
Lower Bounds for Protrusion Replacement by
Counting Equivalence Classes∗†

Bart M. P. Jansen1 and Jules J. H. M. Wulms2

1 Eindhoven University of Technology, Eindhoven, The Netherlands
b.m.p.jansen@tue.nl

2 Eindhoven University of Technology, Eindhoven, The Netherlands
j.j.h.m.wulms@tue.nl

Abstract
Garnero et al. [SIAM J. Discrete Math. 2015, 29(4):1864–1894] recently introduced a framework
based on dynamic programming to make applications of the protrusion replacement technique
constructive and to obtain explicit upper bounds on the involved constants. They show that for
several graph problems, for every boundary size t one can find an explicit setRt of representatives.
Any subgraph H with a boundary of size t can be replaced with a representative H ′ ∈ Rt such
that the effect of this replacement on the optimum can be deduced from H and H ′ alone. Their
upper bounds on the size of the graphs in Rt grow triple-exponentially with t. In this paper we
complement their results by lower bounds on the sizes of representatives, in terms of the boundary
size t. For example, we show that each set of planar representatives Rt for the Independent
Set problem contains a graph with Ω(2t/

√
4t) vertices. This lower bound even holds for sets that

only represent the planar subgraphs of bounded pathwidth. To obtain our results we provide
a lower bound on the number of equivalence classes of the canonical equivalence relation for
Independent Set on t-boundaried graphs. We also find an elegant characterization of the
number of equivalence classes in general graphs, in terms of the number of monotone functions of
a certain kind. Our results show that the number of equivalence classes is at most 22t , improving
on earlier bounds of the form (t+ 1)2t .
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1 Introduction

Protrusion replacement is a versatile tool for attacking optimization problems on graphs.
When applied to solve an optimization problem on a graph G, the main idea is the following:
repeatedly replace a protrusion subgraph H ⊆ G that interacts with the rest of G through a
small boundary, by a smaller representative subgraph H ′. Suppose that we can ensure that (i)
the change ∆ in the optimum caused by this replacement only depends on H and H ′, and that
(ii) we can efficiently analyze H to find a suitable replacement H ′ and the corresponding ∆.
Then we can solve the problem on G by solving it on the smaller graph and adding ∆ to the
final result. In recent years, protrusion replacement has been applied to obtain approximation
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17:2 Lower Bounds for Protrusion Replacement by Counting Equivalence Classes

algorithms [7, 8], kernelization algorithms [1, 7, 8, 10, 15], and fixed-parameter tractable
algorithms [8, 15]. The generality of protrusion replacement comes at a price: it often results
in proofs that efficient algorithms of a certain type exist, without showing explicitly how such
algorithms can be constructed and without giving any explicit bounds on the constant factors
involved in the analysis. This non-constructivity stems from the use of a property called
finite integer index (FII, defined below). It is used to argue that for every constant boundary
size t, there is a finite set of representatives Rt such that any t-boundaried subgraph H can
safely be replaced by some representative H ′ ∈ Rt, as described above. The key issue is that
FII only guarantees that a finite set of representatives exist, without showing how to find it,
how large the set is, or how many vertices the representative subgraphs have.

To deal with the issue of non-constructivity, Garnero et al. [12] introduced a framework
based on dynamic programming. They showed that explicit bounds for the sizes of represen-
tatives can be obtained by analyzing the number of states required to solve the problem on
graphs of bounded treewidth. By presenting explicit dynamic programming algorithms for
problems such as r-Independent Set and r-Dominating Set, they were able to derive
upper bounds on the size of representatives in terms of the boundary size t. These upper
bounds grow very quickly with t, in some cases triple-exponentially. Garnero et al. [12, §7]
suggest to examine to what extent this exponential dependance is unavoidable. We pursue
this direction by presenting lower bounds.

Boundaried graphs and equivalence. To state our results we have to introduce some
terminology.1 We only consider undirected, finite, simple graphs. Let t be a positive integer.
A t-boundaried graph G consists of a vertex set V (G), an edge set E(G) ⊆

(
V (G)

2
)
, and

an injective labeling λG : {1, . . . , t} → V (G) that identifies t distinct boundary vertices
in the graph. The boundary of the graph is the set BG := {λG(1), . . . , λG(t)}. Two t-
boundaried graphs G and H can be glued together on their boundary, resulting in the
boundaried graph G⊕H that is obtained from the disjoint union of G and H by identifying
corresponding boundary vertices and removing any parallel edges that are introduced. That
is, we merge λG(i) with λH(i) for each i ∈ [t]. An optimization problem Π on graphs assigns to
every (unboundaried) graph G an optimal solution value Π(G) ∈ Z. We will also write Π(G)
for a boundaried graph G to denote the optimum of the underlying unboundaried graph.
Two t-boundaried graphs G and H are equivalent with respect to Π, denoted G ≡Π,t H, if
there exists a transposition constant ∆ ∈ Z such that for every t-boundaried graph F :

