex|) = O(n(n?—m)) time [21])
and let A" := {(v;,v;) € V| f((vj,vj_)) = 1} and note that |A’| = s and A'NA =). Clearly,
for the digraph D’ := D + A’ it holds degp, (v;) = degp(v;) + (x4, y;) for all v; € V. <

We remark that similar flow-constructions as given in the proof above have been used
before [9, 6]. The difference here is that we actually argue about the size of the flow and not
only about polynomial-time solvability. Consequently, our proof uses different arguments.

With Lemma 7 we have the key which allows us to transfer solutions of #DDCONSEQC
to solutions of DDCONSEQC. The following lemma is immediate.

» Lemma 9. Let I := (D = (V,A),s,7,1I) with V. = {v1,...,v,} be an instance of
DDCONSEQC with s > 2(A*)2. If there exists an s’ with 2(A*)? < s’ < s such that
I’ := (degp(v1),...,degp(vy), ', 7', 1) with 7'(i) := 7(v;) for all v; € V is a yes-instance
of #DDCONSEQC, then also I is a yes-instance of DDCONSEQC.

R. Bredereck et al.

{(0, D)} {(1,0), (2,00} {(0,1)} {0, D} {20} {11, (2,1}
O——CO-----0 O—O O

Figure 2 Two example instances of DDCONC with s = 1. The left instance is solvable by
inserting the (dashed) arc from the right vertex to the middle vertex. The right instance is a
no-instance since one cannot add an outgoing arc to the left vertex or to the middle vertex but one
has to add an incoming arc to the right vertex (loops are not allowed).

We now have all ingredients for our first main result, namely transferring fixed-parameter
tractability with respect to the combined parameter (s, A*) to fixed-parameter tractability
with respect to the single parameter A*, provided that #DDCONSEQC is fixed-parameter
tractable with respect to the largest possible integer £ in the output sequence. The idea is to
search for large solutions based on Lemma 9 using #DDCONSEQC. If there are no large
solutions (that is, s < 2(A*)?), then we run an FPT-algorithm with respect to (s, A*).

» Theorem 10. If DDCONSEQC is fized-parameter tractable with respect to (s, A*) and
#DDCONSEQC is fized-parameter tractable with respect to the largest possible integer & in
the output sequence, then DDCONSEQC is fized-parameter tractable with respect to A*.

Our second main result allows to transfer a polynomial-size problem kernel with respect
to (s, A*) to a polynomial-size problem kernel with respect to A* if #DDCONSEQC is
polynomial-time solvable. The proof is analogous to the proof of Theorem 10.

» Theorem 11. If DDCONSEQC admits a problem kernel containing g(s, A*) vertices
computable in p(n) time and #DDCONSEQC is solvable in q(n) time for polynomials p
and q, then DDCONSEQC admits a problem kernel with g(2(A*)2, A*) vertices computable
in O(s - q(n) +p(n)) time.

4 Applications

In the following, we show how the framework described in Section 3 can be applied to three
special cases of DDCONSEQC. These special cases naturally extend known problems on
undirected graphs to the digraph setting.

4.1 Digraph Degree Constraint Completion

In this section, we investigate the NP-hard special case of DDCONSEQC? where the prop-
erty I allows any possible degree sequence, see Figure 2 for two illustrating examples.

DIGRAPH DEGREE CONSTRAINT COMPLETION (DDCONC)

Input: A digraph D = (V, A), a positive integer s, and a “degree list function”
70V = 2000,

Question: s it possible to obtain a digraph D’ by inserting at most s arcs in D such that
degp (v) € T(v) for all v € V?

