
Bipartite Matching with Linear Edge Weights∗

Nevzat Onur Domaniç1, Chi-Kit Lam2, and C. Gregory Plaxton3

1 University of Texas at Austin, Dept. of Computer Science, Austin, TX, USA
onur@cs.utexas.edu

2 University of Texas at Austin, Dept. of Computer Science, Austin, TX, USA
geocklam@cs.utexas.edu

3 University of Texas at Austin, Dept. of Computer Science, Austin, TX, USA
plaxton@cs.utexas.edu

Abstract
Consider a complete weighted bipartite graph G in which each left vertex u has two real numbers
intercept and slope, each right vertex v has a real number quality, and the weight of any edge
(u, v) is defined as the intercept of u plus the slope of u times the quality of v. Let m (resp.,
n) denote the number of left (resp., right) vertices, and assume that m ≥ n. We develop a fast
algorithm for computing a maximum weight matching (MWM) of such a graph. Our algorithm
begins by computing an MWM of the subgraph induced by the n right vertices and an arbitrary
subset of n left vertices; this step is straightforward to perform in O(n logn) time. The remaining
m − n left vertices are then inserted into the graph one at a time, in arbitrary order. As each
left vertex is inserted, the MWM is updated. It is relatively straightforward to process each
such insertion in O(n) time; our main technical contribution is to improve this time bound to
O(
√
n log2 n). This result has an application related to unit-demand auctions. It is well known

that the VCG mechanism yields a suitable solution (allocation and prices) for any unit-demand
auction. The graph G may be viewed as encoding a special kind of unit-demand auction in which
each left vertex u represents a unit-demand bid, each right vertex v represents an item, and the
weight of an edge (u, v) represents the offer of bid u on item v. In this context, our fast insertion
algorithm immediately provides an O(

√
n log2 n)-time algorithm for updating a VCG allocation

when a new bid is received. We show how to generalize the insertion algorithm to update (an
efficient representation of) the VCG prices within the same time bound.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases Weighted bipartite matching, Unit-demand auctions, VCG allocation
and pricing

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.28

1 Introduction

Given an undirected graph G = (V,E), a matching of G is a subset M of E such that no two
edges in M share an endpoint. If G is a weighted graph, we define the weight of a matching
as the sum of the weights of its constituent edges. The problem of finding a maximum weight
matching (MWM) of a weighted bipartite graph, also known as the “assignment problem” in
operations research, is a basic and well-studied problem in combinatorial optimization. A
classic algorithm for the assignment problem is the Hungarian method [11], which admits
an O(|V |3)-time implementation. For dense graphs with arbitrary edge weights, this time
bound remains the fastest known. Fredman and Tarjan [5] introduce Fibonacci heaps,

∗ This research was supported by NSF Grant CCF–1217980.

© Nevzat Onur Domaniç, Chi-Kit Lam, and C. Gregory Plaxton;
licensed under Creative Commons License CC-BY

27th International Symposium on Algorithms and Computation (ISAAC 2016).
Editor: Seok-Hee Hong; Article No. 28; pp. 28:1–28:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


28:2 Bipartite Matching with Linear Edge Weights

and by utilizing this data structure to speed up shortest path computations, they obtain
a running time of O(|V |2 log |V |+ |E| · |V |) for the maximum weight bipartite matching
problem. When the edge weights are integers in {0, . . . , N}, Duan and Su [4] give a scaling
algorithm with running time O(|E|

√
|V | logN). In this paper, we consider a restricted class

of complete weighted bipartite graphs where the edge weights have a special structure. Both
unweighted and weighted matching problems in restricted classes of bipartite graphs have
been studied extensively. Glover [7], Lipski and Preparata [13], Gabow and Tarjan [6], Steiner
and Yeomans [15], and Katriel [10] study matching problems in convex bipartite graphs, the
graphs in which the right vertices can be ordered in such a way that the neighbors of each
left vertex are consecutive. Plaxton [14] studies vertex-weighted matchings in two-directional
orthogonal ray graphs, which generalize convex bipartite graphs.

In the present paper, we develop a fast algorithm for computing an MWM of a complete
weighted bipartite graph with the following special structure: there are m left vertices, each
of which has two associated real values, a “slope” and an “intercept”; there are n right
vertices, each of which has an associated real “quality”; for each left vertex u and right vertex
v, the weight of edge (u, v) is given by the slope of u times the quality of v plus the intercept
of u. Since the weight of any edge (u, v) is determined by evaluating the linear function
specified by u (via the slope and intercept) on the quality of v, we refer to this problem as
bipartite matching with linear edge weights. Assuming that m ≥ n, we solve this problem in
O(m

√
n log2 n) time. We begin by solving the problem on a subgraph induced by the n right

vertices and an arbitrary subset of n left vertices; this turns out to be easy to accomplish
in O(n logn) time via sorting. We then insert the remaining left vertices one at a time, in
arbitrary order. As each left vertex is inserted, we update the solution in O(

√
n log2 n) time.

It is relatively straightforward to process each such insertion in O(n) time, yielding an overall
O(mn) time bound. Our algorithm provides a significant improvement over the latter bound,
which is the fastest previous result that we are aware of.

