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—— Abstract

In this paper we study the all-pairs shortest paths problem in (unweighted) unit-disk graphs. The
previous best solution for this problem required O (n2 log n) time, by running the O (nlogn)-time
single-source shortest path algorithm of Cabello and Jej¢i¢ (2015) from every source vertex, where
n is the number of vertices. We not only manage to eliminate the logarithmic factor, but also

obtain the first (slightly) subquadratic algorithm for the problem, running in O (n2 1013; g’i")
time. Our algorithm computes an implicit representation of all the shortest paths, and, in the

same amount of time, can also compute the diameter of the graph.
1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
Keywords and phrases unit-disk graphs, all-pairs shortest paths, computational geometry

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.24

1 Introduction

The all-pairs shortest paths (APSP) problem is one of the most known problems in the
field of algorithms: given a graph G = (V, E) with n vertices, where each edge has a real
weight, we are asked to compute the shortest paths between all pairs of vertices. The
classical algorithm of Floyd and Warshall solves the problem in O (n?’) time. The first
improvement for general weighted dense graphs came in 1976 when Fredman [16] obtained an

1/3
algorithm of O (nS (loil%) > time. This advancement sparked a number of algorithms
that save polylogarithmic factors. For more results for APSP in graphs with arbitrary
edge weights see [13, 32, 21, 34, 40, 35, 4, 22, 5, 23]. Recently, Williams [36] in a major
breakthrough provided an algorithm that achieves superpolylogarithmic speedup, requiring

n randomized time, later derandomized by Chan and Williams [10]. For the case of

Q(+/logn
ingveigh)ted undirected graphs, Seidel [30] and Galil and Margalit [18] devised algorithms
that solve the problem in matrix multiplication time. For results on directed and unweighted
graphs and on graphs whose weights are small integers, see [17, 39, 18, 31, 33].

One very important class of graphs arising from computational geometry is unit-disk
graphs. A unit-disk graph is the intersection graph of a set of unit disks, which is defined by
creating a vertex for each unit disk and an edge between any two unit disks that intersect
each other. Equivalently, given a set S of n points in the plane (the disk centers, after
rescaling by a half), the unit-disk graph, UD(G), is defined by setting its vertex set to be S
and creating an edge between any two points of S whose Euclidean distance is at most one.
The edges are unweighted. The unit-disk graph with n vertices may contain ©(n?) edges, as
every unit disk may intersect with every other unit disk. Since we aim for a subquadratic
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solution to the all-pairs shortest path problem, we do not construct the set of the edges
explicitly in our algorithms.

Unit-disk graphs are among the most studied families of graphs in geometry, with
motivation from communication networks. Unit-disk graphs are related to planar graphs: by
the circle packing theorem of Koebe—Andreev—Thurston any planar graph can be represented
as a coin disk graph, although the disks may have different radii; on the other hand, planar
graphs do not have large cliques unlike unit-disk graphs. Frederickson [15] gave an O (n2)—
time algorithm for solving the APSP problem in weighted planar graphs. Chan [6] improved

)—time algorithm (and

the bound for unweighted directed planar graphs with an O (nglolgolﬂ
gn

also considered general unweighted undirected sparse graphs). Wulff-Nilsen [37] independently

2 loglogn
logn

developed another O (n )—time algorithm for computing the diameter of unweighted

undirected planar graphs (and also announced similar results for the weighted case).
In this paper, we provide an algorithm for the APSP problem in unit-disk graphs that
requires O (n2, / Iolgol%) time. The previously fastest solution was to run from each vertex

the single-source shortest path algorithm of Cabello and Jej¢i¢ [3], which required O (n2 log n)
total time. (See [29, 19] for other previous results on shortest paths in unit-disk graphs.)
Therefore, we not only shave off the extra logarithmic factor of the previous result, but also
provide the first (slightly) subquadratic solution to the problem. Our algorithm computes an
implicit representation of the shortest paths: we encode the O (n2) shortest path distances
and predecessors using bit-packing techniques (for use of bit-packing techniques in shortest
path algorithms see [5]), so that we are still able to retrieve the shortest path distance of a
pair of vertices in O (1) time and the shortest path 7 itself in time linear in the number of
vertices of . In the same amount of time, we can also compute the diameter of the graph.