Π(G⊕ F ) = Π(H ⊕ F ) + ∆. (1)

It is easy to see that ≡Π,t is an equivalence relation. Problem Π has finite integer index
if ≡Π,t has a finite number of equivalence classes for each fixed t. In the remainder, we omit
the subscript t when it is clear from the context. Observe that these notions formalize the
idea behind protrusion replacement sketched above: if G ≡Π,t H, then replacing G by H
changes the optimum by exactly ∆.

Our results. We analyze the canonical equivalence relation ≡is,t on t-boundaried graphs
for the Independent Set (is) problem, which asks for the maximum size of an independent

1 To avoid an abundance of cumbersome definitions, our terminology differs slightly from that in earlier
work (cf. [2, 3], [5, §2]). In particular, we do not allow t-boundaried graphs with fewer than t boundary
vertices. The fact that we consider optimization problems as in [5], rather than decision problems as
in [1, 12], forms no essential difference; our lower bounds also apply to those settings.
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set of pairwise non-adjacent vertices. We focus on Independent Set due to its simple
combinatorial structure, but our techniques carry over to Dominating Set, as explained
in §8. Define a set of representatives for ≡is,t to be a set Rt of t-boundaried graphs, such
that for every t-boundaried graph G there exists H ∈ Rt with G ≡is,t H. Let the critical
size of a set of representatives be the number of vertices of its largest graph. We aim to give
a lower bound on the critical size of any set of representatives for Independent Set in
terms of t. Our approach consists of two steps. First, we construct a large set of pairwise
nonequivalent graphs to give a lower bound on the number of equivalence classes of ≡is,t.
Then we use a counting argument to leverage this into a lower bound on the critical size.
Observe that each equivalence class must be represented by a different graph. It follows that
if the number of distinct t-boundaried graphs with at most s vertices is smaller than the
number of equivalence classes, then the critical size of any set of representatives must be
larger than s to give each class a distinct representative. By relating the number of small
graphs to the number of equivalence classes, we therefore obtain the desired lower bounds.

Protrusion replacement is often applied in the context of restricted graph classes, where
the protrusions to be replaced are known to have bounded treewidth and may even belong to a
family of embeddable graphs such as planar graphs. With these application areas in mind, we
develop our lower bounds to apply even when we wish only to have a representative for each
equivalence class that contains a planar graph whose treewidth is t+O(1), for boundary size t.
To find a large set of nonequivalent graphs we adapt a construction of Lokshtanov et al. [16],
which they used to prove that Independent Set on graphs of treewidth w cannot be solved
in time O∗((2− ε)w) for any ε > 0 unless the Strong Exponential Time Hypothesis fails. We
show that the graphs they construct can be made planar while increasing the treewidth (and
in fact the pathwidth) by only a small additive term. More importantly, we show how to use
this adapted construction to build a set ofM(t)−2 planar graphs of small treewidth which are
pairwise nonequivalent under ≡is,t, for all t. The term M(t) ≥ 2( t

bt/2c) ≥ 22t/
√

4t denotes the
t-th Dedekind number, which counts the number of monotone Boolean functions of t variables.
The number of equivalence classes therefore grows double-exponentially with t. Using the
counting argument above, this allows us to give a lower bound of Ω(logM(t)) ≥ Ω(2t/

√
4t)

on the critical size of any set of planar representatives for the equivalence classes of ≡is,t that
contain a planar graph of bounded pathwidth.

While developing a lower bound on the number of equivalence classes for planar graphs
of bounded pathwidth, we also found an exact characterization of the number of equivalence
classes of ≡is,t in general. We define a natural class of functions from {0, 1}t to N that we
call t-representative functions. We give a bijection between the t-representative functions and
the equivalence classes of ≡is,t for t-boundaried graphs. As we will show that all monotone
Boolean functions which are not constantly zero yield a distinct t-representative function, this
gives a lower bound of M(t)− 1 on the number of equivalence classes of ≡is,t. On the other
hand, we show that the number of such functions is at most 22t−1. The double-exponential
lower bound for the number of equivalence classes containing a bounded-pathwidth planar
graph is therefore not far off from the upper bound of 22t−1 in general graphs. The fact
that the base of the double-exponential in this expression is independent of t is noteworthy.
The naive way to bound the number of equivalence classes is to associate a table to each
t-boundaried graph. For each subset S of the boundary vertices B, the table stores the
maximum size of an independent set containing no vertex of B \ S. There are at most t+ 1
distinct values in such a table, and two boundaried graphs whose tables differ in the same
universal constant in all positions are easily shown to be equivalent. As there are 2t entries in
the table, and t+ 1 different options per entry, this gives an upper bound of (t+ 1)2t on the
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number of equivalence classes. Garnero et al. [12, Lemma 3.7] obtain the same bound using
a subtly different definition for the table. Our result of 22t−1 yields a slight improvement.