In recent work that is closely related to the current paper, Domaniç and Plaxton [3]
present a fast algorithm for bipartite matching with linear edge weights in the special case
where the qualities of the right vertices form an arithmetic sequence. Assuming that m ≥ n,
their algorithm runs in O(m logm) time. Applying that algorithm to the scheduling domain
directly solves the problem of scheduling unit jobs on a single machine with a common
deadline where each job has a weight and a profit, and the objective is to minimize the sum of
the weighted completion times of the scheduled jobs plus the sum of the profits of the rejected
jobs. Domaniç and Plaxton [3] also provide an extension that preserves the O(m logm)
time bound for the special case where the qualities correspond to the concatenation of
two arithmetic sequences. This extension solves a more general scheduling problem that
incorporates weighted tardiness penalties with respect to a common due date into the
objective.

By removing the technical restrictions on the qualities imposed in [3], the algorithm of the
present paper supports a richer edge weight structure, while continuing to admit a compact
graph representation that uses space linear in the number of vertices. In terms of scheduling,
the present algorithm addresses a broader class of problems than [3]; for example, it can
handle symmetric earliness and tardiness penalties with respect to a common due date, and
allows certain time slots to be marked as unavailable. Below we discuss another motivation
for the present work, which is based on its connection to unit-demand auctions.

In a unit-demand auction of a collection of items, each bidder submits a bid that specifies
a separate offer on each item, which may or may not be equal to the private valuation that
the bidder has for that item [1]. The outcome of the unit-demand auction is a pricing of



N.O. Domaniç, C.-K. Lam, and C. G. Plaxton 28:3

the items and an allocation of each bidder to at most one item. In mechanism design, it
is known that the VCG mechanism is the only mechanism for unit-demand auctions that
achieves the desired properties of being efficient, strategyproof, and envy-free [8, 12]. Such
an auction can be modeled as a bipartite graph in which each left vertex represents a bid,
each right vertex represents an item, and the weight of the edge from a bid u to an item v

represents the offer of the bid u on item v. Then, a VCG allocation corresponds to an MWM
of such bipartite graph, and the VCG prices correspond to the dual variables computed by
the Hungarian method, i.e., they correspond to the prices having the minimum sum among
the ones that are the solutions to the dual of the linear program that solves the assignment
problem encoding the auction.

The main motivation for our interest in the problem we consider in this paper, given
the aforementioned desirable properties of the VCG mechanism, is to find frameworks to
encode unit-demand auctions that are expressive enough to have suitable applications while
being restrictive enough to yield efficient algorithms for finding VCG outcomes. For instance,
consider a unit-demand auction for last-minute vacation packages in which some trusted
third party (e.g., TripAdvisor) assigns a “quality” rating for each package and each bidder
formulates a unit-demand bid for every package by simply declaring a linear function of
the qualities of packages, i.e., determining the intercept and slope of this linear function.
Within this context, we can formulate an auction as a complete weighted bipartite graph in
the family that we consider in this paper. In some of the popular auction sites, e.g., eBay,
bidding takes place in multiple rounds. eBay implements a variant of an English auction
to sell a single item; the bids are sealed, but the second highest bid (plus one small bid
increment), which is the amount that the winner pays, is displayed throughout the auction.
We employ a similar approach by accepting the bids one-by-one and by maintaining an
efficient representation of the tentative outcome for the enlarged set of bids. We show that
we can process each bid in Õ(

√
n) time where n denotes the number of items in the auction.

More precisely, we present a data structure that is initialized by the entire set of n items;
the bids are introduced one-by-one in any order; the data structure maintains a compact
representation of a VCG outcome (allocation and prices) for the bids introduced so far and
for the entire set of items; it takes O(

√
n log2 n) time to introduce a bid; it takes O(n) time

to print the outcome at any time.

Organization. In Sect. 2, we give the formal definition of the problem and introduce some
useful definitions. In Sect. 3, we present an incremental framework for solving the problem.
In Sect. 4, we present a basic algorithm within the framework of Sect. 3. Built on the
concepts introduced in Sect. 4, we introduce a data structure and present our fast algorithm
in Sect. 5. The companion technical report [2] includes all of the material in the present
version plus some details and the proofs of all lemmas and theorems, which are omitted due
to space limitations. In [2, Section 6], we extend the incremental framework to compute the
VCG prices, and we present the algorithm within that framework.

2 Preliminaries

A bid is a triple u = (slope, intercept, id) where slope and intercept are real numbers, and id
is an integer. We use the notation u.slope and u.intercept to refer to the first and second
components of a bid u, respectively. The bids are ordered lexicographically. An item is a pair
v = (quality, id) where quality is a real number and id is an integer. We use the notation
v.quality to refer to the first component of an item v. The items are ordered lexicographically.

ISAAC 2016



28:4 Bipartite Matching with Linear Edge Weights

For any bid u and any item v, we define w(u, v) as u.intercept + u.slope · v.quality.
For any set of bids U and any set of items V , we define the pair (U, V ) as a unit-demand

auction with linear edge weights (UDALEW ). Such an auction represents a unit-demand
auction instance where the set of bids is U , the set of items is V , and each bid u in U offers
an amount w(u, v) on each item v in V .

A UDALEW A = (U, V ) corresponds to a complete weighted bipartite graph G where
left vertices are U , right vertices are V , and the weight of the edge between a left vertex u
and a right vertex v is equal to w(u, v). Hence, for a UDALEW, we use the standard graph
theoretic terminology, alluding to the corresponding graph. The family of all such graphs G
corresponds to the general graph family introduced in [3].

