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Abstract
In this article, the steering committee of the Parameterized Algorithms and Computational Ex-
periments challenge (PACE) reports on the first iteration of the challenge. Where did PACE
come from, how did it go, who won, and what’s next?

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, K.7.2 Organi-
zations
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Digital Object Identifier 10.4230/LIPIcs.IPEC.2016.30

1 Introduction

The Parameterized Algorithms and Computational Experiments Challenge (PACE) was
conceived in Fall 2015 when many FPT researchers gathered at the Simons Institute for the
Theory of Computing at UC Berkeley. A talk there [14] explored the practical implementabil-
ity of theoretically tight FPT results, which seemed to offer an area for further investigation.
PACE was born from a belief that a challenge could help deepen the relationship between
parameterized algorithmics and practice. It was partially inspired by the success of SAT-
solving competitions in neighboring communities. The goal of PACE is to investigate the
applicability of algorithmic ideas studied and developed in the subfields of multivariate,
fine-grained, parameterized, or fixed-parameter tractable algorithms. In particular, it aims
to:
1. Bridge between algorithm design and analysis theory and algorithm engineering practice.
2. Inspire new theoretical developments.
3. Investigate the competitiveness of analytical and design frameworks developed in the

communities.
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4. Produce universally accessible libraries of implementations and repositories of benchmark
instances.

5. Encourage dissemination of the findings in scientific papers.

Discussions throughout the community led to a website [18], a steering committee, and
two challenge tracks for 2016 with program committees: Track A (Treewidth) and Track
B (Feedback Vertex Set). The winners were announced at IPEC 2016 in Aarhus.

2 Competition track A: Treewidth

The treewidth of a graph is an important graph parameter, the theory and complexity of
which has been intensely study in graph minor theory and fixed-parameter tractability (FPT).
Given a graph G and an integer k, it is NP-complete to determine whether the treewidth of G

is at most k, but there is an O(nk+2)-time algorithm [1]. The problem can also be solved in
FPT-time 2O(k3)n [3], and a factor-5 approximation can be obtained in time 2O(k)n [4]. It is
unknown whether the problem has a polynomial-time approximation scheme (PTAS).

Treewidth implementations are used in various contexts. For example, compilers allocate
registers by computing proper colorings on control flow graphs, which turn out to have
small treewidth in practice (e.g. [24]). Data structures for shortest path queries can use tree
decompositions in a preprocessing phase (e.g. [5]). Graph theory can be guided by treewidth
implementations when attempting to rigorously determine the treewidth of specific graph
families (e.g. [15]). Finally, many problems in probabilistic inference use tree decompositions
in a preprocessing phase (e.g. [13]).

While some treewidth implementations existed before PACE 2016, they were not easily
accessible and sometimes buggy (as in the case of the Python SAGE implementation, which
can produce non-optimal solutions), and their performances have never been compared in
public. For PACE, we imposed a unified input/output format for the challenge and required
all implementations to be made available on GitHub. Moreover, the details and raw data of
all results mentioned in this document can be found in the GitHub repository [25] that we
published. Using the tools and benchmark instances in the repository, it is a trivial matter
to reproduce the results.

2.1 Submissions
The list of all implementation submissions is available online [16]. Two researchers submitted
real-world instances for benchmarking:
1. Johannes Fichte (TU Wien) submitted transit networks.
2. Ben Strasser (Karlsruhe Institute of Technology) submitted road graphs.

Track A was subdivided into two tracks, based on the distinction between exact algorithms
and heuristics. Each track was further subdivided into two subchallenges, based on the
distinction between parallel and sequential algorithms. Since the best sequential exact
algorithm outperformed the best parallel exact algorithm, the exact parallel subchallenge
was discarded.