2 Preliminaries

We use N to denote the natural numbers, including 0. For a positive integer n and a set X
we use

(
X
n

)
to denote the collection of all subsets of X of size n. The power set of X is

denoted 2X . The set {1, . . . , n} is abbreviated as [n]. A Boolean function is a function of
the form f : {0, 1}n → {0, 1}. We sometimes use the equivalent view that a Boolean function
assigns a 0/1-value to every subset S ⊆ [n], which is the value of f when the arguments
whose index is in S are set to 1 and the remaining arguments are set to 0. A Boolean
function f : 2[n] → {0, 1} is monotone if f(S′) ≤ f(S) whenever S′ ⊆ S ⊆ [n]. We will call
Boolean functions in this form set-functions, and may replace [n] by other finite sets of
ordered elements. A formula in conjunctive normal form (CNF) is monotone if no literal
appears negated. Proofs for statements marked (F) can be found in the full version [14].

I Proposition 1 (F). For every non-constant monotone Boolean set-function f : 2[n] →
{0, 1} there is a monotone CNF formula φ such that for all x1, . . . , xn ∈ {0, 1}n we
have φ(x1, . . . , xn) = 1 if and only if f({i | xi = 1}) = 1.

Graphs. We will denote the treewidth of a graph G by tw(G) and its pathwidth by pw(G).
It is well-known that pw(G) ≥ tw(G); refer to a textbook for further details [4, §7]. We use
the following consequence of the gluing operation.

I Proposition 2 (F). Let G and H be t-boundaried graphs that share the same set of boundary
vertices B = {v1, . . . , vt} but are otherwise vertex-disjoint. Then a vertex set X ⊆ V (G⊕H)
is independent in G ⊕ H if and only if X ∩ V (G) is independent in G and X ∩ V (H) is
independent in H.

3 Characterizing equivalence classes for Independent Set

In this section we derive several tools to analyze the equivalence classes of ≡is. For each t-
boundaried graph G we define a function that captures the interaction of optimal independent
sets with its boundary. These will be useful to reason about the (non)equivalence of pairs of
graphs with respect to ≡is.

I Definition 3. Let G be a t-boundaried graph with boundary B = {v1, . . . , vt}. The
function sG : 2B → N expresses the size of a maximum independent set in G whose intersection
with the boundary is a subset of a given set:

sG(S) := max
{
|X|

∣∣X is an independent set in G with X ∩B ⊆ S
}
. (2)

We will see that equivalence classes can be characterized by the functions sG of the
graphs G in that class. The next lemma shows that when gluing two boundaried graphs G
and H together, the optimum of the resulting graph G⊕H can be deduced from sG and sH .
The identity we prove is reminiscent of the recurrence that is used for join nodes when
solving Independent Set on graphs of bounded treewidth [4, §7.3.1].

I Lemma 4 (F). Let G and H be t-boundaried graphs for some t. The following holds:

max
S⊆B
{sG(S) + sH(S)− |S|} = optis(G⊕H).
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To relate the equivalence of graphs to properties of the corresponding functions s, the
following indicator graphs will be convenient.

I Definition 5. Let t be a positive integer and B = {v1, . . . , vt}. For each S ⊆ B define
the t-boundaried indicator graph IS with boundary B as the result of the following process:
starting from an edgeless graph with vertex set B, for each vi ∈ B \ S add vertices ui, u′i and
the edges {vi, ui}, {vi, u′i} to IS .

Each boundary vertex not in S thus becomes the center of a star with two leaves in IS ,
and boundary vertices in S are isolated vertices in IS . The next proposition shows that
maximum independent sets of F ⊕ IS reveal the value of sF (S).

I Proposition 6 (F). optis(F ⊕ IS) = sF (S) + 2(t− |S|) for all t-boundaried graphs F .

Using Proposition 6 we can show that the equivalence class of a boundaried graph G
with respect to ≡is is completely characterized by the function sG.

I Theorem 7 (F). Let G and H be two t-boundaried graphs with boundary B = {v1, . . . , vt}.
Then G ≡is,t H if and only if there exists a constant c ∈ Z such that sG(S) = sH(S) + c for
all S ⊆ B.