A matching of a UDALEW (U, V ) is a set M of bid-item pairs where each bid (resp.,
item) in M belongs to U (resp., V ) and no bid (resp., item) appears more than once in M .
The weight of a matching M , denoted w(M), is defined as the sum, over all bid-item pairs
(u, v) in M , of w(u, v).

In this paper, we solve the problem of finding a VCG outcome (allocation and prices) for
a given UDALEW A; a VCG allocation is any MWM of A, and we characterize the VCG
prices in [2, Sect. 6.2]. We reduce the problem of finding an MWM to the problem of finding
a maximum weight maximum cardinality matching (MWMCM) as follows: we enlarge the
given UDALEW instance A = (U, V ) by adding |V | dummy bids to U , each with intercept
zero and slope zero; we compute an MWMCM M of the resulting UDALEW A′; we remove
from M all bid-item pairs involving dummy bids.

We conclude this section with some definitions that prove to be useful in the remainder of
the paper. For any totally ordered set S — such as a set of bids, a set of items, or an ordered
matching which we introduce below — we make the following definitions: any integer i is
an index in S if 1 ≤ i ≤ |S|; for any element e in S, we define the index of e in S, denoted
index(e, S), as the position of e in the ascending order of elements in S, where the index of
the first (resp., last) element, also called the leftmost (resp., rightmost) element, is 1 (resp.,
|S|); S[i] denotes the element with index i in S; for any two indices i and j in S such that
i ≤ j, S[i : j] denotes the set {S[i], . . . , S[j]} of size j − i+ 1; for any two integers i and j
such that i > j, S[i : j] denotes the empty set; for any integer i, S[ : i] (resp., S[i : ]) denotes
S[1 : i] (resp., S[i : |S|]); a subset S′ is a contiguous subset of S if S′ = S[i : j] for some
1 ≤ i ≤ j ≤ |S|.

For any matching M , we define bids(M) (resp., items(M)) as the set of bids (resp., items)
that participate in M . A matching M is ordered if M is equal to

⋃
1≤i≤|M | {(U [i], V [i])}

where U denotes bids(M) and V denotes items(M). The order of the pairs in an ordered
matching is determined by the order of the bids (equivalently, items) of those pairs.

3 Incremental Framework

In this section, we present an incremental framework for the problem of finding an MWMCM
of a given UDALEW A = (U, V ). As discussed below, it is a straightforward problem if
|U | ≤ |V |. Thus, the primary focus is on the case where |U | > |V |. We start with a useful
definition and a simple lemma.

For any set of bids U and any set of items V such that |U | = |V |, we define matching(U, V )
as the ordered matching {(U [1], V [1]), . . . , (U [|U |], V [|U |])}.

Lemma 1 below shows how to compute an MWMCM of a UDALEW where the number of
bids is equal to the number of items. The proof follows from the rearrangement inequality [9,
Section 10.2, Theorem 368].



N.O. Domaniç, C.-K. Lam, and C. G. Plaxton 28:5

I Lemma 1. For any UDALEW A = (U, V ) such that |U | = |V |, matching(U, V ) is an
MWMCM of A.

I Corollary 2. For any UDALEW A = (U, V ) such that |U | ≥ |V |, there exists an ordered
MWMCM of A.

If |U | < |V | in a given UDALEW (U, V ), then it is straightforward to reduce the problem
to the case where |U | = |V |. Let U ′ (resp., U ′′) denote the set of the bids in U having negative
(resp., nonnegative) slopes. Then we find an MWMCM M ′ of the UDALEW (U ′, V [ : |U ′|])
and an MWMCM M ′′ of the UDALEW (U ′′, V [|V | − |U ′′|+ 1 : ]), and we combine M ′ and
M ′′ to obtain an MWMCM of (U, V ).

It remains to consider the problem of finding an MWMCM of a UDALEW (U, V ) where
|U | > |V |. The following is a useful lemma. The proof is straightforward by an augmenting
path argument; see [3, Lemma 7] for the proof of a similar claim.

I Lemma 3. Let A = (U, V ) be a UDALEW such that |U | ≥ |V |. Let u be a bid that does not
belong to U . Let M be an MWMCM of A and let U ′ denote bids(M). Then, any MWMCM
of the UDALEW (U ′ + u, V ) is an MWMCM of the UDALEW (U + u, V ).

Lemma 3 shows that the problem of finding an MWMCM of a UDALEW (U, V ) where
|U | = |V |+ k reduces to k instances of the problem of finding an MWMCM of a UDALEW
where the number of bids exceeds the number of items by one. Below we establish an efficient
incremental framework for solving the MWMCM problem based on this reduction.

For any ordered matching M and any bid u that does not belong to bids(M), we define
insert(M,u) as the ordered MWMCM M ′ of the UDALEW A = (bids(M) + u, items(M))
such that the bid that is left unassigned by M ′, i.e., (bids(M) + u) \ bids(M ′), is maximum,
where the existence of M ′ is implied by Corollary 2.

We want to devise a data structure that maintains a dynamic ordered matchingM . When
the data structure is initialized, it is given an ordered matching M ′, and M is set to M ′; we
say that the data structure has initialization cost T (n) if initialization takes at most T (|M ′|)
steps. Subsequently, the following two operations are supported: the bid insertion operation
takes as input a bid u not in bids(M), and transforms the data structure so that M becomes
insert(M,u); the dump operation returns a list representation of M . We say that the data
structure has bid insertion (resp., dump) cost T (n) if bid insertion (resp., dump) takes at
most T (|M |) steps.