In recent years, obtaining polylogarithmic speedup for standard algorithmic problems
have received considerable renewed attention. Such problems include 3SUM [20], Fréchet dis-
tance [1, 26], combinatorial Boolean matrix multiplication [8, 38], Klee’s measure problem [7],
CFL reachability [11], and many more. Our result can be seen as another contribution along
this line of research.

The polylogarithmic improvement that we obtain for APSP in unit-disk graphs goes
beyond standard word RAM tricks. First, in Section 2, we present a new algorithm for
the single-source shortest path problem for unit-disk graphs, running in linear time after
presorting the z- and y-coordinates of the input points. This improves over Cabello and
Jej¢ic’s single-source algorithm [3]. Their algorithm started with the Delaunay triangulation
and performed repeated nearest neighbor queries, which inherently required € (nlogn)
time even excluding preprocessing cost. Our new algorithm is instead based on a simple
grid approach and exploits a linear-time Graham-scan-like procedure [28] for computing
upper envelopes of presorted unit disks. (According to [3], Efrat has also observed an
alternative, grid-based O (nlogn)-time algorithm, but his suggested solution seemed a bit
more complicated and used a semi-dynamic data structure of Efrat et al. [25], which also
inherently required Q (nlogn) time even after presorting.)

Second, in Section 3, we extend the single-source algorithm to the case of multiple

(k =0 ( log)ﬁ)gn>) sources that lie in a cluster, i.e., in a common grid cell. In this case,
we have to construct not just one but k& upper envelopes, one for each source. This leads
to a new kind of data structure problem: preprocess a set of unit disks (a “universe”) so
that given any subset of the universe, we can compute the upper envelope of the subset
in slightly sublinear time. Our ideas can similarly be applied to the following (even more

natural) problem, of independent interest: preprocess a point set (a universe) in 2D so that
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given any subset of the universe, we can compute its convex hull, again in slightly sublinear
time. Note that the input subset and the output can be encoded with linear number of bits,
and thus slightly sublinear number of words. Solving problems for “preprocessed universes” is
a relatively recent research direction (for example, see [9, 14, 12, 2]); our result with slightly
sublinear time provides an unusual addition to this body of work.

Finally, in Section 4, to obtain our subquadratic-time APSP algorithm, we draw inspiration
from previous algorithms for planar graphs [6, 37], which use planar separators to decompose
the graph into regions of polylogarithmic size, and table-lookup techniques to handle each
region. However, this approach does not directly apply to unit-disk graphs, because there
could be large cliques and no small separators. On the other hand, when there are many large
cliques, intuitively we should be able to exploit the multi-source algorithm from Section 3
to handle such clusters more efficiently. The challenge lies in how to carefully combine
these two approaches. For unit-disk graphs, we end up avoiding planar separators and
instead adopting a simpler shifted grid strategy [24]. This strategy is standard for geometric
approximation algorithms, but we use the technique in a new and interesting way to design
an exact algorithm (with an intricate balancing of parameters).

All of our algorithms operate in a standard unit-cost RAM model of computation, where
each word can store either an input point or a (logn)-bit integer. (We do not need to assume
integer input coordinates from a bounded universe: the input coordinate values may be real
numbers if we assume the availability of a few constant-degree algebraic predicates, as in
most real-RAM algorithms in computational geometry. We are not cheating when using
bit-packing and table-lookup tricks if they are done with (log n)-bit words and without exotic
word operations.)

2 Single-source shortest paths in linear time (after presorting)

In this section, we begin with the single-source problem: given a set S of n points, and a
source point s € S, we want to compute the shortest paths from s to all points in .S in the
unit-disk graph UD(G). We assume that the points in .S have been presorted with respect to
both x and y. The approach that we follow is a variant of the classical breadth-first search
(BFS) algorithm.

The first step is to build a grid composed of square cells with side length % A cell ¢ is
a neighbor of a cell c if the minimum distance between ¢ and ¢’ is at most 1. Clearly, the
number of neighbors of a cell is constant. For each point p, as is the case in the classical BFS,
we have a value for its shortest-path distance from s, dist[p], and another for the predecessor,
pred[p], denoting the point before p in that path.

