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Abstract
In this paper we study the “independent” version of the classic Feedback Vertex Set problem
in the realm of parameterized algorithms and moderately exponential time algorithms. More
precisely, we study the Independent Feedback Vertex Set problem, where we are given an
undirected graph G on n vertices and a positive integer k, and the objective is to check if there
is an independent feedback vertex set of size at most k. A set S ⊆ V (G) is called an independent
feedback vertex set (ifvs) if S is an independent set andG\S is a forest. In this paper we design two
deterministic exact algorithms for Independent Feedback Vertex Set with running times
O?(4.1481k)1 and O?(1.5981n). In fact, the algorithm with O?(1.5981n) running time finds the
smallest sized ifvs, if an ifvs exists. Both the algorithms are based on interesting measures and
improve the best known algorithms for the problem in their respective domains. In particular,
the algorithm with running time O?(4.1481k) is an improvement over the previous algorithm that
ran in time O?(5k). On the other hand, the algorithm with running time O?(1.5981n) is the first
moderately exponential time algorithm that improves over the naïve algorithm that enumerates
all the subsets of V (G). Additionally, we show that the number of minimal ifvses in any graph
on n vertices is upper bounded by 1.7485n.
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1 Introduction

Feedback Vertex Set (FVS) is one of the classic NP-complete problems. In fact, it is one
of the problems in the Karp’s famous list of twenty one NP-complete problems [21]. FVS
together with several of its variants have been extensively studied from both combinatorial
as well as algorithmic view points. Indeed, FVS is one of the central problems in any

∗ The research leading to these results has received funding from the European Research Council (ERC)
via grant PARAPPROX, reference 306992.

1 The O?() notation suppresses polynomial factors in the running-time expression.
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algorithmic paradigm that has to cope with NP-hardness, examples being : approximation
algorithms, moderately exponential time algorithms, enumeration algorithms and paramet-
erized algorithms [2, 3, 4, 7, 8, 11, 14, 16, 20, 22, 23, 28, 29, 33]. The goal of this article
is to study the independent set version of FVS in the realm of parameterized complexity,
moderately exponential time algorithms and combinatorial upper bounds.

We begin by formally defining the problem. The formal description of the problem being
studied is as follows.

Independent Feedback Vertex Set (IFVS) Parameter: k

Input: An undirected graph G on n vertices and a positive integer k.
Question: Is there an independent feedback vertex set of size at most k?

IFVS and Parameterized Complexity. FVS together with Vertex Cover is one of the
most well studied problem in the field of parameterized complexity [3, 4, 22, 28]. The
other variants of FVS on undirected graphs that have been studied extensively, include,
Subset FVS [8, 23, 33], Group FVS [7, 20, 33], Connected FVS [25], Simultaneous
FVS [1] and indeed IFVS [24, 30, 31]. The current champion algorithms for FVS are: a
randomized algorithm with running time O?(3k) [6] and a deterministic algorithm running
in time O?(3.619k) [22]. Misra et al. [24] introduced IFVS in 2011 (in the conference version
of the cited paper) as a generlization of FVS and gave an algorithm with running time
O?(5k). They also designed a polynomial kernel of size O(k3) for the problem. Later, Song
claimed a deterministic algorithm with running time O?(4k) for the problem [30]. However,
the algorithm of Song [30] does not seem to be correct.2 Tamura et al. [31] studied IFVS
on special graph classes and showed that the problem remains NP-complete even on planar
bipartite graphs of maximum degree four. They also designed linear time algorithms for
graphs of bounded treewidth, chordal graphs and cographs. Finally, they gave an algorithm
with running time O(2O(

√
k log k)n) for IFVS on planar graphs. We refer the reader to

the recent book on parameterized algorithms for more details regarding the paradigm of
parameterized complexity, as well as about the literature on the FVS problem [5]. Our first
main result is the following result regarding IFVS.

I Theorem 1. There is an algorithm for IFVS running in time O?(4.1481k).

Our new algorithm is based on iterative compression and the subroutine for iterative
compression is based on branching. The branching algorithm itself exploits (a) the fact
that once we select a vertex in the independent feedback vertex set then all its neighbors
must be in the forest; and (b) an interesting variation of the measure used for analyzing
the fastest known deterministic algorithm for FVS [22]. Finally, we also observe that the
randomized algorithm designed for FVS, running in time O?(3k) [6], can be adapted to
design a randomized O?(3k) time algorithm for IFVS.

