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Abstract
We examine the complexity of the online Dictionary Matching with One Gap Problem (DMOG)
which is the following. Preprocess a dictionary D of d patterns, where each pattern contains
a special gap symbol that can match any string, so that given a text that arrives online, a
character at a time, we can report all of the patterns from D that are suffixes of the text that
has arrived so far, before the next character arrives. In more general versions the gap symbols
are associated with bounds determining the possible lengths of matching strings. Online DMOG
captures the difficulty in a bottleneck procedure for cyber-security, as many digital signatures of
viruses manifest themselves as patterns with a single gap.

In this paper, we demonstrate that the difficulty in obtaining efficient solutions for the DMOG
problem, even in the offline setting, can be traced back to the infamous 3SUM conjecture. We
show a conditional lower bound of Ω(δ(GD)+op) time per text character, where GD is a bipartite
graph that captures the structure ofD, δ(GD) is the degeneracy of this graph, and op is the output
size. Moreover, we show a conditional lower bound in terms of the magnitude of gaps for the
bounded case, thereby showing that some known offline upper bounds are essentially optimal.

We also provide matching upper-bounds (up to sub-polynomial factors), in terms of the
degeneracy, for the online DMOG problem. In particular, we introduce algorithms whose time
cost depends linearly on δ(GD). Our algorithms make use of graph orientations, together with
some additional techniques. These algorithms are of practical interest since although δ(GD) can
be as large as

√
d, and even larger if GD is a multi-graph, it is typically a very small constant in

practice. Finally, when δ(GD) is large we are able to obtain even more efficient solutions.
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1 Introduction

Understanding the computational limitations of algorithmic problems often leads to algorithms
that are efficient for inputs that are seen in practice. This paper, which stemmed from
an industrial-acdemic connection [31], is a prime example of such a case. We focus on an
aspect of Cyber-security which is a critical modern challenge. Network intrusion detection
systems (NIDS) perform protocol analysis, content searching and content matching, in order
to detect harmful software. Such malware may appear non-contiguously, scattered across
several packets, which necessitates matching gapped patterns.

A gapped pattern P is one of the form P1 {α, β} P2, where each subpattern P1, P2 is
a string over alphabet Σ, and {α, β} matches any substring of length at least α and at
most β, which are called the gap bounds. Gapped patterns may contain more that one
gap, however, those considered in NIDS systems typically have at most one gap, and are a
serious bottleneck in such applications [31]. Analyzing the set of gapped patterns considered
by the SNORT software rules shows that 77% of the patterns have at most one gap, and
more than 44% of the patterns containing gaps have only one gap. Therefore, an efficient
solution for this case is of special interest. Though the gapped pattern matching problem
arose over 20 years ago in computational biology applications [28, 19] and has been revisited
many times in the intervening years (e.g. [27, 10, 25, 9, 16, 29, 32]), in this paper we study
what is apparently a mild generalization of the problem that has nonetheless resisted many
researcher’s attempts at finding a definitive efficient solution.

The set of d patterns to be detected, called a dictionary, could be quite large. While
dictionary matching is well studied (see, e.g. [2, 4, 12, 5, 15]), NIDS applications motivate
the dictionary matching with one gap problem, defined formally as follows.

I Definition 1. The Dictionary Matching with One Gap Problem (DMOG), is:
Input: A text T of length |T | over alphabet Σ, and a dictionary D of d gapped patterns

P1, . . . , Pd over alphabet Σ where each pattern has at most one gap.
Output: All locations in T where a pattern Pi ∈ D, 1 ≤ i ≤ d, ends.

In the offline DMOG problem T and D are presented all at once. We study the more
practical online DMOG problem. The dictionary D can be preprocessed in advance, resulting
in a data structure. Given this data structure the text T is presented one character at a time,
and when a character arrives the subset of patterns with a match ending at this character
should be reported before the next character arrives. Three cost measures are of interest: a
preprocessing time, a time per character, and a time per match reported. Online DMOG is
a serious bottleneck for NIDS, though it has received much attention from both the industry
and the academic community.