The algorithm iteratively performs the following step n — 1 times. In each step ¢ we
assume that we have already computed the distances and predecessors for all of the points
that are at distance no more than ¢ — 1 from s and that we have a list, called the frontier,
containing all of the points being at distance exactly £ — 1 from s. We find all points whose
shortest-path distance from s is ¢ by finding all points at distance at most 1 from the points
in the frontier, and we filter out the ones whose shortest-path distance from s has been
found in earlier steps. For the remaining points, we update their distances and predecessors
properly. Finally, we replace the frontier with the set of these points. It is easy to establish
the correctness of the algorithm by induction. The concepts of the grid, cells, neighboring
cells, and frontier points are depicted in Figure 1.

We say that a cell is visited at step £ if the algorithm performs an operation to any one
of its points during that step. When the algorithm visits a cell, each point of that cell is

used in operations at most twice. The following lemma is crucial for the rest of the section.
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Figure 1 Here we see the grid created for six points depicted as black disks and squares. Each of
the thirty-six squares corresponds to a cell. The neighbors of the cell of the third row and fourth
column, containing the point s, are shaded gray. In the second step of the algorithm, where s is the
source, we see the four points that are at distance one from s, depicted as squares, and the shortest
path tree of s so far, depicted with line segments. Those four points compose the frontier for the
second step.

» Lemma 1. Fach cell ¢ is visited only a constant number of times.

Proof. A cell ¢ is visited either (i) when at least one of its points enters the frontier or
(ii) when at least one of the points of a neighboring cell ¢’ of ¢ enters the frontier.

In case (i), we note that once at least one point of ¢ enters the frontier in a step of the
algorithm, then the rest of the points of ¢ enter the frontier either in this step or in the
next because any two points of ¢ are at distance at most one. Also, a point can be in the
frontier in exactly one step. Therefore, ¢ has points in the frontier in at most two steps of
the algorithm.

In case (ii), ¢ is visited when one of its neighbors, ¢/, has at least one frontier point. Since
the number of the neighbors of ¢ is constant and, by case one, any cell has frontier points
at most twice, we conclude that a cell ¢ is visited by its neighbors in a constant number of
steps of the algorithm. <

To find points that are at distance at most 1 from the points in the frontier, we solve the
following subproblem.

» Subproblem 2. Given a set of n, red points below a horizontal line h and another set of
ny blue points above h, both presorted by x, determine for each blue point whether there is a
red point at distance at most one from it.

» Lemma 3. We can solve Subproblem 2 in O (n, + ny) time.

Proof. We consider the upper enwvelope of the unit disks centered at the red points; it is
composed of the part of the boundary of the union of those unit disks that lies above h.
Notice that the parts of the boundaries of unit disks above h form a pseudoline arrangement.
For each unit disk we can extend that part to a z-monotone curve, a pseudoline, from z = —oco
to = oo such that it intersects only once with the pseudoline of another unit disk. Moreover,
we can make the order of the pseudolines at x = —oo coincide with the order of x-coordinates
of the disk centers. An example of the pseudolines can be see in Figure 2. Then we can
compute the upper envelope of these pseudolines by adapting the standard Graham scan
algorithm [28] for computing upper envelopes of lines (i.e., convex hulls of points in the plane
by duality). Graham scan takes linear, O (n,.), time after presorting. Notice that we do not
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(a) (b) (c)

Figure 2 In the first subfigure we see the unit disks of three red points, depicted as disks, and a
horizontal line h. In the second subfigure, we see the part of the boundaries of those unit disks lying
above h. In the third subfigure, we see the pseudolines corresponding to each unit disk as defined in
Lemma 3. Notice that the y-order of the pseudolines at © = —oo coincides with the z-order of the
centers of their unit disks.

have to explicitly compute the pseudolines; the notion of the pseudolines is used only for
intuition. The algorithm, assuming that the points are presorted, scans them from left to
right, finds intersections between unit disks, and builds step-by-step the upper envelope.
Finally, to solve Subproblem 2, we want to determine for each blue point whether it is
below the upper envelope of the red disks. This can done by performing a linear scan over
the vertices of the upper envelope and the (presorted) blue points in O (n, + np) time. <

Putting everything together, we obtain the following theorem.

» Theorem 4. Given a unit-disk graph, we can compute the shortest path tree from a given
source in O (n) time, if the input points have been pre-sorted by both x and y.