IFVS and Moderately Exponential Time Algorithms. In moderately exponential time
algorithms (or exact algorithms for short), the objective is to design an algorithm for
optimization version of a problem that is better than the naïve brute force algorithm. In
particular, for FVS the goal will be to design an algorithm that runs in time cn, c < 2 a
constant, and finds a minimum sized set S such that G− S is a forest. We refer to the book

2 We have approached the author with concrete questions but he has not yet responded. Furthermore, we
give a family of counter-examples to his algorithm in the Section 3.2.
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of Fomin and Kratsch for more details regarding moderately exponential time algorithms [17].
Obtaining a non-trivial exact algorithm for FVS was open for quite some time before Razgon
obtained an algorithm with running time O(1.8899n) [29]. Later this algorithm was improved
to O?(1.7347n) [18]. Recently, Fomin et al. [13] obtained an interesting result relating
parameterized algorithms and exact algorithms. Roughly speaking, they showed that if
a problem (satisfying some constraints) has O?(ck) time algorithm parameterized by the
solution size, then there is an exact algorithm running in time O?(

(
2− 1

c

)n). Both FVS and
IFVS satisfies the required constraints and thus we immediately obtain the following exact
algorithm for IFVS: (a) a randomized algorithm running in timeO?(

(
2− 1

3
)n) = O?(1.6667n);

and (b) a deterministic algorithm running in time O?(
(
2− 1

4.1481
)n) = O?(1.7590n). We

give a recursive algorithm based on classical measure and conquer [15, 17] and design faster
algorithm than both the mentioned algorithms. In particular, we prove the following theorem.

I Theorem 2. There is an algorithm for IFVS running in time O?(1.5981n).

Combinatorial Upper Bounds. In our final section we address the following question: How
many minimal ifvses are there in any graph on n vertices? Proving an upper bound on the
number of combinatorial structures is an old and vibrant area. Some important results in
this area include an upper bound of

3n/3 on the number of maximal independent sets in a graph [26].
1.667n on the number of minimal feedback vertex sets in a tournament [13].
1.8638n on the number of minimal feedback vertex sets in a graph [14, 16].

One can easily observe that every minimal ifvs is also a minimal feedback vertex set. Thus,
an upper bound of 1.8638n on the number of minimal ifvses in any graph on n vertices
follows by [14]. As our final result, we give an improved upper bound on the number of
minimal ifvses in any graph on n vertices. We obtain this result by applying reduction
rules and branching rules with a carefully choosen measure. At the base case we prove that
counting the number of spanning trees is same as counting the number of minimal ifvses.
For bounding the number of spanning trees we use the result of Grimmett [19].

I Theorem 3. A graph G on n vertices has at most 1.7485n minimal ifvses.

Let n be divisible by 3 and G be a graph that is union of n/3 vertex disjoint triangles.
Then any minimal ifvs must contain exactly one vertex from each of n/3 triangles and thus
G has 3n/3 minimal ifvses. Closing the gap between 3n/3 and 1.7485n remains an interesting
open problem. The proofs of Theorem 2 and 3 are omitted due to space constraints.

2 Preliminaries

In this section, we state some basic definitions and introduce terminology from graph theory
and algorithms. We also establish some of the notations that will be used throughout.

We denote the set of natural numbers by N. To describe the running times of our
algorithms, we will use the O? notation. Given f : N → N, we define O?(f(n)) to be
O(f(n) · p(n)), where p(·) is some polynomial function. That is, the O? notation suppresses
polynomial factors in the running-time expression.

Graphs. We use standard terminology from the book of Diestel [9] for those graph-related
terms which are not explicitly defined here. We only consider finite graphs possibly having
loops and multi-edges. For a graph G, by V (G) and E(G) we denote the vertex and edge sets
of the graph G, respectively. For a vertex v ∈ V (G), we use dG(v) to denote the degree of v,

IPEC 2016
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i.e the number of edges incident on v, in the (multi) graph G. We also use the convention
that a loop at a vertex v contributes two to its degree. For a vertex subset S ⊆ V (G), G[S]
and G \ S are the graphs induced on S and V (G) \ S, respectively. For an edge subset
S ⊆ E(G), by G \ S, we denote the graph obtained after removing edges in S from G. For a
vertex subset S ⊆ V (G), we let NG(S) and NG[S] denote the open and closed neighbourhood
of S in G. That is, NG(S) = {v | (u, v) ∈ E(G), u ∈ S} \ S and NG[S] = NG(S) ∪ S. We
drop the sub-script G from dG(v), NG(S), NG[S] whenever the context is clear. For a graph
G and an edge e ∈ E(G), G/e denotes the graph obtained after contracting e in G.