1.1 Previous Work

Finding efficient solutions for DMOG has proven to be a difficult algorithmic challenge as,
unfortunately, little progress has been obtained on this problem even though many researchers
in the pattern matching community and the industry have tackled it. Table 1 describes a
summary and comparison of previous work. It illustrates that previous formalizations of
the problem, either do not enable detection of all intrusions or are incapable of detecting
them in an online setting, and therefore, are inadequate for NIDS applications. Table 1
also demonstrates that our upper bounds are essentially optimal (assuming some popular
conjectures, as described in Section 2).
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Table 1 Comparison of previous work and some new results. The parameters: lsc is the longest
suffix chain of subpatterns in D, socc is the number of subpatterns occurrences in T , op is the
number of pattern occurrences in T , α∗ and β∗ are the minimum left and maximum right gap
borders in the non-uniformly bounded case, δ(GD) is the degeneracy of the graph GD representing
dictionary D.

Preprocessing Total Query Time Algorithm Remark
Time Type

[24] none Õ(|T |+ |D|) online reports only
first occurrence

[32] O(|D|) Õ(|T |+ d) online reports only
first occurrence

[18] O(|D|) O(|T | · lsc+ socc) online reports one occurrence
per pattern and location

[7] Õ(|D|) Õ(|T |(β − α) + op) offline DMOG
[20] O(|D|) Õ(|T |(β∗ − α∗) + op) offline DMOG

This
paper O(|D|) Õ(|T | · δ(GD) · lsc+ op) online DMOG

This O(|D|) Ω(|T | · δ(GD)1−o(1) + op) online DMOG
paper O(|D|) Ω(|T | · (β − α)1−o(1) + op) or offline

1.2 New Results
The DMOG problem has several natural parameters, e.g., |D|, d, and the magnitude of the
gap. We establish almost sharp upper and lower bounds for the cases of unbounded gaps
(α = 0, β =∞), uniformly bounded gaps where all patterns have the same bounds, α and β,
on their gap, and the most general non-uniform gaps version, where each pattern Pi ∈ D has
its own gap bounds, αi and βi. We show that the complexity of DMOG actually depends on a
“hidden” parameter that is a function of the structure of the gapped patterns. The dictionary
D can be represented as a graph GD, which is a multi-graph in the non-uniformly bounded
gaps case, where vertices correspond to first or second subpatterns and edges correspond to
patterns1. We use the notion of graph degeneracy δ(GD) which is defined as follow. The
degeneracy of an undirected graph G = (V,E) is δ(G) = maxU⊆V minu∈U dGU (u), where
dGU is the degree of u in the subgraph of G induced by U . In words, the degeneracy of G is
the largest minimum degree of any subgraph of G. A non-multi graph G with m edges has
δ(G) = O(

√
m), and a clique has δ(G) = Θ(

√
m). The degeneracy of a multi-graph can be

much higher.

Vertex-triangle queries. A key component in understanding both the upper and lower
bounds for DMOG is the vertex-triangles problem, where the goal is to preprocess a graph
so that given a query vertex u we may list all triangles that contain u. The vertex-triangles
problem, besides being a natural graph problem, is of particular interest here since, as will
be demonstrated in Section 2, it is reducible to DMOG. Our reduction demonstrates that
the complexity of the DMOG problem already emerges when all patterns are of the form of
two characters separated by an unbounded gap. This simplified online DMOG problem is

1 While it may be more natural to consider a directed or bipartite graph, the notion of degeneracy ignores
directions, and so let GD here be an undirected graph for sake of explaining the notion.
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12:4 Mind the Gap: Online Dictionary Matching with One Gap

equivalent to the following Induced Subgraph (ISG) problem. Preprocess a directed graph
G = (V,E) such that given a query sequence of vertices online (these vertices need not
be all of V ), after vertex vi arrives, all edges (vj , vi) ∈ E with j < i are reported. Notice
that answering consecutive queries is done independently. Thus, characters and gapped
patterns in DMOG correspond to vertices and edges in ISG, respectively. We show that
vertex-triangles queries are reducible to ISG.