DDCOoNC is the directed (completion) version of the well-studied undirected DEGREE
CONSTRAINT EDITING problem [18, 10] for which problem kernel with O(r%)-vertices is

2 This special case was investigated more specifically in the Bachelor thesis of Koseler [15] (online
available).

10:9

IPEC 2016

10:10

A Framework for Degree Sequence Completion Problems in Directed Graphs

2\0 o ={(0,3),(1,1),(2,0), (2,1)}
O O

Figure 3 Example instance of DDSEQC. Inserting the dashed arc in the input digraph (solid arcs)
with degree sequence {(0,1), (0,2),(2,0),(2,1)} yields a digraph with the given target sequence o.

known [8]. We subsequently transfer the polynomial-size problem kernel for the undirected
case to a polynomial-size problem kernel for DDCONC with respect to A*. Note that the
parameter A* is clearly at most r. Since it is trivial to decide II in this case, we obtain
fixed-parameter tractability of DDCONC with respect to (s, Ap) due to Theorem 6, which
is based on a bounded search space, namely a 2s(Ap + 1)-type set (see Definition 1 and
Lemma 4). We further strengthen this result by removing all vertices that are not in the
2s(Ap + 1)-type set and adjusting the degree list function 7 appropriately. Lemma 4 then
yields the correctness of this approach resulting in a polynomial-size problem kernel with
respect to (s, A*).

» Theorem 12. DDCONC admits a problem kernel containing O(s(A*)3) C O(sr3) vertices.
It is computable in O(m + |7| + r?) time.

The goal now is to use our framework (Theorem 11) to transfer the polynomial-size kernel
with respect to (s, A*) to a polynomial-size kernel with respect to A*. To this end, we
show that the corresponding number problem (#DDCO0ONC) is polynomial-time solvable.
Here, #DDCONC is the special case of #DDCONSEQC without the sequence property II.
#DDCONC can be solved in pseudo-polynomial time by a dynamic programming algorithm.
Note that pseudo-polynomial time is sufficient for our purposes since all occurring numbers
will be bounded by O(n?) when creating the #DDCONC instance from the given DDCONC
instance. (In fact, we conjecture that £#DDCONC is weakly NP-hard and a reduction from
PARTITION should be possible as in the case for #DDA in Section 4.3, Theorem 19.)

» Lemma 13. #DDCONC is solvable in O(n(sr)?) time.
Combining Theorem 12 and Lemma 13 yields the following corollary of Theorem 11.

» Corollary 14. DDCONC admits a problem kernel containing O((A*)%) C O(r®) vertices.
It is computable in O(m + ns3r?) time.

4.2 Digraph Degree Sequence Completion

In this section, we investigate the NP-hard special case of DDCONSEQC? where 7 does not
restrict the allowed degree of any vertex and II is fulfilled by exactly one specific degree
sequence o (see Figure 3 for an example). The undirected problem variant is studied by
Golovach and Mertzios [11].

DiGRAPH DEGREE SEQUENCE COMPLETION (DDSEQC)

Input: A digraph D = (V, A), a digraph degree sequence o containing |V| integer
tuples.

Question: Is it possible to obtain a digraph D’ by inserting arcs in D such that o(D’) = o?

3 Although not stated explicitly, the NP-hardness follows from the proof of Theorem 3.2 of the Bachelor
thesis of Millani [19] (online available) as the construction therein allows for only one feasible target
degree sequence.

R. Bredereck et al. 10:11

o0 00 ey

Figure 4 Example instance of DDA. The input digraph with three components (solid arcs) is
1-anonymous since there is only one vertex with degree (0,1). By inserting the dashed arc, the
digraph becomes 7-anonymous since all vertices have degree (1,1).

For DDSEQC, the parameter A* is by definition equal to A,. Moreover, note that the
number s of arcs to insert (if possible) is determined by the target sequence o by s :=
2 (edyer €~ 2ovev(p) degp(v). We henceforth assume that

s = Z c— Z degp(v) = Z d— Z degh(v) >0

(c,d)eo veV (D) (c,d)eo veV (D)

holds since otherwise we have a trivial no-instance.