I Lemma 4. Let D be an ordered matching data structure with initialization cost f(n), bid
insertion cost g(n), and dump cost h(n). Let A be a UDALEW (U, V ) such that |U | ≥ |V |.
Then an MWMCM of A can be computed in O(f(|V |) + (|U | − |V |) · g(|V |) + h(|V |)) time.

In Sect. 4, we give a simple linear-time bid insertion algorithm assuming an array
representation of the ordered matching. Building on the concepts introduced in Sect. 4,
Sect. 5 develops an ordered matching data structure with initialization cost O(n log2 n),
bid insertion cost O(

√
n log2 n), and dump cost O(n) (Theorem 8). The results of Sect. 5,

together with Lemma 4, yield the O(m
√
n log2 n) MWMCM time bound claimed in Sect. 1.

Looking from an auction perspective, as discussed in Sect. 2, our goal is to compute a
VCG allocation and pricing given a UDALEW. In [2, Sect. 6], we show how to extend the data
structure of Sect. 5 to maintain the VCG prices as each bid is inserted. The asymptotic time
complexity of the operations remain the same; the additional computation for maintaining
the VCG prices takes O(

√
n) time at each bid insertion, where n denotes the size of the

matching maintained by the data structure.

ISAAC 2016



28:6 Bipartite Matching with Linear Edge Weights

4 A Basic Bid Insertion Algorithm

In this section, we describe a linear-time implementation of insert(M,u) given an array
representation of the ordered matching. The algorithm described here is not only useful
because it introduces the concepts that the fast algorithm we introduce in Sect. 5 is built
on, but also the same approach is used in certain “block scan” computations of that fast
algorithm. We first introduce two functions that, in a sense evident by their definitions,
restrict insert(M,u) into two halves, left and right, of M split by u.

For any ordered matching M and any bid u that does not belong to bids(M), we
define insertL(M,u) (resp., insertR(M,u)) as the ordered MCM M ′ of the UDALEW
A = (bids(M) + u, items(M)) of maximum weight subject to the condition that the bid that
is left unassigned by M ′, i.e., (bids(M) + u) \ bids(M ′), is less (resp., greater) than u, where
the ties are broken by choosing the MCM that leaves the maximum such bid unassigned; if no
such MCM exists, i.e., u is less (resp., greater) than every bid in bids(M), then insertL(M,u)
(resp., insertR(M,u)) is defined as M .

The following lemma characterizes insert(M,u) in terms of insertL(M,u) and
insertR(M,u); the proof directly follows from the definitions of insert(M,u), insertL(M,u),
and insertR(M,u).

I Lemma 5. Let M be a nonempty ordered matching and let u be a bid that does not belong
to bids(M). Let ML denote insertL(M,u) and let MR denote insertR(M,u). Let W denote
the maximum of w(ML), w(M), and w(MR). Then,

insert(M,u) =


MR if w(MR) = W

M if w(M) = W > w(MR)
ML otherwise.

We now introduce some definitions that are used in Lemma 6 below to characterize
insertL(M,u) and insertR(M,u).

For any ordered matching M and any two indices i and j in M , we define M j
i as

matching(U − U [i], V − V [j]), where U denotes bids(M) and V denotes items(M).
LetM be a nonempty ordered matching, let U denote bids(M), and let V denote items(M).

Then we define ∆L(M) as w(M |M |1 ) − w(M), and we define ∆R(M) as w(M1
|M |) − w(M).

It is straightforward to see that ∆L(M [i : j]) and ∆R(M [i : j]) can be computed for any
1 ≤ i ≤ j ≤ |M | by the recurrences

∆L(M [k − 1 : j]) = ∆L(M [k : j]) + w(U [k], V [k − 1])− w(U [k − 1], V [k − 1]) (L1)
∆R(M [i : k + 1]) = ∆R(M [i : k]) + w(U [k], V [k + 1])− w(U [k + 1], V [k + 1]) (R1)

with base cases ∆L(M [j]) = −w(U [j], V [j]) and ∆R(M [i]) = −w(U [i], V [i]).
Let M be a nonempty ordered matching. Letting W denote max1≤i≤|M | w(M |M |i ), we

define ∆∗L(M) asW−w(M), and we define loserL(M) as max
{
i | w(M |M |i ) = W

}
. Symmet-

rically, lettingW ′ denote max1≤i≤|M | w(M1
i ), we define ∆∗R(M) asW ′−w(M), and we define

loserR(M) as max
{
i | w(M1

i ) = W ′
}
. By Lemma 1 and by the definitions of ∆L(M) and

∆R(M), it is straightforward to see that (∆∗L(M), loserL(M)) = max1≤i≤|M |(∆L(M [i : ]), i)
and (∆∗R(M), loserR(M)) = max1≤i≤|M |(∆R(M [ : i]), i) (the pairs compare lexicographi-
cally). Hence, ∆∗L(M [i : j]), loserL(M [i : j]), ∆∗R(M [i : j]), and loserR(M [i : j]) can be