2.2 Sequential algorithms for computing treewidth exactly
The goal of this challenge was to compute a tree decomposition of minimum width. Three
teams participated in this track, and two PACE co-organizers jointly contributed a further
implementation. Figure 1 summarizes the results. In total, we used 200 instances in the
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Figure 1 Results for exact sequential algorithms for computing treewidth. This plot shows one
data point per solver-instance pair. The x-coordinate corresponds to the treewidth of the instance
and the y-coordinate corresponds to the running time. We aborted the computation after a timeout
of 100 seconds for most instances; some instances had a timeout of 1000 and 3600 seconds.

exact competition. The instances are samples of named graphs [21], control flow graphs [20],
and DIMACS graph coloring instances [7]. The outcome of this challenge is:

1st prize, 350e: Hisao Tamaki (Meiji University) solved 199 of 200 instances. The submis-
sion is written in C++ and is based on a modified version of the brute force approach of
Arnborg et al. [1]. [https://github.com/TCS-Meiji/treewidth-exact]

2nd prize, 125e: Hans Bodlaender and Tom Van der Zanden (Utrecht University) solved 173
of 200 instances. The submission is written in C# / Mono and relies on balanced separators
as well as dynamic programming. [https://github.com/TomvdZanden/BZTreewidth]

3rd prize, 75e: Max Bannach, Sebastian Berndt, and Thorsten Ehlers (Luebeck University)
solved 166 of 200 instances. The submission is written in Java 8 and relies on a SAT-solver
to find the optimal elimination order. [https://github.com/maxbannach/Jdrasil]

The implementation by Larisch and Salfelder from the track A program committee (Frankfurt
University) solved 171 of 200 instances.

2.3 Heuristic algorithms for computing treewidth
The goal of this challenge was to compute a good tree decomposition in a given fixed timeout.
We set the timeout to 100 seconds for every instance. We used the 200 instances from the
exact competition and 81 additional, harder instances from the same sources; arguably, the
instances were generally too easy for the heuristic challenge. Seven teams participated in this
track. In total, 6 sequential programs and 3 parallel programs were submitted. Some teams
submitted multiple programs, in which case we only kept the best-performing submission
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Figure 2 Results for heuristic sequential algorithms for computing treewidth. This plot shows,
for every sequential submission and every x, the number y of instances for which the submission
computed a tree decomposition of width at most x within the given time limit.

of each team in the ranking. For the evaluation, we viewed each instance as a voter and
determined its ranking for the implementations from the width of the tree decomposition
produced by the implementation after 100 seconds. We combined these votes using the
Schulze method [23]. This process can be inspected in the testbed repository [22].

2.3.1 Sequential heuristic algorithms for computing treewidth
Figure 2 shows the results for sequential heuristic algorithms. As can be seen, the top three
submissions nearly converge on the employed metric; this is perhaps explained by the fact
that all three implement the basic minimum fill-in heuristic (tweaked in different ways). The
other three submissions use more interesting techniques from FPT. The final ranking is:

1st prize, 350e: Ben Strasser (Karlsruhe Institute of Technology) [https://github.com/
ben-strasser/flow-cutter-pace16]

2nd prize, 125e: Eli Fox-Epstein (Brown University) [https://github.com/elitheeli/
2016-pace-challenge]

3rd prize, 75e: Michael Abseher, Nysret Musliu, and Stefan Woltran (TU Wien) [https:
//github.com/mabseher/htd]

4th place: Serge Gaspers, Joachim Gudmundsson, Mitchell Jones, Julian Mestre, and Stefan
Rümmele (UNSW and University of Sidney) [https://github.com/mfjones/pace2016]

5th place: Max Bannach, Sebastian Berndt, and Thorsten Ehlers (Luebeck University)
[https://github.com/maxbannach/Jdrasil]

6th place: Kaustubh Joglekar, Akshay Kamble, and Rajesh Pandian (IIT Madras) [https:
//github.com/mrprajesh/pacechallenge]
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Figure 3 Results for heuristic parallel algorithms for computing treewidth. This plot shows,
for every sequential submission and every x, the number y of instances for which the submission
computed a tree decomposition of width at most x within the given time limit.