This reduction serves two purposes. First, in Section 2 we prove a conditional lower bound
(CLB) for DMOG based on the 3SUM conjecture by combining a reduction from triangle
enumeration to the vertex-triangles problem with our new reduction from the vertex-triangles
problem to DMOG. Our lower bound states that any online DMOG algorithm with low
preprocessing and reporting costs must spend Ω(δ(GD)1−o(1)) per character, assuming the
3SUM conjecture. Interestingly, the path for proving this CLB deviates from the common
conceptual paradigms for proving lower bounds conditioned on the 3SUM conjecture, and
is of independent interest. In particular, the common paradigm considers set-disjointness
or set-intersection type problems, which correspond to edge triangle queries, while here we
consider vertex-triangle queries. Moreover, our CLB holds for the offline case as well, and can
be rephrased in terms of other parameters. For example, in the DMOG problem with uniform
gaps {α, β}, we prove that the per character cost of scanning T must be Ω((β − α)1−o(1)).
This gives some indication that some recent algorithms for the offline version of DMOG
problem are essentially optimal ([7, 20]).

Second, in Section 3 we provide optimal solutions (under the 3SUM conjecture), up to
subpolynomial factors, for ISG and, therefore, also for vertex-triangles queries, with O(|E|)
preprocessing time and O(δ(G) + op) time per each vertex, where op is the size of the output
due to the vertex arrival. The connection between ISG and DMOG led us to extend the
techniques used to solve ISG, combine them with additional ideas and techniques, thereby
introduce several new online DMOG algorithms whose dependence on δ(G) is linear. Thus,
graph degeneracy seems to capture the intrinsic complexity of the problem. On the other
hand, the statement of our general algorithmic results is actually a bit more complicated
as it depends on other parameters of the input, namely lsc, the length of the longest suffix
chain in the dictionary, i.e., the longest sequence of dictionary subpatterns such that each is
a proper suffix of the next. While the parameter lsc could theoretically be as large as d, in
practice it is very small [31]. Nevertheless, we also present algorithms that in the most dense
cases reduce the dependence on lsc.

Lower bounds leading to practical upper bounds. After trying to tackle the DMOG
problem from the upper bound perspective, we suspected that a lower bound could be proven,
and indeed were successful in showing a connection to the 3SUM conjecture. The CLB proof
provides insight for the inherent difficulty in solving DMOG, but is also unfortunate news
for those attempting to find efficient upper bounds. Fortunately, a careful examination of
the reduction from 3SUM to DMOG reveals that the CLB from the 3SUM conjecture can be
phrased in terms of δ(GD), which turns out to be a small constant in the input instances
considered by NIDS (according to an analysis of the graph created using SNORT rules) [31].
This lead to designing algorithms whose runtime can be expressed in terms of δ(GD), and can
therefore be helpful in practical settings. The following table summarizes our upper-bounds
for DMOG.

The design of our algorithms stem from a solution for ISG using O(m) preprocessing time
and O(δ(G) + op) query time. This solution for ISG is extended to solutions for the various
DMOG versions. However, since subpatterns can be suffixes of each other, up to lsc vertices
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Table 2 A summary of upper bounds for DMOG described in this paper. Unbounded, uniform
and non-uniform refer to the type of gap bounds under consideration. M is the maximal length of a
subpattern in the dictionary D.