Proof. In step /¢ of the BFS algorithm, we find the points at distance exactly ¢ from the
source as follows. For each cell ¢ having at least one point in the frontier and each neighbor
¢ of ¢, we use the subroutine from Lemma 3 on the input where the red points are the points
of ¢ that are in the frontier and the blue points are all the points of ¢’.

The cells ¢ and ¢ are either horizontally or vertically separated; without loss of generality,
we can assume the former by rotation. By Lemmas 1 and 3, the total time of the BFS is
O (n).

Note that to identify the predecessors during the BF'S, we need to strengthen Subproblem 2
to report for each blue point a witness red point (if exists) that is at distance at most 1; the
method in Lemma 1 can easily provide such witnesses. Initially assigning points to grid cells
can be done in linear time (without the need for hashing, because of presortedness). |

Applying the above theorem n times immediately yields an O (nz)—time algorithm for
APSP for unit-disk graphs. In the subsequent sections, we aim for a slightly subquadratic
algorithm.

3 Shortest paths for multiple sources in a cluster

In this section, we extend the single-source algorithm of the previous section to compute short-

est paths from k source points s1,...,s, € S to all vertices in S, where k = O ( log’fgogn)
and $1,...,S lie in a common grid cell. The approach is to run BFS from the multiple

sources simultaneously but avoid a factor-k slowdown by using bit-packing tricks — this
approach is inspired by the first APSP algorithm in [6].

First, we extend Lemma 1 to the case of k source points, lying close to each other. We
say that a cell is visited at step £ if at the ¢-th level of the BFS for at least one of the sources,
the algorithm performs an operation to any one of its points.

24:5
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» Lemma 5. If the k source points are in the same cell, each cell is visited only a constant
number of times.

Proof. Let dists[p] be the shortest-path distance between a source s and a point p. Observe
that for any two sources s and s’ in a common cell, dists[p] and disty [p] can differ by at most
one by the triangle inequality. Therefore, the first time that any point of a cell enters the
frontier of any source, by the next step of the algorithm that point will enter the frontier of
the rest of the sources. The rest of the proof is as in Lemma 1. <

If we apply the algorithm of Lemma 3 separately for the k sources, then the cost of
this operation alone would be O (nk), which we cannot afford. To overcome the issue, we
introduce an extension of Subproblem 2.

» Subproblem 6. Preprocess a universe R of n, red points below a horizontal line h and
another universe B of ny blue points above h, so that given any subset Q C R of the red
universe, we can determine for each blue point whether there is a red point of Q at distance
at most one from it, in sublinear total time.

As we have seen in the proof of Lemma 3, the key to solving the subproblem lies in the
construction of upper envelopes, so we concentrate on solving the following subproblem.

» Subproblem 7. Preprocess a universe R of n,. red points below a horizontal line h, so that
given any subset Q C R of the red universe, we can compute the upper envelope of the unit
disks centered at Q (specifically the part above h) in sublinear time.

polylogn polylogn
feasible at all is that we can represent (i) the input subset @ as an n,-bit vector, where the

i-th bit denotes whether the i-th red point in z-order is in @, and (ii) the output upper
envelope is another n,-bit vector, where the i-th bit denotes whether the disk defined by

By sublinear we mean O (”7> or O ( Tt 10 ) The reason that sublinear time is

the ¢-th point participates in the upper envelope. We can pack either vector into O (hfgrn)

words.

» Lemma 8. We can solve Subproblem 7 with O (n,logn, + n,29) preprocessing time and

0] (nr 1°§g> query time, for any given g < logn.

Proof. During the preprocessing phase, we divide the z-ordered sequence of red points into
0] ("j) chunks of at most g consecutive points each; the chunks lie in O (%’) disjoint slabs.

The red points of each chunk compose O (29) possible subsets, and we precompute the upper
envelope for each such subset (specifically the part above h) in O (g) time. The computation
of all these envelopes, which we call small upper envelopes, needs O %QQQ = 0(n,29) time.
We store a lookup table containing all the small upper envelopes, each represented as an
ordered array. In Figure 3, we see the chunks and the small upper envelope of each.