A path in a graph is a sequence of distinct vertices v0, v1, . . . , v` such that (vi, vi+1) is
an edge for all 0 ≤ i < `. A cycle in a graph is a sequence of distinct vertices v0, v1, . . . , v`

such that (vi, v(i+1) mod (`+1)) is an edge for all 0 ≤ i ≤ `. We note that both a double edge
and a loop are cycles. A tree T rooted at r ∈ V (T ) is called as a star if E(T ) = {(v, r) | v ∈
V (T ) \ {r}}.

Let W ⊆ V (G) and H = G \W . We define certain useful vertices in V (H). We call a
vertex v ∈ V (H), a nice vertex if dH(v) = 0 and dG(v) = 2, i.e. both the neighbours of v
belong to the set W . Similarly, we call a vertex v ∈ V (H), a tent if dH(v) = 0 and dG(v) = 3.
A feedback vertex set is a subset S ⊆ V (G) such that G \ S is a forest.

Parameterized Complexity. A parameterized problem Π is a subset of Γ∗ × N, where Γ is
a finite alphabet. An instance of a parameterized problem is a tuple (x, k), where x is a
classical problem instance, and k is called the parameter. A central notion in parameterized
complexity is fixed-parameter tractability (FPT) which means, for a given instance (x, k),
decidability in time f(k) · p(|x|), where f is an arbitrary function of k and p is a polynomial
in the input size. For more details on parameterized complexity, we refer the reader to the
books of Downey and Fellows [10], Flum and Grohe [12], Niedermeier [27], and the more
recent book by Cygan et al. [5].

When we say that we branch on a vertex v, we mean that we recursively generate two
instances, one where v belongs to the solution, the other where v does not belong to the
solution. This is a standard method of exhaustive branching.

Bounded Search Trees. The running time of an algorithm that uses bounded search
trees can be analyzed as follows (see, e.g., [5, 10]). Suppose that the algorithm executes
a branching rule which has ` branching options (each leading to a recursive call with the
corresponding parameter value), such that, in the ith branch option, the current value of
the parameter decreases by bi. Then, (b1, b2, . . . , b`) is called the branching vector of this
rule. We say that α is the root of (b1, b2, . . . , b`) if it is the (unique) positive real root of
xb∗ = xb∗−b1 + xb∗−b2 + · · ·+ xb∗−b` , where b∗ = max{b1, b2, . . . , b`}. If r > 0 is the initial
value of the parameter, and the algorithm (a) returns a result when (or before) the parameter
is negative, and (b) only executes branching rules whose roots are bounded by a constant
c > 0, then its running time is bounded by O∗(cr).

A reduction rule is a polynomial time algorithm that replaces an instance (I, k) of a
parameterized language L by a new instance (I ′, k′). It is said to be safe if (I, k) ∈ L if and
only if (I ′, k′) ∈ L.

3 FPT Algorithm for Independent Feedback Vertex Set

In this section we give an FPT algorithm for IFVS running in time O?(4.1481k). Given an
input (G, k), the algorithm starts by computing a feedback vertex set Z in G. A feedback
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vertex set in G of size at most k (if it exists) can be computed in time O?(3.619k) using the
algorithm given in [22]. If there is no feedback vertex set of size at most k, then we conclude
that (G, k) is a NO instance of ifvs since an ifvs is also a feedback vertex set in G.

We let H = G\Z. The algorithm either outputs an ifvs in G of size at most k or correctly
conclude that (G, k) is a NO-instance of IFVS. The algorithm guesses a subset Z ′ ⊆ Z,
such that for an ifvs X in G, X ∩ Z = Z ′. For each of the guess Z ′, the algorithm does
the following. If G[Z ′] is not an independent set then it concludes that there is no ifvs
X in G such that Z ′ ⊆ X. Otherwise, G[Z ′] is an independent set. Let W = Z \ Z ′. If
G[W ] is not a forest, then their is no ifvs X such that, X ∩ Z = Z ′. Therefore, the guess
Z ′ is not correct and the algorithm rejects this guess. Otherwise, it deletes the vertices in
Z ′ and tries to find an ifvs S ⊆ V (H) \W of size at most k − |Z ′|. Note that any vertex
v ∈ NH(Z ′) cannot be part of the solution. Therefore, the algorithm adds the vertices in
NH(Z ′) to a set R. The set R consists of those vertices which cannot be included in ifvs in
order to maintain the independence of the vertices included in the solution. The algorithm
calls the sub-routine Disjoint Independent Feedback Vertex Set (Dis-IFVS) on the
instance (G \ Z ′,W,R, k − |Z ′|) to find an ifvs X ⊆ V (G \ Z ′) \ (W ∪R). In Section 3.1 we
give an algorithm for Dis-IFVS, which given an instance (G,W,R, k) either finds an ifvs
S ⊆ V (G) \ (W ∪R) of size at most k or correctly concludes that there does not exits such
an ifvs. Moreover, the algorithm for Dis-IFVS runs in time O?(3.1481k).