Gaps Preprocessing Query Time Space
Type Time per Text Character

unbounded O(|D|) O(δ(GD) · lsc+ op) O(|D|)
uniform O(|D|) O(δ(GD) · lsc+ op) O(|D|+ lsc(β − α+M) + α)

non-uniform O(|D|) Õ(δ(GD) · lsc+ op) Õ(|D|+ lsc(β∗ − α∗ +M) + α∗)
uniform O(|D|) O(lsc+

√
lsc · d+ op) O(|D|+ lsc(β − α+M) + α)

non-uniform O(|D| Õ(
√
lsc · d(β∗ − α∗ +M) + op) Õ(|D|+ d(β∗ − α∗)

+d(β∗ − α∗)) +
√
lsc · d(β∗ − α∗ +M) + α∗)

can arrive simultaneously in GD, the time of our algorithms have a multiplicative factor of
lsc. We emphasize that we are not the first to introduce the lsc factor even in solutions
for simplified relaxations of the DMOG problem [18]. Also, since subpatterns may be long,
we must accommodate a delay in the time a vertex corresponding to a second subpattern
is treated as if it has arrived, thus inducing a minor additive space usage. Finally, in [6]
we obtain more efficient bounds that depend linearly on

√
lsc · d when δ(DG) ≥

√
d
lsc , by

first considering special types of graph orientations, called threshold orientations, and then
carefully applying data-structure techniques. Notice that while in the uniformly bounded
case we have δ(GD) = O(

√
d), in the non-uniform case δ(GD) could be much higher and so

these new algorithms become a vast improvement.

Paper Contributions. The main contributions of this paper are:
Obtaining algorithms for DMOG that are asymptotically fast for practical inputs.
Proving matching conditional lower bounds (up to sub-polynomial factors) from the
3SUM conjecture, which in particular deviate from the common paradigm of such proofs.
Formalizing the ISG problem. This problem serves in this paper for supplying a deeper
understanding of the DMOG problem, but is also of independent interest.

Paper Organization. Section 2 describes our conditional lower bounds. In Section 3 we
introduce a solution for ISG, which is then extended to simplified versions of the uniformly
and non-uniformly bounded DMOG problems in Sections 3.1 and 3.2. In Section 4.1, the
ISG algorithms are extended to solutions for the various DMOG versions. More details and
results appear in [6].

2 3SUM: Conditional Lower Bounds

In this section we prove that conditioned on the 3SUM conjecture we can prove lower bounds
for the vertex-triangles problem, the ISG problem, and the (offline) unbounded DMOG
problem. Since the other two versions of DMOG (uniformly and non-uniformly bounded)
can solve the unbounded DMOG version, the lower bounds hold for these problems as well.

Background. Polynomial (unconditional) lower bounds for data structure problems are
considered beyond the reach of current techniques. Thus, it has recently become popular to
prove CLBs based on the conjectured hardness of some problem. One of the most popular
conjectures for CLBs is that the 3SUM problem (given n integers determine if any three

ISAAC 2016
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sum to zero) cannot be solved in truly subquadratic time, where truly subquadratic time is
O(n2−Ω(1)) time. This conjecture holds even if the algorithm is allowed to use randomization
(see e.g. [30, 1, 23, 17]). In this section we show that the infamous 3SUM problem can
be reduced to DMOG, which sheds some light on the difficulty of the DMOG problem.
Interestingly, our reduction does not follow the common paradigm for proving CLBs based
on the 3SUM conjecture, providing a new approach for reductions from 3SUM. This approach
is of independent interest, and is described next.

Triangles. Pǎtraşcu [30] showed that 3SUM can be reduced to enumerating triangles in
a tripartite graph. Kopelowitz, Pettie, and Porat [23] provided more efficient reductions,
thereby showing that many known triangle enumeration algorithms ([21, 13, 11, 22]) are
essentially and conditionally optimal, up to subpolynomial factors. Hence, the offline version
of triangle enumeration is well understood. The following two indexing versions of the triangle
enumeration problem are a natural extension of the offline problem. In the edge-triangles
problem the goal is to preprocess a graph so that given a query edge e all triangles containing
e are listed. The vertex-triangles problem is defined above. Clearly, both these versions solve
the triangle enumeration problem, which immediately gives lower bounds conditioned on the
3SUM conjecture.