Theorem 7 shows that two t-boundaried graphs G and H are equivalent under ≡is if
the functions sG and sH differ by a fixed constant for all inputs. It will be convenient to
eliminate this degree of freedom by normalizing the functions.

I Definition 8. The normalized boundary function of a t-boundaried graph G with bound-
ary B is the function s0

G : 2B → N given by s0
G(S) := sG(S)− sG(∅).

Intuitively, s0
G(S) represents how much larger an independent set can be if we are allowed

to use the boundary vertices from S, compared to when we are not allowed to use any
boundary vertices in the independent set.

I Corollary 9 (F). Let G and H be two t-boundaried graphs with boundary B = {v1, . . . , vt}.
Then G ≡is H if and only if s0

G = s0
H .

Corollary 9 shows that equivalence classes of ≡is are determined by the normalized
boundary functions of the graphs in the class. To see how many different equivalence classes
there can be, it is therefore useful to analyze the properties of normalized boundary functions.

I Definition 10. Let t be a positive integer and let B := {v1, . . . , vt}. A function f : 2B → N
is called a t-representative function if it satisfies the following three properties:
1. f(∅) = 0.
2. Monotonicity: for any S′ ⊆ S ⊆ B we have f(S′) ≤ f(S).
3. Bounded increase: For every nonempty set S ⊆ B we have f(S) ≤ 1 + minv∈S f(S \ {v}).

I Lemma 11. Let G be a t-boundaried graph with boundary B := {v1, . . . , vt}. Then s0
G is

a t-representative function.

Proof. We prove that s0
G has the three properties given in Definition 10.

1. By definition of s0
G we have s0

G(∅) = sG(∅)− sG(∅) = 0.
2. This follows directly from Definitions 3 and 8: the collection of independent sets over

which sG(S′) optimizes is a subset of the independent sets over which sG(S) optimizes.

IPEC 2016
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3. Consider a nonempty set S ⊆ B and let X be an independent set in G of size sG(S)
with X ∩B ⊆ S, which exists by Definition 3. For every v ∈ S we have that X \ {v} is
an independent set of size |X| − 1 in G whose intersection with B is a subset of S \ {v},
implying that sG(S \ {v}) ≥ |X| − 1 = sG(S) − 1. Adding 1 − sG(∅) on both sides we
obtain s0

G(S) = sG(S)− sG(∅) ≤ 1 + sG(S \ {v})− sG(∅) = 1 + s0
G(S \ {v}). As this holds

for all v ∈ S, it holds in particular for v ∈ S minimizing s0
G(S \ {v}). J

4 Defining graphs with given boundary characteristics

Corollary 9 shows that t-boundaried graphs with the same normalized boundary function
belong to the same equivalence class. Since each normalized boundary function is a t-
representative function by Lemma 11, this implies that the number of equivalence classes
of ≡is,t is at most the number of distinct t-representative functions. In Lemma 13 we will
show that, surprisingly, the converse also holds: for each t-representative function there is
a distinct equivalence class of ≡is,t. Before proving that lemma, we first derive a useful
property of t-representative functions.

I Proposition 12 (F). Each t-representative function f satisfies f(S′)− |S′ \S| ≤ f(S) for
all S, S′ ⊆ B.

I Lemma 13. For every t-representative function f , there exists a t-boundaried graph G
with boundary B := {v1, v2, . . . , vt}, such that s0

G(S) = f(S) for every S ⊆ B.

Proof. Consider an arbitrary t-representative function f , which assigns a non-negative integer
to each S ⊆ B. We construct a t-boundaried graph G for which s0

G = f , as follows:
1. Start from an edgeless graph with vertex set B, which is the boundary of the graph.
2. For each i ∈ [t] add a vertex ui and the edge {ui, vi}.
3. For each S ⊆ B with f(S) > 0, add a set VS = {vS,1, . . . , vS,f(S)} consisting of f(S)

vertices to the graph. These vertices are false twins (all share the same open neighborhood)
and are connected to the rest of the graph as follows:
a. For each i ∈ [t] with vi ∈ S, all vertices of VS are adjacent to ui.
b. For each i ∈ [t] with vi 6∈ S, all vertices of VS are adjacent to vi.
c. All vertices of VS are adjacent to all vertices VS′ that are created for sets S′ 6= S.

