
Complexity of Distributions and Average-Case
Hardness∗

Dmitry Itsykson1, Alexander Knop2, and Dmitry Sokolov3

1 St. Petersburg Department of V. A. Steklov Institute of Mathematics of the
Russian Academy of Sciences, St. Petersburg, Russia
dmitrits@pdmi.ras.ru

2 St. Petersburg Department of V. A. Steklov Institute of Mathematics of the
Russian Academy of Sciences, St. Petersburg, Russia
aaknop@gmail.com

3 St. Petersburg Department of V. A. Steklov Institute of Mathematics of the
Russian Academy of Sciences, St. Petersburg, Russia
sokolov.dmt@gmail.com

Abstract
We address the following question in the average-case complexity: does there exists a language
L such that for all easy distributions D the distributional problem (L,D) is easy on the average
while there exists some more hard distribution D′ such that (L,D′) is hard on the average? We
consider two complexity measures of distributions: the complexity of sampling and the complexity
of computing the distribution function.

For the complexity of sampling of distribution, we establish a connection between the above
question and the hierarchy theorem for sampling distribution recently studied by Thomas Watson.
Using this connection we prove that for every 0 < a < b there exist a language L, an ensemble
of distributions D samplable in nlogb n steps and a linear-time algorithm A such that for every
ensemble of distribution F that samplable in nloga n steps, A correctly decides L on all inputs
from {0, 1}n except for a set that has infinitely small F -measure, and for every algorithm B there
are infinitely many n such that the set of all elements of {0, 1}n for which B correctly decides L
has infinitely small D-measure.

In case of complexity of computing the distribution function we prove the following tight
result: for every a > 0 there exist a language L, an ensemble of polynomial-time computable
distributions D, and a linear-time algorithm A such that for every computable in na steps en-
semble of distributions F , A correctly decides L on all inputs from {0, 1}n except for a set that
has F -measure at most 2−n/2, and for every algorithm B there are infinitely many n such that
the set of all elements of {0, 1}n for which B correctly decides L has D-measure at most 2−n+1.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases average-case complexity, hierarchy theorem, sampling distributions, di-
agonalization

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.38

1 Introduction

This paper is devoted to average-case complexity. In the average case settings, every
computational problem is supplied with an ensemble of distributions on inputs. The problem

∗ The research presented in Section 3 was supported by Russian Science Foundation (project 16-11-10123).
The third author was partially supported by “Dynasty” foundation.

© Dmitry Itsykson, Alexander Knop, Dmitry Sokolov;
licensed under Creative Commons License CC-BY

27th International Symposium on Algorithms and Computation (ISAAC 2016).
Editor: Seok-Hee Hong; Article No. 38; pp. 38:1–38:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.38
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

38:2 Complexity of Distributions and Average-Case Hardness

is easy on the average if it can be solved efficiently on all but a small fraction (according to
the distribution) of the inputs.

The paper [6] gave an example of a noncomputable ensemble of distributions such that
every language with that ensemble of distributions is easy on the average iff it is easy in
the worst case. This explains why the average-case complexity studies not all but only
feasible ensembles of distributions. The most natural class of ensembles of distributions is
the class of polynomial-time samplable distributions. Such distributions are distributions of
outputs of polynomial-time randomized algorithms. The second important class of ensembles
of distributions is the class of polynomial-time computable ensembles of distributions. An
ensemble of distributions is computable in polynomial time if it’s cumulative distribution
function is computable in polynomial time. It is known that every polynomial-time comput-
able ensemble of distribution is polynomial-time samplable but the opposite is not true if
one-way functions exist [2].

It is well known that several hard problems can be efficiently solved on almost all inputs
for some natural distributions. For example the NP-complete problem Hamiltonian Path is
decidable in a linear time on almost all inputs according to the uniform distributions on the
graphs [3]. Another interesting example is the Graph Isomorphism problem that is solvable
in linear time on almost all inputs in the case of the uniform distribution on the inputs [1],
while there exists much more tricky distribution (see for example [8]) such that there are
no known polynomial-time algorithms that solve the graph isomorphism problem with high
probability.

Statement of the problem. The standard time hierarchy theorem in the average-case
settings states that for all a > 0 there exists a distributional problem (L,D) such that every
g(n)-time algorithm errs on almost all (or on a significant fraction of) inputs according to D
but there exists an algorithm with slightly bigger running time f(n) that correctly solves
the problem on almost all inputs according to D. For deterministic algorithms, it is easy to
show by the straightforward diagonalization that there exists a language L that is decidable
in na steps but every algorithm with running time O(na−ε) gives incorrect answer on all
sufficiently large inputs for ε > 0. For randomized algorithms with bounded error Pervyshev
[7] showed that for all b > 0 there exists a language L with the uniform distribution that
is decidable in randomized polynomial time with a bounded error on all but ε fraction of
inputs but every randomized algorithm with running time nb gives incorrect answer with
high probability on at least 1

2 − ε fraction of inputs for all ε > 0. The paper [5] showed that
the fraction of hard instances in the Pervyshev’s result may be improved to 1− 1

k − ε if we
switch from languages to k-valued functions.