The edge-triangles problem on a tripartite graph corresponds to preprocessing a family
F of sets over a universe U in order to support set intersection queries in which given two
sets S, S′ ∈ F the goal is to enumerate the elements in S ∩ S′ (see [23]). Indeed, the task of
preprocessing F to support set-intersection enumeration queries, and hence edge-triangles, is
well studied [14, 22]. Furthermore, the set intersection problem has been used extensively as
a tool for proving that many algorithmic problems are as hard as solving 3SUM [30, 1, 23].
However, the vertex-triangles problem has yet to be considered directly2.

The Lower Bounds. We use the vertex-triangles problem in order to show that the ISG
problem is hard, and thus the simplest DMOG version of (offline) unbounded setting is
3SUM-hard. Our proof begins from the conditional lower bounds for triangle enumeration
introduced in [23]. The most significant conditional lower bounds that we prove are stated by
the following theorems. Due to space limitations the proofs of these theorems, together with
some more conditional lower bounds, are given in Appendix A. To understand the statements
of the following theorems, when the total query time of an algorithm can be formulated as
O(tq + op · tr) time, we say that tq is the query time and tr is the reporting time.

I Theorem 2. Assume 3SUM requires Ω(n2−o(1)) expected time. For any algorithm that
solves the ISG problem on a graph G with m edges, if the amortized expected preprocessing
time is O(m · δ(G)1−Ω(1)) and the amortized expected reporting time is sub-polynomial, then
the amortized expected query time must be Ω((δ(G))1−o(1)).

I Theorem 3. Assume 3SUM requires Ω(n2−o(1)) expected time. For any algorithm that
solves the DMOG problem on a dictionary D with d patterns, if the amortized expected
preprocessing time is O(|D| · δ(GD)1−Ω(1)) and the amortized expected reporting time is
sub-polynomial, then the amortized expected query time must be Ω((δ(GD))1−o(1)).

2 The closely related problem of deciding whether a given vertex is contained by any triangle (a decision
version) has been addressed [8].
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3 The Induced Subgraph Problem

An Upper Bound via Graph Orientations. In graph orientations the goal is to orient the
graph edges while providing some guarantee on the out-degrees of the vertices. Formally,
an orientation of an undirected graph G = (V,E) is called a c-orientation if every vertex
has out-degree at most c ≥ 1. The notion of graph degeneracy is closely related to graph
orientations [3]. Chiba and Nishizeki [13] linear time greedy algorithm assigns a δ(G)-
orientation of G. We preprocess G using this algorithm, thereby obtaining a c-orientation
with c = δ(G), and use it for solving ISG problem as follows. First, we view an orientation as
assigning “responsibility” for all data transfers occurring on an edge to one of its endpoints,
depending on the direction of the edge in the orientation (regardless of the actual direction
of the edge in the input graph G). We exploit this distinction by using the notation of an
edge e = (u, v) as oriented from u to v, while e could be directed either from u to v or from
v to u. We say that u is responsible for e, and that e is assigned to u. Furthermore, u is a
responsible-neighbor of v and v is an assigned-neighbor of u.

The Bipartite Graph. We begin by converting G = (V,E) to a bipartite graph by creating
two copies of V called L (the left vertices) and R (the right vertices). For every edge
(u, v) ∈ E we add an edge in the bipartite graph from uL ∈ L to vR ∈ R, where uL is a
copy of u and vR is a copy of v. All edges are originally directed from L to R (before the
orientation). Furthermore, each vertex in V that arrives during query time is replaced by its
two copies, first the copy from R and then the copy from L. This ordering guarantees that a
self loop in G is not mistakenly reported the first time its single vertex arrives. Notice that
the degeneracy of G is unchanged, up to constant factors, due to this reduction. From here
onwards we assume that G is already in this bipartite representation.

The unbounded case discussion and the omitted proofs appear in [6].

3.1 Uniformly Bounded Edge Occurrences
In this case, the ISG problem is restricted with two positive integer parameters α and β so
an edge (vj , vi) can only be reported if α < i − j ≤ β + 1 (recall that i and j are arrival
times of vi and vj , respectively). The interval between β time units ago and α time units
ago is called the active window. It is maintained via a list Lβ of the last β vertices. In
addition, each vertex v ∈ R maintains a reporting list Lv, which is a linked list containing the
responsible-neighbors of v which have appeared during the active window, without repetition.
Furthermore, each vertex u ∈ L has an ordered list of time stamps τu of the times u arrived
in the current active window.