We show that sG(S) = t + f(S) for all S ⊆ B. This will imply that s0
G(S) = sG(S) −

sG(∅) = (t+ f(S))− (t+ f(∅)) = (t+ f(S))− (t+ 0) = f(S) for all S ⊆ B, since f(∅) = 0
by Definition 10. We therefore conclude the proof by showing that sG(S) = t + f(S) for
all S ⊆ B, by establishing two inequalities. Consider an arbitrary S ⊆ B.

(≥) To show sG(S) ≥ t+ f(S) we construct an independent set X in G of size t+ f(S)
that intersects B in a subset of S. If f(S) = 0 then X = {u1, . . . , ut} suffices, so assume
in the remainder that f(S) > 0. Let X consist of the f(S) vertices in VS , together with
the vertices {ui | i ∈ [t], vi 6∈ S} and {vi | i ∈ [t], vi ∈ S}. Then |X| = t + f(S), and
using the construction above it is straight-forward to verify that X is an independent set.
Since X ∩B = S, this shows that sG(S) ≥ t+ f(S).

(≤) Now we argue that sG(S) ≤ t+ f(S). Consider a maximum independent set X in G
that intersects B in a subset of S, which has size sG(S) by Definition 3. If X contains no
vertices of VS′ for any S′ ⊆ B, then X has at most t vertices: an independent set contains
at most one vertex of each edge {vi, ui} for each i ∈ [t]. Hence |X| ≤ t in this case, which
is at most t + f(S) since f(S) ≥ 0 by Properties 1 and 2. In the remainder, assume X
contains a vertex of VS′ for some S′ ⊆ B. This implies that X contains no vertices from VS′′
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for any S′′ 6= S′, since all vertices of VS′ are adjacent to all vertices of VS′′ by construction
of G. Hence besides the vertices from VS′ , the set X only contains vertices of edges {vi, ui}
for i ∈ [t]. The independent set X contains at most one vertex from each such edge. For
each vi ∈ S′ \ S, observe that X does not contain vi (since X ∩ B ⊆ S), and X does not
contain ui either (since ui is adjacent to all members of VS′). So X has at most f(S′) vertices
from VS′ , no vertices of {vi, ui} for each vi ∈ S′ \ S, and at most one vertex from each of the
remaining t−|S′ \S| edges. It follows that |X| ≤ f(S′) + (t−|S′ \S|). By Proposition 12 we
have f(S′)− |S′ \ S| ≤ f(S), which shows that |X| ≤ t+ f(S) and concludes the proof. J

5 Counting t-representative functions

We say that two t-representative functions are distinct if their function values differ on some
input. Lemma 13 shows that for each t-representative function f , there exists a t-boundaried
graph whose normalized boundary function equals f . Together with Corollary 9, which
says that boundaried graphs with the same normalized boundary function are equivalent
under ≡is,t, this establishes a bijection between the equivalence classes of ≡is,t and the
t-representative functions. To bound the number of equivalence classes of ≡is,t it therefore
suffices to bound the number of t-representative functions. Recall that M(t) denotes the t-th
Dedekind number, the number of distinct monotone Boolean functions of t variables.

I Lemma 14 (F). There are at least M(t)− 1 distinct t-representative functions.

It is known that M(t) ≥ 2( t
bt/2c). To see this, consider the subsets St =

( [t]
bt/2c

)
of [t] of

size bt/2c. For each subset S ′t ⊆ St we obtain a different monotone set-function by saying
that f(S) = 1 if and only if S contains one of the subsets in S ′t. By Stirling’s approximation
we have

(
t
bt/2c

)
≥ 2t/

√
4t, which implies that M(t) ≥ 22t/

√
4t. The following lemma gives an

upper bound on the number of t-representative functions.

I Lemma 15 (F). The number of distinct t-representative functions is at most 22t−1.

Lemmata 14 and 15 give the following corollary for each positive integer t.

I Corollary 16. The number of equivalence classes of ≡is,t lies between 22t/
√

4t and 22t−1.

6 Defining planar graphs with given boundary characteristics

In Lemma 13 we constructed nonequivalent t-boundaried graphs based on distinct t-
representative functions. The graphs constructed in that lemma have large treewidth
and are far from being planar; they contain cliques of size roughly 2t. To derive lower
bounds that are meaningful even when protrusion replacement is applied for planar graphs
of bounded treewidth, we present an alternative construction to lower bound the number
of equivalence classes that contain a planar graph of small pathwidth (and therefore have
small treewidth). The following gadget, of which several variations were used in earlier work
(cf. [13, Theorem 5.3] and [9, 16]), will be useful in our construction.