2.3.2 Parallel heuristic algorithms for computing treewidth
The results for parallel heuristic algorithms can be found in Figure 3. It leads to the following
ranking:

1st prize, 350e: Kalev Kask and William Lam (University of California at Irvine) [https:
//github.com/willmlam/CVO2]

2nd prize, 125e: Ben Strasser (Karlsruhe Institute of Technology) [https://github.com/
ben-strasser/flow-cutter-pace16]

3rd prize, 75e: Max Bannach, Sebastian Berndt, and Thorsten Ehlers (Luebeck University)
[https://github.com/maxbannach/Jdrasil]

3 Competition track B: Feedback Vertex Set

In the (undirected) Feedback Vertex Set problem we are given an undirected graph G

and want to compute a smallest vertex set S such that removing S from G results in a forest,
that is, a graph without cycles. Feedback Vertex Set is NP-complete [12] and one of the
most prominent problems in parameterized algorithmics. Most fixed-parameter algorithms
use the parameter solution size k = |S|.

Virtually all fixed-parameter algorithms make use of the fact that vertices of degree at
most two can be easily removed from the graph. After this initial removal, a range of different
techniques were used in the fixed-parameter algorithms. The first constructive fixed-parameter
algorithm branches on a shortest cycle in the resulting graph. This cycle has length at
most 2k in a yes-instance, which results in an overall running time of (2k)knO(1) [8]. By using
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a randomized approach on the resulting graph, a running time of 4knO(1) can be obtained [2].
The first deterministic approaches to achieve running times of the form 2O(k)nO(1) use the
iterative compression technique. It iteratively builds up the graph by adding one vertex
at a time, and makes use of the fact that a size-k solution can be stored during this
computation [6, 9]. Other fixed-parameter algorithms for this problem can be obtained by
branching on a vertex of maximum degree or by LP-based techniques [11].

3.1 Challenge setup and participation
We collected 230 graphs, which were mostly from various application fields such as social
networks, biological networks, road networks, or incidence graphs of CNF-SAT formulas.
The graphs were selected so that there was a steady progression from easy to hard instances.
The set of public training and hidden test instances is available in a GitHub repository [19].

To determine the winners, we counted the number of instances that could be solved within
the given time limit. To avoid overemphasizing low-level improvements of the algorithms, we
set the time limit to 30 minutes per instance. To identify programs that report non-optimal
solutions we precomputed the optimal solutions for some instances using an ILP that was
given at least 30 minutes on each instance. This ILP is based on cycle constraints. More
precisely, we add constraints enforcing that for each cycle at least one vertex must be deleted
by any solution. Since the number of constraints is usually exponential, they are added in
a lazy fashion, that is, we compute a solution with only some initial constraints and check
whether the solution is a feedback vertex set. If this is the case, then we have found an
optimal solution, otherwise we add constraints for some of the remaining cycles and compute
a new solution until a feedback vertex set is found.

Overall, 14 teams registered out of which seven eventually submitted a program. From
those teams that submitted a program, three were from Germany, one from India, one from
Japan, one from Poland, and one from Russia.

3.2 Results
In the following, we give for each team further details such as the number of solved instances,
a brief algorithm description, the names of the participants, and a link to the code repository.
All submissions apply a reduction rule that removes all vertices of degree at most two. The
final ranking for track B is:

1st prize, 500e: Yoichi Iwata (NII) and Kensuke Imanishi (University of Tokyo). This
submission solved 84 out of 130 instances. The algorithm utilizes an LP-based branch-
ing [11] and an LP-based kernelization [10]. The program is written in Java. [https:
//github.com/wata-orz/fvs]

2nd prize, 300e: Marcin Pilipczuk (University of Warsaw). This submission solved 66
out of 130 instances. The algorithm branches on a vertex of maximum degree. In
addition, instances with small treewidth are solved by dynamic programming on tree
decompositions and subcubic instances are solved by a polynomial-time algorithm that is
based on a reduction to the graphic matroid parity problem. The program is written in
C++. [https://bitbucket.org/marcin_pilipczuk/fvs-pace-challenge]

3rd prize, 200e: Ruben Becker, Karl Bringmann, Dennis Gross, Erik Jan van Leeuwen,
and Natalie Wirth (MPI Saarbrücken). This submission solved 50 out of 130 instances.
The algorithm also branches on vertices of the highest degree. The search tree is pruned
by computing upper and lower bounds. The program is written in C++. [https:
//github.com/erikjanvl/FVS_MPI]

https://github.com/wata-orz/fvs
https://github.com/wata-orz/fvs
https://bitbucket.org/marcin_pilipczuk/fvs-pace-challenge
https://github.com/erikjanvl/FVS_MPI
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Figure 4 Results for track B. The figure shows, for each participating team, the number of instances
for which an optimal solution was found within 30 minutes. The leftmost column corresponds to the
Gurobi-based ILP used by the program committee.