At query time i, Lβ is updated by removing vi−β−1 and inserting vi, which is the vertex
arriving at time i. If vi−β−1 ∈ L then the time stamp of i− β − 1 is removed from τvi−β−1 .
In case τvi−β−1 becomes empty then we remove vi−β−1 from all of the reporting lists of its
assigned-neighbors.

When a vertex vi arrives, the data structures of the vertices are updated accordingly, as
follows. If vi ∈ R,
1. The elements of the reporting list Lvi are scanned and their edges (u, vi) are reported

according to τu.
2. The edges for which vi is their responsible-neighbour are scanned, and those for which

the assigned-neighbour u is marked as arrived are reported.

ISAAC 2016



12:8 Mind the Gap: Online Dictionary Matching with One Gap

If vi−α−1 ∈ L,
1. vi−α−1 is marked as arrived.
2. If τvi−α−1 was empty before the current arrival, then vi−α−1 is added to the reporting

lists of its assigned neighbours.
3. i− α− 1 is added to τvi−α−1 .

I Theorem 4. The Induced Subgraph problem with uniformly bounded edge occurrences on
a graph G with m edges and n vertices can be solved with O(m + n) preprocessing time,
O(δ(G)+op) time per query vertex, where op is the number of edges reported at vertex arrival,
and O(m+ β) space.

3.2 Non-Uniformly Bounded Edge Occurrences
In non-uniformly bounded edge occurrences each edge e = (vj , vi) has its own boundaries
[αe, βe] and can only be reported if αe < i − j < βe + 1. Notice that in this case the
input is a multi-graph. The active window for this ISG version is the time window between
β∗ = maxe∈E{βe} and α∗ = mine∈E{αe} time units ago.

Similar to Section 3.1, a dynamic list Lβ∗ of the last β∗ vertices that have appeared is
maintained. However, this approach of a general active window introduces a new challenge.
If τu includes all the appearances of u within the active window, as was done in Section 3.1,
when a vertex vi ∈ R arrives, the information in Lvi cannot be automatically reported, as
some of the appearances of nodes u ∈ Lvi are not within the gaps of edge (u, vi), thus only
part of their τu list needs to be reported. A naive filtering considers for each u ∈ Lvi a
scan of τu and reports only time stamps j where i − βe < j < i − αe, which sums up to
β∗ − α∗ time per query vertex. To avoid an overhead in query time, our filtering mechanism
checks all appearances of all responsible-neighbours of vi in a batched query, where each
responsible-neighbour appearance is filtered according to the edge’s gaps. This is achieved by
maintaining for each vertex v ∈ R a fully dynamic data structure Sv for supporting 4-sided
2-dimensional orthogonal range reporting queries instead of Lv. Given an [x0, y0]× [x1, y1]-
range, it returns the points of Sv that have (x, y) coordinates in the given range. For each
responsible-neighbor vi ∈ L of v that arrived in the active window, where e = (vi, v), the
point (i+ αe + 1, i+ βe + 1) is inserted into Sv, yielding the occurrences in Sv are from the
“point of view” of v.

To implement Sv, we use Mortensen’s data structure [26] that supports the set of |Sv|
points from R2 with O(|Sv| log7/8+ε |Sv|) words of space, insertion and deletion time of
O(log7/8+ε |Sv|) and O( log |Sv|

log log |Sv| + op) time for range reporting queries on Sv, where op is
the size of the output.

When a vertex vi arrives at query time i, in addition to adding it to Lβ∗ , the following
happens. If vi ∈ R,
1. A range query of [0, i]× [i,∞] is performed over Svi . The edges representing the range

output are reported.
2. The edges for which vi is their responsible-neighbour are scanned, and those for which

the assigned-neighbour u is marked as arrived are reported according to a search in their
time stamp.