I Definition 17. Let k be a positive integer. The clause gadget of size k is the graph Ck
constructed as follows (see Figure 1a). For each i ∈ [k] create a triangle on vertices {ui, vi, wi}.
Connect these into a path by adding all edges {wi, ui+1} for i ∈ [k − 1]. Finally, add
vertices vstart, vend and the edges {vstart, u1} and {wk, vend}. The vertices (v1, . . . , vk) are
the terminals of the clause gadget.

IPEC 2016
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vend

vstart

v3

v2

v1
u1

w1

u2

w2

u3

w3

(a) Clause gadget C3

v v′

u

u′

(b) Crossover gadget G×

H
HHHHj

i 0 1 2

0 7 8 8
1 8 9 9
2 7 8 9

(c) Values of optis in G×

Figure 1 Gadgets for Independent Set. The crossover gadget is due to Garey et al. [11, Fig. 11
and Table 1]. The table on the right shows for all relevant combinations of i and j what the maximum
size is of an independent set X satisfying |{v, v′} ∩ X| = i and |{u, u′} ∩ X| = j.

I Observation 18 (Cf. [9, Obs. 6–8]). For each positive k ∈ N, the clause gadget Ck has the
following properties:
1. optis(Ck) = k + 2.
2. Every maximum independent set in Ck contains a terminal vertex vi for some i ∈ [k].
3. ∀i ∈ [k] there is a maximum independent set in Ck containing vi but no other terminals.
4. Ck is planar and pw(Ck) = 2.

To ensure our construction yields a planar graph, we use a crossover gadget for Inde-
pendent Set due to Garey et al. [11]. It was originally designed for Vertex Cover, but
since the complement of a maximum independent set is a minimum vertex cover, we can
rephrase the properties of the gadget in terms of independent sets. The crossover gadget G×
is the 22-vertex graph illustrated in Figure 1b, which has four terminals (u, u′, v, v′). When
we have a drawing of a graph G in which exactly two edges {a, b}, {c, d} cross in a common
point, we can planarize the crossing by removing edges {a, b} and {c, d}, introducing a new
copy of G× at the position of the crossing, and adding the edges {a, v}, {v′, b}, {c, u}, {u′, d}.
Garey et al. [11] analyzed the size of a maximum independent set in G× when restricting
which terminal vertices may occur in the set, as shown in Figure 1c. As G× is symmetric in
both the horizontal and vertical axis, and the table shows that a maximum size independent
set size of nine can already be obtained using i = 1 of the terminals {v, v′} and j = 1 of the
terminals {u, u′}, we observe the following.

I Observation 19. For any choice of terminals v∗ ∈ {v, v′} and u∗ ∈ {u, u′} there is a
maximum independent set of size nine in G× that does not contain v∗ or u∗.

The following proposition summarizes the essential features of a planarization operation.

I Proposition 20 (F). Let G be a graph drawn in the plane such that no edge contains a
vertex in its interior and no more than two edges cross in any single point. Let G′ be the
result of planarizing an edge crossing by a crossover gadget. The following holds.
1. For every independent set X in G there is an independent set X ′ in G′ of size |X|+ 9

such that X ′ ∩ V (G) = X.
2. For every independent set X ′ in G′ there is an independent set X ′′ in G′ with |X ′| = |X ′′|

containing exactly nine vertices from G× with X ′′ ∩ V (G) ⊆ X ′ ∩ V (G).
3. For every independent set X ′ in G′ there is an independent set X in G of size |X ′| − 9

such that X ⊆ X ′ ∩ V (G).
4. optis(G′) = optis(G) + 9.

In most applications of crossover gadgets, the only important property is that they have
a fixed effect on the optimum (Property 4). In our case we also have to ensure that the
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P1

Pt

pt,2mpt,1 pt,2 pt,3 pt,4 pt,2i−1 pt,2i

Ci

u′

v

u

v′vstart u1 w1 u2 w2 u3 w3 u4 w4 vend

v1 v2 v3 v4

pt,2m−1

Figure 2 Planarizing the graph Gφ to obtain G′φ in the proof of Lemma 21. Only the clause
gadget for the clause Ci = (x5 ∨x4 ∨x3 ∨x2) is shown. Shaded diamonds represent crossover gadgets.
The boundary B of the graph is circled, containing the first vertex from each path.

crossover gadgets do not disturb how the solutions intersect the boundary of the graph.
Properties 1–3 will be used for this purpose. Using these gadgets we present the construction.

I Lemma 21. Let t be a positive integer and B := {p1,1, p2,1, . . . , pt−1,1, pt,1}. For every non-
constant monotone set-function f : 2B → {0, 1} there is a planar graph G with boundary B
such that pw(G) ≤ t+O(1) and for every S ⊆ B : f(S) = 1 if and only if sG(S) = optis(G).