4th place: Niklas Paulsen, Kevin Prohn, Malin Rau, and Lars Rohwedder (Kiel University).
This submission solved 47 out of 130 instances. The algorithm is based on the combination
of iterative compression with an improved branching strategy. Subcubic graphs are
solved again by reduction graphic matroid parity. The program is written in C#.
[https://git.informatik.uni-kiel.de/npau/FFF]

5th place: Shivam Garg (IIT Bombay), G. Philip, and Apoorva Tamaskar (Chennai Math-
ematical Institute). This submission solved 41 out of 130 instances. The algorithm
branches on a shortest cycle. This program is written in Python. [https://bitbucket.
org/gphilip_bitbucket/pace-code]

6th place: Fabian Brand, Simon Gehring, Florian Nelles, Kevin Wilkinghoff, and Xianghui
Zhong (University of Bonn). This submission solved 34 out of 130 instances. The algorithm
is based on iterative compression and also solves subcubic instances in polynomial
time. The program is written in C++. Xianghui Zhong received a travel award of
780e to be able to attend the award ceremony. [https://github.com/s-gehring/
feedback-vertex-set]

7th place: Svyatoslav Feldsherov (Moscow State University). This submission solved 22 out
of 130 instances. The algorithm uses the randomized approach with running time 4knO(1).
An improvement is gained for the case where two vertices are connected by a multi-edge.
In this case, the algorithm branches directly on these two vertices. The program is written
in C++. [https://github.com/feldsherov/pace2016]

As a final remark, the ILP used by the program committee solved 81 out of 130 instances
within the time limit. Thus, the best FPT approaches were competitive with this particular
ILP formulation. Since alternative ILP formulations are possible, a more thorough comparison
with further ILP-based approaches would be necessary to gain insight into the relative
performance of FPT-based and ILP-based approaches for Feedback Vertex Set.
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4 PACE organization

The PACE steering committee consists of the present authors, with Frances Rosamond as
chair. The program committees for the two tracks in 2016 consisted of:

Track A:

Isolde Adler University of Leeds
Holger Dell (Chair) Saarland University & Cluster of Excellence
Thore Husfeldt ITU Copenhagen & Lund University
Lukas Larisch University of Leeds
Felix Salfelder Goethe University Frankfurt

Track B: Falk Hüffner Industry
Christian Komusiewicz Friedrich-Schiller-University Jena

5 The future of PACE

As organizers, we consider the first iteration of PACE to be a huge success: we had great
submissions building on existing and new theoretical ideas, which led to fast programs that
performed well on the real-word inputs to which they were applied. The award ceremony at
IPEC was very well attended, and many of the ALGO 2016 participants showed an interest
in the competition.

To continue driving the transfer of algorithmic ideas from theory to practice, we intend
PACE to become an annual event. The target problem(s) will change whenever relevant, but
the same problem may be used for several consecutive years when there are indications that
further developments are possible. Plans for the next iteration of PACE can be found on the
challenge website [18].

We thank all the participants for their enthusiastic participation and look forward to
many interesting iterations of the challenge in the future. We also thank all members of the
community for their input in formulating the goals and setup of the challenge. We welcome
anyone who is interested to add their name to the mailing list on the website [18] to receive
PACE updates and join the discussion.

Acknowledgments. Prize money and travel grants were given through the generosity of
Networks [17], an NWO Gravitation project of the University of Amsterdam, Eindhoven
University of Technology, Leiden University, and the Center for Mathematics and Computer
Science (CWI). The steering committee thanks the two program committees for their hard
work in making PACE a success. In particular, we are grateful to Felix Salfelder for his help
in preparing plots of the results.
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