N.O. Domaniç, C.-K. Lam, and C. G. Plaxton 28:7

Algorithm 1 A linear-time implementation of bid insertion. The difference of the weight of
an MWMCM of the UDALEW A = (bids(M) + u, items(M)) and that of M is equal to δ,
and the maximum bid in bids(M) + u that is unmatched in some MWMCM of A is u∗.
Input: M is an ordered matching and u is a bid that does not belong to bids(M).
Output: insert(M,u).
1: Let U denote bids(M) and let V denote items(M)
2: C ← {(0, u)}
3: k ← index(u, U + u)
4: if k > 1 then
5: for i = k − 1 down to 1 do
6: Compute ∆L(M [i : k − 1]) via (L1)
7: Compute ∆∗L(M [i : k − 1]) and loserL(M [i : k − 1]) via (L2)
8: end for
9: C ← C + (w(u, V [k − 1]) + ∆∗L(M [ : k − 1]), U [i]) where i = loserL(M [ : k − 1])
10: end if
11: if k ≤ |M | then
12: for i = k to |M | do
13: Compute ∆R(M [k : i]) via (R1)
14: Compute ∆∗R(M [k : i]) and loserR(M [k : i]) via (R2)
15: end for
16: C ← C + (w(u, V [k]) + ∆∗R(M [k : ]), U [j]) where j = loserR(M [k : ]) + k − 1
17: end if
18: (δ, u∗)← the lexicographically maximum pair in C
19: return matching(U + u− u∗, V )

computed for any 1 ≤ i ≤ j ≤ |M | by the recurrences

(∆∗L(M [k − 1 : j]), loserL(M [k − 1 : j])) =
max{(∆∗L(M [k : j]), loserL(M [k : j]) + 1), (∆L(M [k − 1 : j]), 1)} (L2)

(∆∗R(M [i : k + 1]), loserR(M [i : k + 1])) =
max{(∆∗R(M [i : k]), loserR(M [i : k])), (∆R(M [i : k + 1]), k + 2− i)} (R2)

with base cases ∆∗L(M [j]) = −w(U [j], V [j]), ∆∗R(M [i]) = −w(U [i], V [i]), and loserL(M [j]) =
loserR(M [i]) = 1.

I Lemma 6. Let M be a nonempty ordered matching, let U denote bids(M), let V denote
items(M), let u be a bid that does not belong to U , let k denote index(u, U + u), let ML

denote insertL(M,u), and let MR denote insertR(M,u). If k > 1, then ML is equal to
Mk−1

i + (u, V [k−1]) and w(ML) = w(M) + ∆∗L(M [ : k − 1]) + w(u, V [k−1]) where i denotes
loserL(M [ : k − 1]); otherwise, ML = M . If k ≤ |M |, then MR is equal to Mk

j + (u, V [k])
and w(MR) = w(M) + ∆∗R(M [k : ]) + w(u, V [k]) where j denotes loserR(M [k : ]) + k − 1;
otherwise, MR = M .

Lemmas 5 and 6, together with (L1), (R1), (L2), and (R2), directly suggest a linear-time
computation of insert(M,u), as shown in Algorithm 1. If insertL(M,u) (resp., insertR(M,u))
is not equal to M , then the algorithm computes the difference w(insertL(M,u)) − w(M)
(resp., w(insertR(M,u))− w(M)) and adds a pair at line 9 (resp., line 16) to a set C where

ISAAC 2016



28:8 Bipartite Matching with Linear Edge Weights

the first component is this difference, and the second component is the bid in bids(M) + u

that is left unassigned by insertL(M,u) (resp., insertR(M,u)). Then by Lemma 5, the
algorithm correctly returns insert(M,u) by choosing the maximum pair of C at line 18.

5 A Superblock-Based Bid Insertion Algorithm

In this section, we describe an ordered matching data structure based on the concept of a
“superblock”, and we show how to use this data structure to obtain a significantly faster bid
insertion algorithm than that presented in Sect. 4. Before beginning our formal presentation
in Sect. 5.1, we provide a high-level overview of the main ideas.

Recall that an ordered matching data structure maintains a dynamic ordered matchingM .
Let n denote |M |. We maintain a partition of the bids of M into contiguous “groups” of size
Θ(`), where ` is a parameter to be optimized later. The time complexity of Alg. 1 is linear
because the for loops starting at lines 5 and 12 process bid-item pairs in M sequentially. Our
rough plan is to accelerate the computations associated with this pair of loops by proceeding
group-by-group. We can process a group in constant time if we are given six “auxiliary
values” that depend on the “submatching” M ′ of M associated with the bids in the group,
namely: ∆L(M ′), ∆R(M ′), ∆∗L(M ′), ∆∗R(M ′), loserL(M ′), and loserR(M ′). The auxiliary
values associated with a group can be computed in Θ(`) time. A natural approach is to
precompute these auxiliary values when a group is created or modified, or when the set of
matched items associated with the group is modified. Unfortunately, a single bid insertion
can cause each bid in a contiguous interval of Θ(n) bids to have a new matched item. For
example, if a bid insertion introduces a “low” bid u and deletes a “high” bid u′, then each bid
between u and u′ gets a new matched item one position to the right of its old matched item.
Since a constant fraction of the groups might need to have their auxiliary values recomputed
as a result of a bid insertion, the overall time complexity remains linear.