Since deciding IT (that is, deciding whether o(D’) =) can be done in polynomial time, we
immediately obtain fixed-parameter tractability of DDSEQC with respect to (s, Ap) due to
Theorem 6. We further strengthen this result by developing a polynomial-size problem kernel
for DDSEQC with respect to (s, A,). The kernelization is inspired by the O(sAZ)-vertex
problem kernel for the undirected problem by Golovach and Mertzios [11]. The main idea is
to only keep the vertices of a 2s(Ap + 1)-block set (see Definition 1) together with some
additional “dummy” vertices and to adjust the digraph degree sequence o properly.

» Theorem 15. DDSEQC admits a problem kernel containing O(sA3) vertices computable
in O(n +m+ AZ) time.

The corresponding number problem #DDSEQC is the special case of #DDCONSEQC
asking for the specific target sequence 0. #DDSEQC can be solved in polynomial time by
finding perfect matchings in an auxiliary graph.

» Lemma 16. #DDSEQC is solvable in O(n?5) time.
Combining Theorem 15 and Lemma 16 yields the following corollary of Theorem 11.

» Corollary 17. DDSEQC admits a problem kernel containing O(A3) vertices. It is com-
putable in O(sn*®)-time.

4.3 Degree Anonymity

We extend the definition of DEGREE ANONYMITY in undirected graphs due to Liu and
Terzi [17] to digraphs and obtain the following NP-hard problem [19] (Figure 4 presents an
example):

DIGRAPH DEGREE ANONYMITY (DDA)

Input: A digraph D = (V, A) and two positive integers k and s.

Question: Is it possible to obtain a digraph D’ by inserting at most s arcs in D such
that D’ is k-anonymous, that is, for every vertex v € V there are at least
k — 1 other vertices in D" with degree degp, (v)?

The (parameterized) complexity as well as the (in-)approximability of the undirected version

called DEGREE ANONYMITY are well-studied [5, 14, 3]. There also exist many heuristic
approaches to solve the undirected version [4, 13]. Notably, our generic approach shown

IPEC 2016

10:12

A Framework for Degree Sequence Completion Problems in Directed Graphs

in Section 3.2 originates from a heuristic of Liu and Terzi [17] for DEGREE ANONYMITY.
Later, Hartung et al. [14] used this heuristic to prove that “large” solutions of DEGREE
ANONYMITY can be found in polynomial time and Froese et al. [8] extended this approach
to a more general class of problems. The property II (that is, k-anonymity) can clearly be
checked for a given input digraph degree sequence in polynomial time. Hence, Theorem 6
yields fixed-parameter tractability of DDA with respect to (s, Ap). Again, we develop a
polynomial-size problem kernel with respect to (s, Ap). Somewhat surprisingly, we cannot
transfer this problem kernel to a problem kernel with respect to A* since we are not able to
solve the corresponding number problem in polynomial time. In fact, we will show that it is
at least weakly NP-hard.

We first provide a problem kernel based on Lemma 5 in a similar fashion as in the proof
of Theorem 15: We keep a 2s(Ap + 1)-block set C' in the kernel and remove all other vertices.
In order to not change the degrees of the vertices we kept, we introduce “dummy” vertices
that will have a very high degree so that there is no interference with the vertices we kept.
The approach is inspired by the polynomial-size problem kernel of Hartung et al. [14].

» Theorem 18. DDA admits a problem kernel containing O(A%s) vertices. It is computable
in O(ARs* + A3 sn) time.

In contrast to both number problems in Sections 4.1 and 4.2, we were unable to find a
polynomial-time algorithm for the number problem for DDA, which is the special case of
#DDCONSEQC asking for a k-anonymous target sequence. We can show that #DDA is
weakly NP-hard by a polynomial-time many-one reduction from PARTITION.

» Theorem 19. #DDA is (weakly) NP-hard even if k = 2.

Note that the hardness from Theorem 19 does not translate to instances of #DDA
originating from digraph degree sequences because in such instances all numbers in the input
sequence o and also in the output sequence o’ are bounded by n — 1 where n is the number of
tuples in o. Since there are pseudo-polynomial-time algorithms for PARTITION, Theorem 19
leaves open whether #DDA is strongly NP-hard or can be solved in polynomial time for
instances originating from digraphs.