To answer a query for a given subset of the red points, we have to merge O (%) small

upper envelopes for the relevant subsets of the O ("j) chunks. Observe that the O (%)

small upper envelopes themselves can be viewed as a pseudoline arrangement (since the
chunks are vertically separated). We can therefore apply Graham scan to compute the upper
Ny

envelope of the O (?> small upper envelopes, using a linear O (%) number of primitive

operations. We need two primitive operations: (i) finding the intersection point between two
small upper envelopes, and (ii) determining whether a given point is above or below a small
upper envelope. Both operations can be done in O (log g) time by binary searching (see [27]
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(a) (b) (c)

h

h

(d) (e) (f)

Figure 3 In the first subfigure we see the chunks of eight red points, drawn as disks, for g = 3,
and a horizontal line h. Notice that the last chunk has only two points. In the next three subfigures,
we see the small upper envelope associated with each chunk. The three small envelopes are seen
together in the fifth subfigure. Finally, in the sixth subfigure we see the upper envelope of the small
upper envelopes, which is the upper envelopes of all red points.

for (i)). Thus, Graham scan takes O (% log g) time. The output is a sequence of O (%)
pieces of small upper envelopes; we can convert each piece into the bit-vector format, in
additional O ( Do

logn

) total time. In Figure 3, we see the upper envelope. |

» Lemma 9. We can solve Subproblem 6 with O (n,logn, + nylogn, + n,29g + npg) pre-

log g
g

processing time and O ((nT + np) ) query time, for any given g < logn.

Proof. We build on the method from Lemma 8. During the preprocessing phase, we also

divide the x-ordered sequence of blue points into O (%) chunks of at most g consecutive blue

points each; the chunks lie in O (%) disjoint slabs (regions each bounded by two vertical

lines). We store the following extra structures:

1. For each small upper envelope e and each slab o that contains at least one vertex of e,
we precompute a g-bit vector where the i-th bit denotes whether the i-th blue point in o
is below e. We store all these vectors in a lookup table. There are O (%29) small upper
envelopes, each with O (g) vertices; the total time is O (n,29g).

2. For each slab o, we precompute the arrangement of the O (g) unit disks centered at the
blue points in o; the arrangement has O (g2) complexity and we can build a point location
structure [28] in O (g?) time. For each face of the arrangement, we record a g-bit vector
where the i-th bit denotes whether the face is inside the disk for the i-th blue point.
There are O (%) slabs; the total time is O (nyg).

Ny

g
envelopes as described in the proof of Lemma 8. We then need to determine for each blue

point whether it is below FE.

To answer a query, we first construct the upper envelope F of the O ( ) small upper

We scan the slabs from left to right. Consider the next slab o. Consider each small upper
envelope e that contributes arcs to I inside 0. We compute a bit vector v, . where the ¢-th
bit denotes whether the i-th blue point in ¢ is below e, as follows:

1. If o contains at least one vertex of e, then v, . has already been precomputed in the
lookup table.

24:7
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2. If o contains no vertices of e, then only one disk contributes to e inside o; say the disk is
defined by the red point g. We can determine v, by looking up the face containing ¢ in
the arrangement of the blue disks for o, in O (log g) time by point location.

Finally, we take the bitwise-or of the bit vectors v, . over all small upper envelopes e
that contributes to E inside 0. The total number of bitwise-or operations and point location

queries is O ("TTJ””’), yielding total query time O (% log g). |
» Theorem 10. Given a unit-disk graph, after O (n log n + n20(klog k))—time preprocessing,
we can compute an implicit representation of the shortest path trees for any k < Iog’lgogn

source points lying in a unit-diameter square, in O (n) time.

Proof. For each point p, we maintain k-bit vectors frontier[p] (resp. found[p]), where the
i-th bit denotes whether p is in the frontier of the i-th source (resp. whether p has previously
appeared in the frontier) in each step ¢ of the BFS algorithm.

In step ¢ of the BFS, we proceed as follows. For each cell ¢ having at least one point in
one of the k frontiers and for each neighbor ¢’ of ¢, we use the subroutine from Lemma 9 on
the input where the red universe contains all n, points of ¢ and the blue points are all ny
points of ¢/; for each of the k sources, we query with the red subset containing all points
in its frontier in ¢. The total time for the k queries is O (k(nr + nb)lo%) = O(n, +mnp) by
setting g = klogk.