The preceding discussion suggests that it might be useful to have an efficient way to
obtain the new auxiliary values of a group of bids when the corresponding interval of matched
items is shifted left or right by one position. To this end, we enhance the precomputation
associated with a group of bids as follows: Instead of precomputing only the auxiliary
values corresponding to the group’s current matched interval of items, we precompute the
auxiliary values associated with shifts of 0,±1,±2, . . . ,±Θ(`) positions around the current
matched interval. That way, unless a group of bids is modified (e.g., due to a bid being
deleted or inserted) we do not need to redo the precomputation with the group until it
has been shifted Ω(`) times. Since the enhanced precomputation computes Θ(`) sets of
auxiliary values instead of one set, a naive implementation of the enhanced precomputation
has Θ(`2) time complexity, leading once again to linear worst-case time complexity for bid
insertion. We obtain a faster bid insertion algorithm by showing how to perform the enhanced
precomputation in O(` log2 `) time.

Our O(` log2 `)-time algorithm for performing the enhanced precomputation forms the
core of our fast bid insertion algorithm. Here we briefly mention the main techniques used
to perform the enhanced precomputation efficiently; the reader is referred to [2, Sect. 5.3.1]
for further details. A divide-and-conquer approach is used to compute the auxiliary values
associated with the functions loserL and loserR in O(` log `) time; the correctness of this
approach is based on a monotonicity result (see [2, Lemmas 8 and 9]). A convolution-based
approach is used to compute the auxiliary values based on ∆L and ∆R in O(` log `) time
(see [2, Lemma 7]). The auxiliary values based on loserL (resp., loserR) are used within a
divide-and-conquer framework to compute the auxiliary values based on ∆∗L (resp., ∆∗R); in



N.O. Domaniç, C.-K. Lam, and C. G. Plaxton 28:9

the associated recurrence, the overhead term is dominated by the cost of evaluating the same
kind of convolution as in the computation of the auxiliary values based on ∆L and ∆R. As a
result, the overall time complexity for computing the auxiliary values based on ∆∗L and ∆∗R
is O(` log2 `).

Section 5.1 introduces the concept of a “block”, which is used to represent a group of
bids together with a contiguous interval of items that includes all of the items matched to
the group. Section 5.3 presents a block data structure. When a block data structure is
“initialized” with a group of bids and an interval of items, the enhanced precomputation
discussed in the preceding paragraph is performed, and the associated auxiliary values are
stored in tables. A handful of “fields” associated with the block are also initialized; these fields
store basic information such as the number of bids or items in the block. After initialization,
the block data structure is read-only: Whenever a block needs to be altered (e.g., because a
bid needs to be inserted/deleted, because the block needs to be merged with an adjacent
block), we destroy the block and create a new one. The operations supported by a block
may be partitioned into three categories: “queries”, “lookups” and “scans”. Each query runs
in constant time and returns the value of a specific field. Each lookup runs in constant time
and uses a table lookup to retrieve one of the precomputed auxiliary values. Each of the two
linear-time scan operations (one leftgoing, one rightgoing) performs a naive emulation of one
of the for loops of Alg. 1; in the context of a given bid insertion, such operations are only
invoked on the block containing the insertion position of the new bid.

Section 5.1 defines the concept of a superblock, which is used to represent an ordered
matching as a sequence of blocks. A superblock-based ordered matching data structure
is introduced in Sect. 5.3, where each of the constituent blocks is represented using the
block data structure alluded to in the preceding paragraph. In Sect. 5.3, we simplify the
presentation by setting the parameter ` to Θ(

√
n). For this choice of `, we show that bid

insertion can be performed using O(1) block initializations, O(
√
n) block queries, O(

√
n)

block lookups, at most two block scans, and O(
√
n) additional overhead, resulting in an

overall time complexity of O(
√
n log2 n). In terms of the parameters ` and n, the approach

of Sect. 5.3 can be generalized to perform bid insertion using O(
⌈
n/`2⌉) block initializations,

O(n/`) block queries, O(n/`) block lookups, at most two block scans, and O(n/`) additional
overhead; it is easy to verify that setting ` to Θ(

√
n) minimizes the overall time complexity.

5.1 Blocks and Superblocks

We define a block B as a UDALEW (U, V ) where |U | ≤ |V |. For any block B = (U, V ), we
define shifts(B) as |V | − |U | + 1. For any block B = (U, V ) and any integer t such that
1 ≤ t ≤ shifts(B), we define matching(B, t) as matching(U, V [t : t+ |U | − 1]).

Let M be a nonempty ordered matching, let U denote bids(M), and let V denote
items(M). Let m be a positive integer, and let 〈a0, . . . , am〉, 〈b1, . . . , bm〉, and 〈c1, . . . , cm〉
be sequences of integers such that a0 = 0, am = |U |, and 1 ≤ bi ≤ ai−1 + 1 ≤ ai ≤ ci ≤ |U |
for 1 ≤ i ≤ m. Let Bi denote the block (U [ai−1 + 1 : ai], V [bi : ci]) for 1 ≤ i ≤ m. Then
the list of blocks S = 〈B1, . . . , Bm〉 is a superblock, and we make the following additional
definitions: matching(S) denotes M ; size(S) denotes |M |; bids(S) denotes U ; items(S)
denotes V ; shift(S, i) and shift(S,Bi) both denote bi− ai−1 for 1 ≤ i ≤ m; sum(S, i) denotes
ai for 0 ≤ i ≤ m; the leftmost block B1 and the rightmost block Bm are the boundary blocks,
the remaining blocks B2, . . . , Bm−1 are the interior blocks. Remark: For any superblock S,
matching(S) =

⋃
1≤i≤|S|matching(S[i], shift(S, i)).