To again apply our framework (Theorem 10), we show that #DDA is at least fixed-
parameter tractable with respect to the largest possible integer € in the output sequence. To
this end, we develop an integer linear program that contains at most O(£*) integer variables
and apply the a famous result due to Lenstra [16].

» Theorem 20. #DDA is fixed-parameter tractable with respect to the largest possible
integer & in the output sequence.

Combining Theorems 6, 10, and 20 yields fixed-parameter tractability for DDA with
respect to A*. Hartung et al. [14] showed fixed-parameter tractability with respect to Ag in
the undirected setting. This result was based on showing that A* < AZ +5AZ + 2. In the
directed setting, however, we can only show that A* < 4k(Ap + 2)2.

» Lemma 21. Let D be a digraph and let S be a minimum size arc set such that D + S is
k-anonymous. Then the mazimum degree in D + S is at most 4k(Ap +2)? + Ap.

Consequently, combining Theorems 6, 10, 20, and Lemma 21, we obtain the following.
» Corollary 22. DDA s fized-parameter tractable with respect to A* and (k,Ap).

It remains open whether DDA is fixed-parameter tractable with respect to Ap. We
remark that the problems DDCONC and DDSEQC are both NP-hard for Ap = 3. This
follows from an adaption of the construction given by Millani [19, Theorem 3.2].

R. Bredereck et al.

5 Conclusion

We proposed a general framework for digraph degree sequence completion problems and
demonstrated its wider applicability in case studies. Somewhat surprisingly, the presumably
more technical case of digraphs allowed for some elegant tricks (based on flow computations)
that seem not to work for the presumably simpler undirected case. Once having established
the framework (see Section 3), the challenges then associated with deriving fixed-parameter
tractability and kernelizability results usually boil down to the question for fixed-parameter
tractability and (pseudo-)polynomial-time solvability of a simpler problem-specific number
problem. While in most cases we could develop polynomial-time algorithms solving these
number problems, in the case of DIGRAPH DEGREE ANONYMITY the polynomial-time
solvability of the associated number problem remains open. Moreover, a widely open field
is to attack weighted versions of our problems. Finally, we believe that due to the fact
that many real-world networks are inherently directed (e.g., representing relations such as
“follower”, “likes”, or “cites”) further studies (e.g., exploiting special digraph properties) of
digraph degree sequence completion problems are desirable.

—— References

1 Jgrgen Bang-Jensen, Andras Frank, and Bill Jackson. Preserving and increasing local
edge-connectivity in mixed graphs. SIAM Journal on Discrete Mathematics, 8(2):155-178,
1995.

2 Jgrgen Bang-Jensen, Jing Huang, and Xuding Zhu. Completing orientations of partially
oriented graphs. CoRR abs/1509.01501, 2015.

3 Cristina Bazgan, Robert Bredereck, Sepp Hartung, André Nichterlein, and Gerhard J.
Woeginger. Finding large degree-anonymous subgraphs is hard. Theoretical Computer
Science, 622:90-110, 2016.

4 Jordi Casas-Roma, Jordi Herrera-Joancomarti, and Viceng Torra. An algorithm for k-
degree anonymity on large networks. In Proceedings of the International Conference on
Advances in Social Networks Analysis and Mining (ASONAM’13), pages 671-675. ACM,
2013.

5 Sean Chester, Bruce Kapron, Gautam Srivastava, and S. Venkatesh. Complexity of social
network anonymization. Social Network Analysis and Mining, 3(2):151-166, 2013.

6 Marek Cygan, Daniel Marx, Marcin Pilipczuk, Michat Pilipczuk, and Ildik6 Schlotter. Pa-
rameterized complexity of eulerian deletion problems. Algorithmica, 68(1):41-61, 2014.