If vi−α∗−1 ∈ L,
1. vi−α∗−1 is marked as arrived.
2. For each assigned-neighbour v, such that e = (vi−α∗−1, v), (i− α∗ + αe, i− α∗ + βe) is

inserted to Sv.
3. i− α∗ − 1 is added to τvi−α∗−1 .
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I Theorem 5. The Induced Subgraph problem with non-uniformly bounded edge occurrences
on a graph G with m edges and n vertices can be solved with O(m+ n) preprocessing time,
Õ(δ(G) + op) time per query vertex, where op is the number of edges reported due to the
vertex arriving, and Õ(m+ δ(G)(β∗ − α∗) + α∗) space.

4 Solving DMOG

4.1 DMOG via Graph Orientations
When extending ISG to online DMOG, the longer subpatterns introduce new challenges
that need to be addressed. It is helpful to still consider the bipartite graph presentation
of the DMOG instance, where vertices correspond to subpatterns and edges correspond to
patterns. The algorithms from Section 3 are used as basic building blocks in our algorithms
for DMOG by treating a subpattern arriving as the vertex arriving in the appropriate graph,
while addressing the difficulties that arise from subpatterns being arbitrarily long strings.

First, a mechanism for determining when a subpattern arrives is needed. One way of
doing this is by using the the Aho-Corasick (AC) Automaton [2], using a standard binary
encoding technique so that each character costs O(log |Σ|) worst-case time. For simplicity we
assume that |Σ| is constant. However, while in the ISG problem each character corresponds
to the arrival of at most one subpattern, in the DMOG with unbounded gaps each arriving
character may correspond to several subpatterns which all arrive at once, since a subpattern
could be a proper suffix of another subpattern. We, therefore, phrase the complexities of our
algorithms in terms of lsc, which is the maximum number of vertices in the bipartite graph
that arrive due to a character arrival. This induces a multiplicative overhead of at most lsc
in the query time per text character relative to the time used by the ISG algorithms.

Finally, there is an issue arising from subpatterns no longer being of length one, which
for simplicity we first discuss this in the unbounded case. When u ∈ L arrives and it has an
assigned vertex v ∈ R where mv is the length of the subpattern associated with v, then we
do not want to report the edge (u, v) until at least mv − 1 time units have passed, since the
appearance of the subpattern of v should not overlap with the appearance of the subpattern
of u. Similarly, in the bounded case, we must delay the removal of u from Lv by at least
mv − 1 time units. Notice that if we remove u from Lv after a delay of mv − 1, then we may
be forced to remove a large number of such vertices at a given time. We, therefore, delay
the removal of u by M − 1 time units, where M is the length of the longest subpattern that
corresponds to a vertex in R. This solves the issue of synchronization, however, some of the
reporting lists now have elements that should not be reported. Nevertheless, we can spend
time in a reporting list that corresponds to the size of the output using standard list and
pointer techniques.

Combining these ideas with the algorithms in Section 3 gives Theorems 6, 7 and 8.

I Theorem 6. The DMOG problem with one gap and unbounded gap borders can be solved
with O(|D|) preprocessing time, O(δ(GD) · lsc+ op) time per text character, where op is the
number of patterns that are reported due to the character arriving, and O(|D|) space.

I Theorem 7. The DMOG problem with uniformly bounded gap borders can be solved such
that dictionary patterns are reported online in: O(|D|) preprocessing time, O(δ(GD) · lsc+op)
time per text character, where op is the number of patterns that are reported due to the
character arriving, and O(|D|+ lsc · (β − α+M) + α) space.