I Theorem 1 (restated). There is an algorithm for IFVS running in time O?(4.1481k).

Proof. Given an instance (G, k) of IFVS, the algorithm computes a feedback vertex set
Z in G of size at most k (if it exists) in time O?(3.619k). If there is no feedback vertex
set of size at most k, it correctly concludes that (G, k) is a NO instance. Otherwise, for
each Z ′ ⊆ Z, either it correctly concludes that Z ′ is a wrong guess (for extending it to
an ifvs) or runs the algorithm for Dis-IFVS on the instance (G \ Z ′,W,R, k − |Z ′|).
Here, the instance (G \ Z ′,W,R, k − |Z ′|) is created as described above in the description
of the algorithm. The correctness of the algorithm follows from the correctness of the
algorithm for Dis-IFVS and the fact that all possible intersections of the solution with
Z are considered. The running time of the algorithm is given by the following equation:
3.619k · nO(1) +

∑k
i=0
(

k
i

)
· 3.1481k−i · nO(1) ≤ 4.1481k · nO(1). This concludes the proof. J

3.1 Algorithm for Disjoint Independent Feedback Vertex Set

We give an algorithm for Disjoint Independent Feedback Vertex Set running in time
O?(3.1481k).

Disjoint Independent Feedback Vertex Set (Dis-IFVS) Parameter: k

Input: An undirected (multi) graph G, a fvs W in G, R ⊆ V (G) \W and, an integer k.
Question: Does G have an ifvs S ⊆ V (G) \ (W ∪R) such that |S| ≤ k?

The algorithm for Dis-IFVS either applies some reduction rules or branches on a vertex
in V (G) \W . The algorithm branches on a vertex in V (G) \W only when (a) none of the
reduction rules are applicable; and (b) we are not in the case where we can solve the problem
in polynomial time. Let H = G \W . We arbitrary root the trees in H at some vertex
(preferably a vertex v with dH(v) > 2). We will be using the following measure µ associated
with the instance (G,W,R, k) to bound the number of nodes of the search tree.

µ = µ(G,W,R, k) = 2k + ρ(W )− (η + 2τ) .

IPEC 2016
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Figure 1 Reduction Rule 2.

Here, ρ(W ) is the number of components in W , η denotes the number of nice vertices in
V (H) \ R and τ denotes the number of tents in V (H) \ R. We note that here nice vertices
and tents are defined with respect to the set W . See preliminaries for the definitions of a
nice vertex and a tent.

Now we describe all the reduction rules that will be used by the algorithm. The first two
reduction rules get rid of vertices of degree at most one and consecutive vertices of degree
two in the graph. The safeness of these reduction rules follow from [24].

Reduction Rule 1. Delete vertices of degree at most one since they do not participate in
any cycle.
Reduction Rule 2. Let u, v be two adjacent degree two vertices in the input graph G which
are not nice in H, and x, y be the other neighbors of u, v respectively. Delete the vertex
u and add the edge (x, v). Here, if one of u, v belongs to R, say v ∈ R then we delete v
and add an edge between its neighbors (see Figure 1).
When applying Reduction Rule 2, if both the degree two vertices belong to R, then the
choice of deleting one of them and adding an edge between its neighbors is arbitrary.
Observe that the measure µ does not increase after the application of Reduction Rules 1
and 2.
Reduction Rule 3. If k < 0, then return that (G,W,R, k) is a NO instance.
Reduction Rule 4. If there is a vertex v ∈ R such that v has two neighbors in the same
component of W , then return that (G,W,R, k) is a NO instance.
Reduction Rule 5. If there is a vertex v ∈ R such that v has a neighbor in W , then remove
v from R and add v toW . That is, we solve the instance (G,W ∪{v},R\{v}, k). Observe
that by moving v to W we do not increase the number of components of G[W ∪ {v}].
Reduction Rule 6. If there is a vertex v ∈ V (H) \R such that v has at least two neighbors
in the same component of W , then remove v from G and add the vertices in NH(v) to R.
That is, the resulting instance is (G \ {v},W,R∪NH(v), k − 1). In this case it is easy to
observe that v must belong to any ifvs.
Reduction Rule 7. If there is a vertex u ∈ R such that there is a leaf v in H adjacent
to u and dW (v) ≤ 2. Then remove u from R and include u in W i.e. the resulting
instance is (G,W ∪ {u},R \ {u}, k). Observe that moving u to W increases the number
of components in W , but it also makes v either a nice vertex or a tent.
Reduction Rule 8. Let T be a tree in H and u ∈ V (T ) ∩ (V (H) \ R) such that the tree,
Tu, rooted at u is a star. That is, all the children of u are leaves of T . Furthermore, each
vertex in Vu = V (Tu) \ {u} (all the children of u) has exactly one neighbor in W and
1 ≤ |Vu| ≤ 2. Finally, assume that either V (T ) \ V (Tu) = ∅ or the parent x of u is in R.
Then include the vertices in Vu ∪ {x} to W and remove x from R (if it exists) i.e. the
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Figure 2 Illustration of Reduction Rule 8.