7 Frederic Dorn, Hannes Moser, Rolf Niedermeier, and Mathias Weller. Efficient algo-
rithms for eulerian extension and rural postman. SIAM Journal on Discrete Mathematics,
27(1):75-94, 2013.

8 Vincent Froese, André Nichterlein, and Rolf Niedermeier. Win-win kernelization for degree
sequence completion problems. Journal of Computer and System Sciences, 82(6):1100-1111,
2016.

9 D. Gale. A theorem on flows in networks. Pacific Journal of Mathematics, 7:1073-1082,
1957.

10 Petr A. Golovach. Editing to a graph of given degrees. Theoretical Computer Science,
591:72-84, 2015.

11 Petr A. Golovach and George B. Mertzios. Graph editing to a given degree sequence. In
Proceedings of the 11th International Computer Science Symposium in Russia (CSR’16),
volume 9691 of LNCS, pages 177-191. Springer, 2016.

12 Gregory Gutin and Anders Yeo. Some parameterized problems on digraphs. Computer
Journal, 51(3):363-371, 2008.

10:13

IPEC 2016

10:14

A Framework for Degree Sequence Completion Problems in Directed Graphs

13

14

15

16

17

18

19

20

21

22

Sepp Hartung, Clemens Hoffmann, and André Nichterlein. Improved upper and lower
bound heuristics for degree anonymization in social networks. In Proceedings of the 13th
International Symposium on Experimental Algorithms (SEA’14), volume 8504 of LNCS,
pages 376-387. Springer, 2014.

Sepp Hartung, André Nichterlein, Rolf Niedermeier, and Ondfej Suchy. A refined complex-
ity analysis of degree anonymization in graphs. Information and Computation, 243:249-262,
2015.

Marcel Koseler. Kernelization for degree-constraint editing on directed graphs. Bachelor
thesis, TU Berlin, November 2015. URL: http://fpt.akt.tu-berlin.de/publications/
theses/BA-marcel-koseler.pdf.

Hendrik W. Lenstra. Integer programming with a fixed number of variables. Mathematics
of Operations Research, 8:538-548, 1983.

Kun Liu and Evimaria Terzi. Towards identity anonymization on graphs. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, SIGMOD’08, pages
93-106. ACM, 2008.

Luke Mathieson and Stefan Szeider. Editing graphs to satisfy degree constraints: A param-
eterized approach. Journal of Computer and System Sciences, 78(1):179-191, 2012.
Marcelo Garlet Millani. Algorithms and complexity for degree anonymization in directed
graphs. Bachelor thesis, TU Berlin, March 2015. URL: http://fpt.akt.tu-berlin.de/
publications/theses/BA-marcelo-millani.pdf.

Hannes Moser and Dimitrios M. Thilikos. Parameterized complexity of finding regular
induced subgraphs. Journal of Discrete Algorithms, 7(2):181-190, 2009.

James B. Orlin. Max flows in o(nm) time, or better. In Proceedings of the 45th Annual
ACM Symposium on Theory of Computing (STOC’13), pages 765-774. ACM, 2013.
Mathias Weller, Christian Komusiewicz, Rolf Niedermeier, and Johannes Uhlmann. On
making directed graphs transitive. Journal of Computer and System Sciences, 78(2):559—
574, 2012.

http://fpt.akt.tu-berlin.de/publications/theses/BA-marcel-koseler.pdf
http://fpt.akt.tu-berlin.de/publications/theses/BA-marcel-koseler.pdf
http://fpt.akt.tu-berlin.de/publications/theses/BA-marcelo-millani.pdf
http://fpt.akt.tu-berlin.de/publications/theses/BA-marcelo-millani.pdf

	Introduction
	Preliminaries
	The Framework
	Fixed-parameter tractability with respect to (s,Delta-D)
	Bounding the solution size s polynomially in Delta*

	Applications
	Digraph Degree Constraint Completion
	Digraph Degree Sequence Completion
	Degree Anonymity

	Conclusion