ISAAC 2016



28:10 Bipartite Matching with Linear Edge Weights

5.2 Algorithm 2
We obtain a significantly faster bid insertion algorithm than Alg. 1 by accelerating the
computations associated with the for loops starting at lines 5 and 12. Recall that the
first loop computes ∆∗L(M [ : k − 1]) and loserL(M [ : k − 1]), and the second one computes
∆∗R(M [k : ]) and loserR(M [k : ]). These two loops process a trivial representation of M
pair-by-pair using the recurrences (L1), (R1), (L2), and (R2). We start by generalizing
these recurrences; these generalizations allow us to compute the aforementioned values more
efficiently by looping over a superblock-based representation of the matching block-by-block,
instead of pair-by-pair.

Let M denote matching(U, V ), and let i, j, and k be three indices in M such that
i ≤ j < k. Then the following equation generalizes (L1), and it is straightforward to prove
by repeated application of (L1).

∆L(M [i : k]) = ∆L(M [j + 1 : k]) + w(U [j + 1], V [j]) + ∆L(M [i : j]). (L1′)

We also give a generalization of (L2), where the proof follows from the definitions of ∆∗L and
loserL.

(∆∗L(M [i : k]), loserL(M [i : k])) =

max
{

(∆∗L(M [j + 1 : k]), loserL(M [j + 1 : k]) + j + 1− i),
(∆∗L(M [i : j]) + w(U [j + 1], V [j]) + ∆L(M [j + 1 : k]), loserL(M [i : j]))

}
(L2′)

Symmetric equations generalizing (R1) and (R2) are given in [2].
We use (L1′) and (L2′) within a loop that iterates over a superblock-based representation

of the matching block-by-block. In each iteration of the loop, we are able to evaluate the
right-hand side of (L1′) and (L2′) in constant time because the terms involving M [j + 1 : k]
are carried over from the previous iteration, and the terms involving M [i : j] are already
stored in precomputed tables associated with the blocks of the superblock.

The high-level algorithm is given in Alg. 2. The input is a superblock S that represents
an ordered matching, denoted M (i.e., matching(S) = M), and a bid u that does not belong
to bids(S). The output is a superblock representing insert(M,u). The unique bid u∗ that is
unmatched in insert(M,u) is identified using the block-based framework alluded to above.
After identifying u∗, if u∗ 6= u, the algorithm invokes a subroutine Swap(S, u∗, u) which,
given a superblock S, a bid u∗ that belongs to bids(S), and a bid u that does not belong
to bids(S), returns a superblock that represents matching(bids(S) + u− u∗, items(S)). The
correctness of Alg. 2 is established in [2, Lemma 6], where it is shown that Alg. 2 emulates
the behavior of Alg. 1.

5.3 Fast Implementation of Algorithm 2
In this section, we first present a block data structure that precomputes the auxiliary tables
mentioned in Sect. 5.2 in quasilinear time, thus allowing lines 13 and 14 of Alg. 2 to be
performed in constant time. We then introduce a superblock-based ordered matching data
structure that stores the blocks using the block data structure, where the sizes of the blocks
are optimized to balance the cost of Swap with that of the remaining operations in Alg. 2.
We present our efficient implementation of Swap, which constructs only a constant number
of blocks, and analyze its time complexity in [2, Sections 5.3.3 and 5.3.4].

Let S be a superblock on which a bid insertion is performed, let B be a block in S,
and let Mt denote matching(B, t) for 1 ≤ t ≤ shifts(B). The algorithm may query ∆L(Mt),



N.O. Domaniç, C.-K. Lam, and C. G. Plaxton 28:11

Algorithm 2 A high-level bid insertion algorithm using the superblock-based representation
of an ordered matching.
Input: S is a superblock and u is a bid that does not belong to bids(S).
Output: A superblock S′ such that matching(S′) = insert(matching(S), u).
1: Let M denote matching(S), let U denote bids(S), and let V denote items(S)
2: Let S[i] be (Ui, Vi) for 1 ≤ i ≤ |S|
3: σ(i)← sum(S, i) for 0 ≤ i ≤ |S|
4: C ← {(0, u)}
5: `← |{(U ′, V ′) | (U ′, V ′) ∈ S and U ′[1] < u}|
6: k ← if ` < 1 then 1 else index(u, U` + u) + 1 + σ(`− 1)
7: if k > 1 then
8: for i = k − 1 down to σ(`− 1) + 1 do
9: Compute ∆L(M [i : k − 1]) via (L1)

10: Compute ∆∗L(M [i : k − 1]) and loserL(M [i : k − 1]) via (L2)
11: end for
12: for i = `− 1 down to 1 do
13: Compute ∆L(M [σ(i− 1) + 1 : k − 1]) via (L1′)
14: Compute ∆∗L(M [σ(i− 1) + 1 : k − 1]) and loserL(M [σ(i− 1) + 1 : k − 1])

via (L2′)
15: end for
16: C ← C + (w(u, V [k − 1]) + ∆∗L(M [ : k − 1]), U [i]) where i = loserL(M [ : k − 1])
17: end if
18: if k ≤ |M | then
19: Compute ∆∗R(M [k : ]) and loserR(M [k : ]). See [2] for the code, which is symmetric

to lines 8 through 15.
20: C ← C + (w(u, V [k]) + ∆∗R(M [k : ]), U [j]) where j = loserR(M [k : ]) + k − 1
21: end if
22: (δ, u∗)← the lexicographically maximum pair in C
23: return if u∗ 6= u then Swap(S, u∗, u) else S