One technical issue concerns the generation of the bit-vector representation for these
input red subsets (which are ordered by x or y depending on whether ¢ and ¢ are horizontally
or vertically separated). This can be done by taking each chunk of ¢ red points p1,...,pq,
collecting the g k-bit vectors frontier[p1],..., frontier[py|, and performing a transposition
to generate k g-bit vectors, where the j-th bit of the i-th vector is equal to the i-th bit
of frontier[p;]. The transposition involves simply shuffling bits between words and can be
straightforwardly implemented in O (1) time by table lookup if kg < logn. The outputs can
similarly be converted by transposition to obtain vectors out[p] for the blue points p in ¢,
where the i-th bit denotes whether p is at distance at most one from some red point in ¢
with respect to the i-th source.

We can update the k-bit vector found[p] by taking the bitwise-or with out[p]. At the end
of step ¢, we can update the k-bit vector frontier[p] by taking the bitwise-difference between
the new and old found[p] vectors. By Lemmas 5 and 9, the total time of the & simultaneous
BFSs is O (n).

Two remaining technical issues concern the encoding of the shortest path distances and
of the predecessors. To address the former issue, for each point p, we store dists, [p] and work
with the vector containing dists, [p] — dists, [p] over all k sources s;. Recall that these values

are in {—1,0,1} by the triangle inequality, and so the vector can be encoded in O (k) bits;

nk
logn

the total space over all n points is O (n + ) = O(n) words, and it is easy to update the
distances of a point in constant time.

To address the latter issue, we need to strengthen Subproblem 6 so that given any blue
point, we can report a witness red point (if exists) that is at distance at most one in constant
time. Thus we need to perform a few modifications to the proof of Lemma 9. First in the
lookup tables during the preprocessing phase, we record witnesses for the true bits for each
g-bit vector, stored in a (glog g)-bit witness vector. In the query algorithm, consider each
slab . The upper envelope E inside o consists of pieces of small upper envelopes. Divide o
into subslabs by drawing vertical lines at the endpoints of these pieces. If, for each subslab,
we created a pointer from each blue point to the small upper envelope in the subslab, we
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Figure 4 In this figure we see the shifted grid. We assume that the points have already been
shifted. The nine big squares correspond to the supercells. The smaller square within each supercell
corresponds to the region of the supercell that contains points at distance more than one from its
boundary. The boundary points are drawn as green squares and the non-boundary points as black
disks.

would need O(kn) total time. To avoid that, for each subslab, we mark its rightmost blue
point, which can be found by binary search in O(logg) time; the total time for that is
O (%klog g) = O (n, +np). Then we create a pointer from this marked point to the
small upper envelope of its subslab. Finally, for each slab, we create a pointer from each blue
point ¢ to its successor among the marked blue points; these g pointers require O (g log g)
bits, can be created in constant time, and can be stored in a (g log g)-bit pointer vector, so

the total time for this step is O (%k) =0 (1:gbk)' Then, given any blue point ¢ in o, we
can retrieve the pointer vector of o, look up the marked successor of ¢, follow its pointer to
the small upper envelope e in o, and then look up ¢’s witness with respect to v, ¢, all in

constant time. |

4  All-pairs shortest paths in slightly subquadratic time

In this final section, we present our APSP algorithm for unit-disk graphs. Let r,a,b be

parameters to be chosen later. We build a grid composed of square cells with side length r,
1
%
supercells. We say that a point p € S is a boundary point if it is at distance at most one
from the boundary of some supercell. We begin with a standard shifted grid strategy by

Hochbaum and Maass [24]. The supercell and the boundary points are depicted in Figure 4.

where r is a parameter to be specified later (1arger than ) Call these larger grid cells

» Lemma 11. There exists a translation of S such that the number of boundary points is

0] (%) The translation can be found in linear time.

Proof. Shift the points of S by a random vector from {1,...,7}2. The probability that a
point p € S is a boundary point is at most %, so the expected number of boundary points is
at most 2. (It is straightforward to derandomize in linear time.) <

After applying Lemma 11 to build the grid, our algorithm proceeds in four steps:

1. We first compute the shortest paths between the O (%) boundary points and all points
in S. For this step, we can run the single-source algorithm of Section 2 O (%) times,
requiring O (”;) total time.