Proof. Consider a monotone set-function f and let φ be a monotone CNF formula that
represents f in the sense of Proposition 1. Let the clauses of φ be C1, . . . , Cm such that each
clause Ci is a subset of [t] giving the indices of the variables appearing in the clause. Since φ
is monotone, all variables appear positively. The number of literals in Ci is denoted |Ci|.

We first construct a nonplanar graph Gφ of small pathwidth such that for all S ⊆ B

we have f(S) = 1 if and only if sGφ(S) = optis(Gφ). Then we will use crossover gadgets
to turn Gφ into a planar graph G′φ while preserving these properties. The construction is
inspired by a reduction of Lokshtanov et al. [16, Thm. 3.1], and proceeds as follows.
1. We start by creating t paths P1, . . . , Pt, where every path Pi for i ∈ [t] consists of 2m

vertices pi,1, . . . , pi,2m. The boundary B = {p1,1, . . . , pt,1} of graph Gφ contains the first
vertex from each path.

2. For each clause i ∈ [m], add a copy of the clause gadget C|Ci| to the graph and denote its
terminals by (v1, . . . , v|Ci|). Let `(j) denote the j-th variable in the clause for each j ∈
[|Ci|] and sort these such that `(1) > `(2) > . . . > `(|Ci|); this will be useful later on
when planarizing the graph. For each j ∈ [|Ci|] make terminal vj in the clause gadget
adjacent to vertex p`(j),2i on path P`(j). Observe that clause gadgets only connect to
even-numbered vertices on the paths.

I Claim 22 (F). The graph Gφ with boundary B := {p1,1, . . . , pt,1} satisfies:
1. sGφ(B) = optis(Gφ) ≤ mt+

∑
1≤i≤m(|Ci|+ 2).

2. sGφ(B) = optis(Gφ) = mt+
∑

1≤i≤m(|Ci|+ 2).
3. For each S ⊆ B we have f(S) = 1 if and only if sGφ(S) = optis(Gφ).

IPEC 2016
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Claim 22 shows that the boundary function of Gφ expresses the monotone Boolean
function f . The same argumentation as used by Lokshtanov et al. [16, Lemma 3.3] shows
that Gφ has pathwidth t+O(1). However, we will not prove this here for the non-planar
graph Gφ; we will prove a pathwidth bound after planarizing the graph. The planarization
starts from a drawing of Gφ in the plane in which the crossings have a fixed structure. This
drawing is defined as follows (see Figure 2):

Draw each path P1, . . . , Pt horizontally. Place the paths above each other so that P1 is
the highest and Pt is the lowest.
For each clause i ∈ [m] of φ, draw the clause gadget in a planar fashion above the paths,
so that its terminals stick out at the bottom, the lowest-indexed terminal on the left
and the highest-numbered terminal on the right. Draw the gadget for clause i between
the vertical lines containing the 2i− 1-th and the 2i-th vertices on each path. Consider
the set of edges ECi connecting the gadget for clause Ci to the vertices of the paths.
By construction of Gφ, the gadget only connects to vertices with index 2i on the paths.
Draw the edges from ECi in such a way that e ∈ ECi only crosses the edges between
the vertices pj,2i−1 and pj,2i of the paths Pj for j ∈ [t], and do not cross any other edge
e′ ∈ ECi . Since the left-to-right order of the variables in a clause matches the order in
which the paths are laid out from top to bottom, this is possible.

Based on this drawing we planarize the graph Gφ by repeatedly replacing crossings by
crossover gadgets, resulting in a planar graph G′φ as shown in Figure 2. Let N denote the
number of crossover gadgets which were introduced during the planarization process. By
Proposition 20 we know that optis(G′φ) = optis(Gφ) + 9N = mt+ 9N +

∑
1≤i≤m(|Ci|+ 2),

where we use Property 2 of Claim 22 for the second equality. To conclude the proof, it
remains to show that pw(G′φ) ≤ t + O(1) (Claim 24) and that for all subsets S ⊆ B we
have f(S) = 1 if and only if sG′

φ
(S) = optis(G′φ) (Claim 23).

I Claim 23 (F). For every S ⊆ B we have f(S) = 1 if and only if sG′
φ
(S) = optis(G′φ).

I Claim 24 (F). The graph G′φ has pathwidth t+O(1).

This concludes the proof of Lemma 21. J

7 Lower bound for protrusion replacement

To leverage the construction of Lemma 21 into a lower bound on the critical size of a set of
representatives, we need the following lemma. Observe that its second condition shows that
no pair of graphs from the constructed set G is equivalent under ≡is,t, and this is witnessed
already by gluing planar graphs of pathwidth one onto them. This implies that in any
protrusion reduction scheme applied to planar graphs that aims to replace occurrences of
bounded-pathwidth protrusions by representatives, there should be a distinct representative
for each graph in G.