∆R(Mt), ∆∗L(Mt), ∆∗R(Mt), loserL(Mt), and loserR(Mt) for t = shift(S,B). If B is part
of the superblocks for a series of bid insertions, then these queries may be performed for
various t values. For a fast implementation of Alg. 2, instead of individually computing these
quantities at query time, we efficiently precompute them during the construction of the block
and store them in the following six lists. We define ∆L(B) as the list of size shifts(B) such
that ∆L(B)[t] is equal to ∆L(Mt) for 1 ≤ t ≤ shifts(B). We define the lists ∆R(B), ∆∗L(B),
∆∗R(B), loserL(B), and loserR(B) similarly. The representation of a block B = (U, V ) simply
maintains each of the following explicitly as an array: U , V , ∆L(B), ∆R(B), ∆∗L(B), ∆∗R(B),
loserL(B), and loserR(B). In what follows, we refer to that representation as the block data
structure for B.

The main technical contribution of this paper is that we can compute the aforementioned
lists efficiently as stated in the following theorem.

I Theorem 7. The block data structure can be constructed in O(|V | (log shifts(B) + log2 |U |))
time for any block B = (U, V ).

We now introduce a data structure called a superblock-based ordered matching (SOM );
the formal definition is deferred to [2, Sect. 5.3.2]. A SOM represents an ordered matching

ISAAC 2016



28:12 Bipartite Matching with Linear Edge Weights

M by maintaining a superblock S such that matching(S) = M , where S is stored as a list of
block data structures.

I Theorem 8. The SOM has initialization cost O(n log2 n), bid insertion cost O(
√
n log2 n),

and dump cost O(n).

Theorem 8 states the main result of our paper, and is proved in [2, Sect. 5.3.4]. Here
we briefly mention key performance-related properties of the SOM, deferring the details to
[2, Sect. 5.3.2]. It is easy to see that Alg. 2 does not modify the superblock, except during
Swap at line 23. When Swap modifies the superblock, existing blocks are not modified;
rather, some existing blocks are deleted, and some newly constructed blocks are inserted.
We define the blocks in a SOM so that each block has Θ(

√
n) bids and Θ(

√
n) items, and so

that Swap can be implemented by constructing at most a constant number of blocks, where
n denotes the size of the matching represented by the SOM; we give an O(

√
n log2 n)-time

implementation of Swap in [2, Sections 5.3.3 and 5.3.4].
It is possible to support constant-time queries that return the bid matched to a given

item with some additional bookkeeping. Queries to find whether a bid is matched or not,
and if so, to return the matched item, can be implemented in logarithmic time by performing
binary search. Finally, it is possible to initialize the SOM with a matching consisting of all
dummy bids, each with intercept zero and slope zero, in linear time, since all of the weights
involving those bids are zero, and thus it is trivial to construct the blocks.

References
1 G. Demange, D. Gale, and M.A.O. Sotomayor. Multi-item auctions. The Journal of

Political Economy, 94:863–872, 1986.
2 N.O. Domaniç, C.-K. Lam, and C.G. Plaxton. Bipartite matching with linear edge weights.

Technical Report TR–16–15, Department of Computer Science, University of Texas at
Austin, October 2016.

3 N.O. Domaniç and C.G. Plaxton. Scheduling unit jobs with a common deadline to mini-
mize the sum of weighted completion times and rejection penalties. In Proceedings of the
25th International Symposium on Algorithms and Computation, pages 646–657, 2014.

4 R. Duan and H.-H. Su. A scaling algorithm for maximum weight matching in bipartite
graphs. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1413–1424, 2012.

5 M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM, 34:596–615, 1987.

6 H.N. Gabow and R.E. Tarjan. A linear-time algorithm for a special case of disjoint set
union. Journal of Computer and System Sciences, 30:209–221, 1985.

7 F. Glover. Maximum matching in a convex bipartite graph. Naval Research Logistics
Quarterly, 14:313–316, 1967.

8 J. Green and J.-J. Laffont. Characterization of satisfactory mechanisms for the revelation
of preferences for public goods. Econometrica, 45:427–438, 1977.

9 G.H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge University Press, 2nd
edition, 1952.

10 I. Katriel. Matchings in node-weighted convex bipartite graphs. INFORMS Journal on
Computing, 20:205–211, 2008.

11 H.W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 2:83–97, 1955.

12 H.B. Leonard. Elicitation of honest preferences for the assignment of individuals to posi-
tions. The Journal of Political Economy, 91:461–479, 1983.



N.O. Domaniç, C.-K. Lam, and C. G. Plaxton 28:13

13 W. Lipski, Jr. and F. P. Preparata. Efficient algorithms for finding maximum matchings in
convex bipartite graphs and related problems. Acta Informatica, 15:329–346, 1981.

14 C.G. Plaxton. Vertex-weighted matching in two-directional orthogonal ray graphs. In
Proceedings of the 24th International Symposium on Algorithms and Computation, pages
524–534, 2013.

15 G. Steiner and J. S. Yeomans. A linear time algorithm for maximum matchings in convex,
bipartite graphs. Computers and Mathematics with Applications, 31:91–96, 1996.

ISAAC 2016


	Introduction
	Preliminaries
	Incremental Framework
	A Basic Bid Insertion Algorithm
	A Superblock-Based Bid Insertion Algorithm
	Blocks and Superblocks
	Algorithm 2
	Fast Implementation of Algorithm 2