2. Next, for each supercell 7; that contains more than a points or more than b boundary

points, we compute the shortest paths between all points in S N~; and all points in S.

This time, we use the multi-source algorithm of Section 3. The points in ; can be grouped

24:9
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into O (% + 7“2) clusters of size at most k, since the supercell can be decomposed
into O (7“2) cells of diameter one. The number of supercells with more than a points is

O (%) and the number of supercells with more than b boundary points is O (%) Hence,

the total time for this step is O (Zl (w + r2) n) =0((2+(2+2)r?)-n) =
2 2,2 2

O (% +22 4 mr),

a

3. For each supercell ; with at most a points and at most b boundary points, we compute the
shortest paths between all pairs of points in S N~;. For this step, we can run a naive cubic-
time APSP algorithm on SN+y;, after adding an extra weighted edge between each boundary
point  in +; and each point p € S N ~y;, with weight dist,[p], which we have computed in
step 1. (These extra edges take care of the possibility that the shortest paths may not
stay inside 7;.) The total time is O (32, |S N[*) = O (X, |S Nvila?) = O (na?).

4. For each supercell v; with at most a points and at most b boundary points, we compute
the shortest paths between all points p € SN~; and all points g € S — ;. Each such path
must pass through a boundary point in ~;, i.e., we want to find min,, (dist,[p] + dist.[q])
where the minimum is over all boundary points u in ~;.

We describe a table lookup method inspired by the planar-graph APSP algorithm in [6].
For each connected component of the unit-disk graph of S N ~;, pick a representative
boundary point (if one exists) among the points of this component. For each point
p € SN+, let rep(p) be the representative boundary point that lies in p’s connected
component. For each point ¢ € S — +;, define signature[q] to be the vector containing
signature, [q] = dist,[q] — dist,cp()[q] over all boundary points u in ;. Observe that these
values are bounded by O (rz) by the triangle inequality (since the distance between v and
rep(u) is at most O (r?)), and so the vector can be encoded in O (blogr) bits. All these
values have already been computed in step 1, and so the signatures of all points over all
supercells can be generated in O (%) total time. (We can ignore empty signatures, i.e.,

supercells that do not have any boundary points.)
For each p € SN~; and each ¢ € S — ~;,

min (dist, [p] + dist,[q]) = distrepp)la] + min (dist,[p] + signature,|[q]) .
u u:rep(u)=rep(p)

We can precompute the minimum in the right-hand side for each p € S N~; and each
possible signature, and store all these minimums in a lookup table in |S N %|20(blog r)

time, for a total of n29(1°87) time.

The running time of the entire algorithm is

2 2 2,.2 2
0] nlogn+n2o(k1°gk)+n—+n—+nr + T a2 4 p20loen) ) |
r k a b
To balance the third and the fourth term, we set k = r. To balance the third and the
sixth term, we set 7 = v/b. To balance the third and the fifth term, we set a = b3/2. Finally,

elogn
loglogn

get absorbed by the others. We then obtain the desired O <n2, / lolg;ol#) time bound.
It is straightforward to modify the algorithm to retrieve any shortest-path distance in

we set b = for a sufficiently small constant e, so that the second and the eighth terms

constant time, and retrieve any shortest path in time proportional to its size. It is also
straightforward to modify the algorithm to compute the diameter (in step 4, for each p € SN;
and each possible signature, we need to find the point ¢ € S — ~; having this signature
that maximizes dist,ep(p)[q]; all these maximums can be computed in O (n - 2) total time by
scanning the distance values from all boundary points). We conclude:
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» Theorem 12. Given a unit-disk graph we can compute an implicit representation of the
shortest paths between all pairs, and the diameter of the graph, in O (n21 / lolgol%) time in
the RAM model.

5 Conclusion

It is an intriguing open problem to compute the diameter of a unit-disk graph in truly
subquadratic time, O(n?~¢), for some positive constant . Another related problem is APSP
in weighted unit-disk graphs, where the weight of an edge is defined as the Euclidean distance
between the centers of the unit disks it connects.

Acknowledgement. We thank Anna Lubiw for posing the question of APSP in unit-disk
graphs, and the participants of the algorithms problem session at Waterloo for discussion.
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