resulting instance is (G,W ∪ Vu ∪ {x},R \ {x}, k). Here, {x} = ∅, if x does not exists.
(see Figure 2)

I Lemma 4. Reduction Rule 4 is safe.

Proof. Let x, y be two neighbors of v ∈ R that are present in the same component of W .
Since x, y belong to the same component of W , there is a path P in W from x to y. But
then, G[V (P ) ∪ {v}] contains a cycle, with v being the only vertex not in W . Therefore,
there cannot exist an ifvs, S ⊆ V (G) \ (W ∪R) in G. This concludes the proof. J

I Lemma 5. Reduction Rule 5 is safe. Furthermore, the measure µ does not increase after
application of Reduction Rule 5.

Proof. Let v ∈ R be a vertex such that v has a neighbor in W . Note that any ifvs,
S ⊆ V (G) \ (W ∪R) in G does not contain v. Moreover, since v has a neighbor in W , adding
v to W does not increase the number of components in W . This implies that µ does not
increase. J

I Lemma 6. Reduction Rule 6 is safe. Furthermore, the measure µ does not increase after
application of Reduction Rule 6.

Proof. Let v ∈ V (H) \ R be a vertex such that v has 2 neighbors, say x, y, in the same
component of W . Since x, y belong to the same component of W , there is a path P in W
from x to y. But then, G[V (P ) ∪ {v}] contains a cycle, with v being the only vertex not in
W . Therefore, any ifvs S ⊆W must include v and hence avoid NH(v).

When we delete v from G and decrease k by 1, the number of components in W remains
the same. If v was either a nice vertex or a tent then η + 2τ can decrease at most by 2.
Therefore, the measure µ in the resulting instance can not increase. This concludes the
proof. J

I Lemma 7. Reduction Rule 7 is safe and the measure µ does not increase after its applica-
tion.

IPEC 2016
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Proof. Let u ∈ R be a vertex such that there is a leaf v in H adjacent to u such that
dW (v) ≤ 2. Observe that no solution to Dis-IFVS can contain u. Therefore, we only need to
show that the measure µ does not increase. When we add u to W , the number of components
in W can increase by 1. But then v becomes either a nice vertex or a tent. Therefore, η+ 2τ
decreases at least by 1. This together with the fact that k remains the same imply that µ
cannot increase. J

I Lemma 8. Reduction Rule 8 is safe and the measure µ does not increase after its applica-
tion.

Proof. Let T be a tree in H and u ∈ V (T ) ∩ (V (H) \ R) such that the tree, Tu, rooted
at u is a star. That is, all the children of u are leaves of T . Furthermore, the vertices in
Vu = V (Tu) \ {u} (all the children of u) have exactly one neighbor in W and 1 ≤ |Vu| ≤ 2.
Also, either V (T ) \V (Tu) = ∅ or the parent x of u is in R. To prove the lemma, we will show
that if (G,W,R, k) is a YES instance of Dis-IFVS then there is an ifvs, S ⊆ V (H)\ (W ∪R),
of size at most k in G such that S ∩ Vu = ∅. Observe that x (if it exists) cannot belong to S.

Let S ⊆ V (H) \ (W ∪R) be an ifvs in G of size at most k. If S ∩ Vu = ∅ then S is the
desired solution. Otherwise, let S′ = (S \ Vu) ∪ {u}. Since S ∩ Vu 6= ∅, we have that u does
not belong to S and thus the size of S′ is also at most k. We claim that S′ is an ifvs of the
desired form. Notice that S′ ⊆ V (H) \ (W ∪R) holds. Also, S′ is an independent set since
neighbors of u do not belong to S′ and S \ Vu is an independent set. Therefore, we only need
to prove that S′ is a feedback vertex set in G. Suppose not, then there is a cycle C in G \ S′.
If C does not contain any vertex from Vu ∪{x}, then C is also a cycle in G \S, contradicting
that S in an ifvs in G. If C contains x, but does not contain any other vertex from Vu, then
we can conclude that C is a cycle in G \ S, since x /∈ S. Otherwise, C contain a vertex say,
v ∈ Vu. Note that v is a degree 2 vertex in G. This implies that any cycle containing v must
contain both the neighbors of v. But then u belongs to C contradicting that C is a cycle in
G \ S′. This proves the safeness of the reduction rule.