I Theorem 8. The DMOG problem with non-uniformly bounded gap borders can be solved
such that dictionary patterns are reported online in: O(|D|) preprocessing time, Õ(δ(GD) ·
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lsc+ op) time per text character, where op is the number of patterns that are reported due to
the character arriving, and Õ(|D|+ lsc · δ(GD)(β∗ − α∗ +M) + α∗) space.
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A Full Details for Section 2

I Theorem 9 ([23]3). Assume 3SUM requires Ω(n2−o(1)) expected time. Then for any
constant 0 < x < 1/2, any algorithm for enumerating all triangles in a graph G with m edges,
Θ(m1−x) vertices, and d̂ = δ(G) = Θ(mx), where d̂ is the average degree of a vertex in G,
must spend Ω(m · δ(G)1−o(1)) expected time.

I Theorem 10. Assume 3SUM requires Ω(n2−o(1)) expected time. For any algorithm that
solves the vertex-triangles problem on a graph G with m edges, if the amortized expected
preprocessing time is O(m · δ(G)1−Ω(1)) and the amortized expected reporting time is sub-
polynomial, then the amortized expected query time must be at least Ω((d̂ · δ(G))1−o(1)), where
d̂ is the degree of the queried vertex.

Proof. We reduce the triangle enumeration problem considered in Theorem 9 to the vertex-
triangles problem. We preprocess G and then answer vertex-triangles queries on each of the
m1−x vertices thereby enumerating all of the triangles in G. If we assume a sub-polynomial
reporting time, then by Theorem 9 either the preprocessing takes Ω(m · δ(G)1−o(1)) time
or each query must cost at least Ω(m·δ(G)1−o(1)

m1−x ) = Ω((mxδ(G))1−o(1)) = Ω((d̂ · δ(G))1−o(1))
time. J

We are now ready to prove Theorems 2 and 3.

Proof of Theorem 2 and Theorem 3. We reduce the vertex-triangles problem considered
in Theorem 10 to ISG as follows. We preprocess the graph G for ISG queries. Now, to

3 The actual statement in [23] refers to the arboricity of G instead of the degeneracy of G. However, both
terms are the same, up to a factor of 2.
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answer a vertex-triangle query on some vertex u, we input all of the neighbors of u into
the ISG algorithm. Thus, there is a one-to-one correspondence between the edges reported
by the ISG algorithm and the triangles in the output of the vertex-triangles query. Since
each vertex-triangle query must cost Ω(d̂ · δ(G)1−o(1)) amortized expected time then the
amortized expected time spent for each of the d̂ neighbors of u must be at least Ω(δ(G)1−o(1))
amortized expected time. Since ISG is a special case of DMOG, and given Theorem 2, the
proof of Theorem 3 follows directly. J

I Theorem 11. Assume 3SUM requires Ω(n2−o(1)) expected time. For any algorithm that
solves the uniformly bounded DMOG problem on a dictionary D with d patterns, if the
amortized expected preprocessing time is O(|D| · δ(GD)1−Ω(1)) and the amortized expected
reporting time is sub-polynomial, then the amortized expected time spent on each text character
must be at least Ω((β − α)1−o(1)).

Proof. The proof is similar to the proofs of Theorems 2 and 3. First, we convert the
input graph G of the vertex-triangles problem to a tripartite graph GT by creating three
copies of the vertices V1, V2, V3 and for each edge (u, v) in G we add 6 edges to GT between
all possible copies of u and v. We also add a dummy vertex to GT with degree 0. Each
triangle in G corresponds to a constant number of triangles in GT . Let α be any positive
integer and let β = α + 2d̂. We use ISG to solve vertex-triangles queries in Theorem 2,
but we only ask queries on the neighbors of vertices in V1 in a specially tailored way as
follows. We first list the neighbors of u from V2, followed by α copies of the dummy vertex,
and then list the neighbors from V3. From the construction of the tripartite graph and
the input to the ISG algorithm, two vertices of an edge that is part of the output of the
ISG algorithm must be separated in the input list by at least α vertices, and by at most
the length of the list which is β. Thus, the time spent on each vertex must be at least
Ω(δ(G)1−o(1)) = Ω((mx)1−o(1)) = Ω((β − α)1−o(1)) amortized expected time. Since ISG is a
special case of DMOG, the theorem follows directly. J
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