I Lemma 25 (F). For each positive integer t there is a set G ofM(t)−2 distinct t-boundaried
planar graphs of pathwidth t+O(1), such that for each pair of distinct graphs Gf , Gf ′ ∈ G
there are two indicator graphs IS and IB as in Definition 5 such that:
1. The graphs Gf ⊕ IS , Gf ⊕ IB , Gf ′ ⊕ IS, Gf ′ ⊕ IB are planar and have pathwidth t+O(1).
2. optis(Gf ⊕ IS)− optis(Gf ′ ⊕ IS) 6= optis(Gf ⊕ IB)− optis(Gf ′ ⊕ IB).

Finally, we can combine our lower bound on the number of distinct equivalence classes of
Lemma 25 with an upper bound on the number of small graphs to obtain our main result.
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I Theorem 26 (F). Let t ≥ t0 be a sufficiently large positive integer. Let Rt be a set of
t-boundaried planar graphs such that every equivalence class of ≡is,t that contains a planar
graph of pathwidth t+O(1) is represented by some graph in Rt. Then Rt contains a graph
with Ω(logM(t)) ≥ Ω(2t/

√
4t) vertices.

8 Conclusion

We presented lower and upper bounds on the number of equivalence classes of the canonical
equivalence relation ≡is,t for Independent Set on t-boundaried graphs. We combined these
lower bounds with upper bounds on the number of small graphs to give lower bounds for the
critical sizes of sets of representatives. For a set of planar representatives that represent all
equivalence classes containing a bounded-pathwidth planar graph, we gave a lower bound
of Ω(logM(t)) ≥ Ω(2t/

√
4t) on the critical size. The same argumentation can also be used to

obtain lower bounds on the critical size of sets of potentially nonplanar representatives. The
number of distinct t-boundaried (unrestrained) graphs is at most 2(n2) ·

(
n
t

)
≤ 2n2/2. Using

this bound in the proof of Theorem 26 yields a lower bound of Ω(
√

logM(t)) ≥ Ω(2t/2/ 4
√

4t)
on the critical size of a set of representatives that contains at least M(t)− 2 distinct graphs.

In their work, Garnero et al. [12] (roughly) show that each equivalence class of ≡is,t
containing a planar graph of treewidth at most t can be represented by a planar graph
with 2(t+1)2t vertices and treewidth at most t. Our lower bound shows that to represent all
equivalence classes containing a planar graph of pathwidth t+O(1) (a subset of the graphs
of treewidth t + O(1)), requires a graph with Ω(2t/

√
4t) vertices. Our single-exponential

lower bound is very far from the triple-exponential upper bound. However, we believe that
the correct bound is single-exponential. Since Corollary 9 shows that each equivalence class
is completely characterized by its normalized boundary function, and the construction of
Lemma 13 produces a boundaried graph with 2O(t) vertices for any given boundary function,
it follows that every equivalence class of ≡is,t has a representative with 2O(t) vertices. Note,
however, that the representatives constructed in this way are nonplanar and have pathwidth
and treewidth 2Θ(t).

The main conceptual contribution of this work is the fact that nontrivial lower bounds
can be obtained by counting equivalence classes. The fact that a significant portion of the
equivalence classes (at least M(t) ≥ 22t/

√
4t out of the total of at most 22t) can be generated

from monotone Boolean functions was useful in the construction of nonequivalent planar
graphs of bounded pathwidth. We showed that the lower bound construction of Lokshtanov
et al. [16] can be planarized while increasing the pathwidth by an additive constant. The
planarization argument employed here can also be used to strengthen the SETH-based
runtime lower bound of Ω((2 − ε)w · nO(1)) for solving Independent Set on graphs of
treewidth w, to planar graphs of treewidth w. Not all bounded-pathwidth graphs can be
planarized with a bounded increase in pathwidth. In particular, when planarizing K3,n for
sufficiently large n the pathwidth grows arbitrarily large [6].

The lower bounds for Independent Set given in Theorem 26 carry over to the Dom-
inating Set problem, for which protrusion replacement is used frequently. In the full
version [14] we describe this extension, which is based on the folklore planarity-preserving
NP-completeness reduction from Vertex Cover to Dominating Set.

Acknowledgments. We are grateful to Daniel Lokshtanov and David Eppstein for insightful
discussions regarding planarization, and to an anonymous referee of IPEC 2016 for suggesting
a simplification in the proof of Theorem 26.
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