When we add Vu ∪ {x} to W the number of components can increase at most by 1. Note
that none of the vertices in Vu ∪{x} is a tent. Therefore, the number of nice vertices or tents
does not decrease and u becomes a nice vertex or a tent. This implies that the measure µ
does not increase. This concludes the proof. J

Algorithm Description. We give an algorithm only for the decision variant of the problem.
It is straightforward to modify the algorithm so that it actually finds a solution, provided
there exists one.

We will follow a branching strategy with a nontrivial measure function. Let (G,W,R, k) be
the input instance. The algorithm first applies Reduction Rules 1–8, in this order, exhaustively.
That is, at any point of time we apply the lowest numbered applicable Reduction Rule. For
clarity we denote the reduced instance (the one on which Reduction Rules 1–8 do not apply)
by (G,W,R, k).

We now check whether every vertex in V (G) \ (W ∪R) is either a nice vertex or a tent.
If this is the case, then in polynomial time we can check whether or not there is an ifvs
contained in V (G) \ (W ∪R) that is of size at most k; and return accordingly as described
by Lemma 9.

I Lemma 9. Let (G,X) be an instance of IFVS where every vertex in V (G) \X is either a
nice vertex or a tent. Then in polynomial time we can find a minimum sized ifvs S ⊆ V (G)\X
in G.
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The proof of Lemma 9 follows from Lemma 4.10 in [5], which is based on a polynomial
time algorithm for FVS in subcubic graphs by Ueno et at. [32] and the fact that the algorithm
described in [5] for finding feedback vertex set on the instances of described type always
returns an independent feedback vertex set (if it exists).

Finally, we move to the branching step of the algorithm. We never branch on a nice
vertex or a tent. We will branch on the vertices in V (H) \ R based on certain criteria. We
consider the following three scenarios.

Scenario A. There is a vertex which in not a tent and has at least 3 neighbors in W .
Scenario B. There is a leaf which is not a nice vertex and has exactly 2 neighbors in W ,
but no leaf has more than 2 neighbors in W .
Scenario C. All the leaves have exactly one neighbor in W .

Scenario A. If there is a vertex v ∈ V (H) which is not a tent and has at least 3 neighbors
in W . Note that v /∈ R as the Reduction Rule 5 is not applicable. In this case we branch on
v as follows.

When v belongs to the solution, then all the vertices in NH(v) cannot belong to the
solution. Therefore, we add all the vertices in NH(v) to the set R. The resulting instance
is (G \ {v},W,R∪N(v), k − 1). In this case k decreases by 1 and ρ(W ), η, τ remains the
same. Therefore, µ decreases by 2.
When v does not belong to the solution, then we add v to W . The resulting instance
is (G,W ∪ {v},R, k). Note that v cannot have two neighbors in the same component of
W , otherwise Reduction Rule 6 would be applicable. Therefore, G[W ∪ {v}] has at most
ρ(W )− 2 components. Also, k does not change and η, τ does not decrease. Therefore, µ
decreases at least by 2.

The resulting branching vector for this case is (2, 2). When none of the Reduction Rules are
applicable and we cannot branch according to Scenario A, then we can assume that there is
no vertex v ∈ V (H), such that v has more than 2 neighbors in W . Of course a tent could
have three neighbors in W but as stated before we never branch on a nice vertex or a tent.
For each tree T (a component) in H, for a vertex v ∈ V (T ) we define the level `(v) of v to
be the distance of v from the root of T . The root r in a tree has `(r) = 0. We call a leaf
vertex v ∈ V (T ) as a deep leaf if `(v) 6= 0 and for all leaves v′ ∈ V (T ), `(v′) ≤ `(v).

Scenario B. Let v be a leaf in some tree T in H with the unique neighbor u ∈ V (H) such
that v has exactly two neighbors in W . Observe that u /∈ R since Reduction Rule 7 is not
applicable. We branch on u as follows.

When u belongs to the solution, then all the vertices in NH(u) cannot belong to the
solution. We add all the vertices in NH(u) \ {v} to the set R. We add the vertex v to
W . The resulting instance is (G \ {u},W ∪ {v},R∪ (NH(u) \ {v}), k− 1). In this case k
decreases by 1, and η, τ do not decrease. The number of components in G[W ∪ {v}] is
ρ(W )− 1, since v has 2 neighbors in different components of W . Therefore, µ decreases
by 3.
When u does not belong to the solution, then we add u to W . The resulting instance is
(G,W ∪ {u},R, k). Note that when we add u to W then v becomes a tent. The number
of components in G[W ∪ {u}] is at most ρ(W ) + 1. Note that k does not increase, η does
not decrease and τ increases at least by 1. Therefore, µ decreases by at least 1.

The resulting branching vector for this case is (3, 1).
We now assume that all the leaves in H have exactly one neighbor in W .
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Scenario C. Let v be a deep leaf in some tree T in H. Let the unique neighbor of v in
H be u. We note that the sub-tree Tu rooted at u is a star, i.e. u is the only vertex in Tu

which can possibly have degree more than one. This follows from the fact that v is a deep
leaf. Also, u /∈ R since Reduction Rule 7 is not applicable. We consider the following cases
depending on the number of leaves in the sub-tree Tu rooted at u.

Case 1. If Tu has at least two more leaves, say x, y other than v. We branch on the vertex
u as follows.

When u belongs to the solution, then the vertices in NH(u) does not belong to the
solution. We add all the vertices in NH(u) to the set R. The resulting instance is
(G \ {u},W,R ∪ NH(u), k − 1). In this case k decreases by 1 and η, τ, ρ(W ) does not
change. Therefore, µ decreases at least by 2.
When u does not belong to the solution, we add u to W . The resulting instance is
(G,W ∪ {u},R, k). Observe that when we add u to W then, v, x, y becomes nice vertices
and the number of components in G[W ∪{u}] is at most ρ(W )+1. Therefore, µ decreases
at least by 2.

The resulting branching vector for this case is (2, 2).

Case 2. If Tu has at most one more leaf other than v. We let x to be the parent of u in T .
Note that x exists and x /∈ R because each leaf has exactly one neighbor in W and Reduction
Rules 2 and 8 are not applicable. In this case we branch on x.

When x belongs to the solution, then the vertices in NH(x) do not belong to the solution.
We add all the vertices in NH(x)\{u} to the set R and add u to the set W . The resulting
instance is (G \ {x},W ∪ {u},R∪ (NH(x) \ {u}), k − 1). Observe that Reduction Rule 2
is not applicable. Therefore, at least one of the following holds.
u has a neighbor in W .
u has one more leaf v′ (not in W ′) adjacent to it in other than v.

In the former case, when we add u to W , the number of components in G[W ∪ {u}] is at
most ρ(W ). Also, v becomes a nice vertex. Therefore, η increases at least by 1 and τ
does not decrease. Therefore, µ decreases at least by 3. In the latter case when we add u
to W , v, v′ becomes nice vertices. In this case k decreases by 1, η increases by 2, τ does
not decrease, and ρ(W ) can increase at most by 1. Therefore, µ decreases at least by 3.
When x does not belong to the solution, we add x to W . But then Tu is a star and u
does not have a parent. Therefore, we can apply the Reduction Rule 8. That is, we can
add v, v′ to W . The resulting instance would be (G,W ∪ {x, v, v′},R, k). Observe that u
becomes a tent. In this case k, ρ remains the same, while τ increases by 1 and ρ(W ) can
increase at most by 1. Therefore, µ decreases at least by 1.

The resulting branching vector for this case is (3, 1).
This completes the description of the algorithm.

Analysis and Correctness of the Algorithm. The following Lemma which will be used to
prove the correctness of the algorithm.

I Lemma 10. For an instance I = (G,W,R, k) of Dis-IFVS, if µ < 0, then I is a NO
instance.

Proof. Let us assume for contradiction that I is a YES instance and µ < 0. Let S ⊆
V (G) \ (W ∪ R) be an ifvs in G of size at most k. Therefore, F = G \ S is a forest.
Let N ⊆ V (G) \ (W ∪ R), T ⊆ V (G) \ (W ∪ R) be the set of nice vertices and tents in
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Table 1 The branch vectors and the corresponding running times.

Scenario Cases Branch Vector cµ

Scenario A (2, 2) 1.4142µ

Scenario B (3, 1) 1.4656µ

Scenario C
Case 1 (2, 2) 1.4142µ

Case 2 (3, 1) 1.4656µ

V (G) \ (W ∪R), respectively. Since F is a forest we have that G′ = G[(W ∪N ∪ T ) \ S] is a
forest. In G′, we contract each of the components in W to a single vertex to obtain a forest F̃ .
Observe that F̃ has at most |V (F̃ )| ≤ ρ(W ) + |N \ S|+ |T \ S| vertices and thus can have at
most ρ(W ) + |N \S|+ |T \S| − 1 many edges. The vertices in (N ∪T ) \S ⊆ V (G) \ (W ∪R)
forms an independent set in F̃ , since they are nice vertices or tents. The vertices in N \ S
and T \ S have degree 2 and degree 3 in F̃ , respectively, since their degree cannot drop while
contracting the components of G[W ]. This implies that,

2|N \ S|+ 3|T \ S| ≤ |E(F̃ )| ≤ ρ(W ) + |N \ S|+ |T \ S| − 1.

Therefore, |N \ S|+ 2|T \ S| < ρ(W ). But N ∩ T = ∅ and thus

|N |+ 2|T | < ρ(W ) + 2|S| ≤ ρ(W ) + 2k. (1)

However, by our assumption, µ(I) = ρ(W ) + 2k − (|N |+ 2|T |) < 0 and thus |N |+ 2|T | >
ρ(W ) + k. This, contradicts the inequality given in Equation 1 contradicting our assumption
that I is a YES instance. J

I Lemma 11. The algorithm presented for Dis-IFVS is correct.

Proof. Let I = (G,W,R, k) be an instance of Dis-IFVS. We prove the correctness of the
algorithm by induction on µ = µ(I) = 2k + ρ(W )− (η + 2τ). The base case occurs in one of
the following cases.

µ < 0. By Lemma 10, when µ < 0, we can correctly conclude that I is a NO instance.
k < 0. By Reduction Rule 3 it follows that when k < 0, we can correctly conclude that I
is a NO instance.
When none of the Reduction Rules and Branching Rules are applicable. In this case we
are able to solve the instance in polynomial time.

By induction hypothesis we assume that for all µ ≤ l, the algorithm is correct. We will
now prove that the algorithm is correct when µ = l + 1. The algorithm does one of the
following. Either applies one of the Reduction Rules if applicable. By Lemma 4 to Lemma 8
we know that the Reduction Rules correctly concludes that I is a NO instance or produces an
equivalent instance I ′ with µ(I ′) ≤ µ(I). If µ(I ′) < µ(I), then by induction hypothesis and
safeness of the Reduction Rules the algorithm correctly decides if I is a yes instance or not.
Otherwise, µ(I ′) = µ(I). If none of the Reduction Rules are applicable then the algorithm
applies one of the Branching Rules. Branching Rules are exhaustive and covers all possible
cases. Furthermore, µ decreases in each of the branch by at least one. Therefore, by the
induction hypothesis, the algorithm correctly decides whether I is a YES instance or not. J

I Theorem 12. The algorithm presented solves Disjoint Independent Feedback Vertex
Set in time O?(3.1481k).
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Proof. The Reduction Rules 1 to 8 can be applied in time polynomial in the input size. Also,
at each of the branch we spend a polynomial amount of time. At each of the recursive calls in
a branch, the measure µ decreases at least by 1. When µ ≤ 0, then we are able to solve the
remaining instance in polynomial time or correctly conclude that the corresponding branch
cannot lead to a solution. At the start of the algorithm µ ≤ 3k. The worst-case branching
vector for the algorithm is (3, 1) (see Table 1). The recurrence for the worst case branching
vector is:

T (µ) ≤ T (µ− 3) + T (µ− 1) .

The running time corresponding to the above recurrence relation is 3.1481k. J

3.2 A family of counter examples to Song’s Algorithm for Independent
Feedback Vertex Set

Let F be the family of even cycles. For any C ∈ F , let (CW , CH) be a bipartition of C.
Given a graph G and a feedback vertex set F in G, Lemma 3.1 of [30] claims to output a
minimum IFVS in G. But for G = C and F = CW , where C ∈ F , the algorithm of Lemma
3.1 always returns ∅.

4 Conclusion

In this paper we studied the Independent Feedback Vertex Set problem in the realm of
parameterized algorithms, moderately exponential time algorithms and combinatorial upper
bounds. We gave the fastest known deterministic algorithms for the problem running in times
O∗(4.1481k) and O∗(1.5981n), respectively. Finally, we showed that the number of minimal
ifvses in any graph on n vertices is upper bounded by 1.7485n. We also complemented the
upper bound result by obtaining a family of graphs where the number of minimal ifvses is
at least 3n/3. Improving running time of all our algorithms is an interesting question. We
conclude the paper with few concrete open problems.

Does Independent Feedback Vertex Set admit a kernel of size O(k2)?
Could we close the gap (or even bring closer) between the upper bound and the lower
bounds on the number of minimal ifvses in any graph on n vertices?
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