In this paper we study the dual question: is it possible that a language suddenly transits
from very average-case easy to very average-case hard if we slightly increase the complexity
of the distribution? Namely, we study the following question: does there exists a language L
such that for all distributions E of complexity g(n) the distributional problem (L,E) is easy
on the average, but there exist an ensemble of distributions D of complexity f(n) such that
the distributional problem (L,D) is hard on the average?

We consider two complexity measures of distributions:
1. time complexity for sampling;
2. time complexity of computing the distribution function.
We say that a distributional problem (L,D) is easy on the average if there is a linear-time
algorithm that for all n gives correct answer on 1 − α(n) fraction (according to D) of
inputs of length n, where α(n) = o(1). (It seems that we may claim the existence of
a polynomial-time algorithm instead of linear-time, but it turns out that if there is

D.M. Itsykson, A. A. Knop, and D.O. Sokolov 38:3

an example with a polynomial-time algorithm, then there is also an example with a
linear-time algorithm).
We consider two variants of the notion that (L,D) is hard on the average:
1. strong hardness: every algorithm for infinitely many n give a correct answer on at

most β(n) fraction (according to D) of inputs of length n, where β(n) = o(1); (It
seems that we may claim this condition only for polynomial-time algorithms but it
turns out that if there is an example that is hard for polynomial-time algorithms, then
there is also an example that is hard for all algorithms.)

2. weak hardness: every algorithm for infinitely many n give a correct answer on at most
1− β(n) fraction (according to D) of inputs of length n. In this case it is reasonable
to assume that α(n) = o(β(n)).

It is desirable for f(n) to be not much larger than g(n). In tight results f(n) would be at
most polynomial in g(n); in other results f(n) is bounded by a quasipolynomial in g(n).

1.1 Our results
Samplable distributions. The most interesting complexity measure of distributions is the
complexity of sampling. In Section 3.1 we consider the statement with the strong notion
of hardness. We show that in this case the affirmative answer to our question is equivalent
to the following hierarchy for sampling distributions: there exists a distribution D that is
samplable in f(n) steps such that for every distribution F that is samplable in g(n) steps,
the statistical distance between D and F is at least 1− o(1).

Watson [9] recently proved the similar (but weaker for our goals) theorem:

I Theorem ([9]). For all a > 0, ε > 0 and k ∈ N there exists an ensemble D ∈ PSamp
such that:

for all n the distribution Dn is concentrated on {1, 2, . . . , k};
for every ensemble of distributions F ∈ Samp[na] there exist infinitely many n such that
statistical distance between Dn and Fn is at least 1− 1

k − ε.
Watson’s theorem is not sufficient for our goals since we need the statistical distance 1− o(1)
while the theorem gives the statistical distance 1 − δ for all constants δ > 0. We stress
that from the equivalence result the tending of the statistical distance to 1 is necessary in
order to get an example of a language that is easy according to easy distributions and hard
for some more complicated distribution. The proof of Watson’s theorem is based on the
tree-like diagonalization; we explain (see details in the end of Section 3.1) why the tree-like
diagonalization can not be used to get a statistical distance 1− o(1) for polynomial f and g.
The statistical distance in Watson’s theorem is optimal for distributions concentrated on k
values. Thus to get a statistical distance 1− o(1) the function k should be increasing and
thus the diagonalization tree should have outgoing degree at least k(n) and this condition
makes the diagonalization tree too large and it is impossible to layout it. We show that
it is possible to layout the tree in the case when f and g differ quasipolynomially. We
prove the hierarchy for sampling distributions for f(n) = nlogb n and g(n) = nloga n for all
0 < a < b. Our proof uses the proof strategy that is similar to Watson’s theorem but our
proof is significantly simpler and in particular, we do not use list-decodable error-correcting
codes for the transmitting information. From the hierarchy for sampling distributions and
the equivalence result we get the following theorem.

I Theorem 1. For all ε > 0 and c > 0 there exist a language L and a linear-time algorithm
A such that for every polynomial-time samplable ensemble of distributions F and all n,

ISAAC 2016

38:4 Complexity of Distributions and Average-Case Hardness

Prx←Fn [A(x) = L(x)] ≥ 1 − 1
2(log log logn)c and there exists D ∈ Samp[nlogε n] such that for

every algorithm B for infinitely many n, Prx←Dn [B(x) = L(x)] ≤ 1
2(log log logn)c .

Note that although Theorem 1 argues only about deterministic algorithms B, it implies that
for any probabilistic algorithm B′ with running time bounded by a computable function,
Prx←Dn [PrB′ [B′(x) = L(x)] > 1/2] ≤ 1

2(log log logn)c , where the inner probability is taken over
the random bits of algorithm B′. It is interesting to compare Theorem 1 with the result
of Gutfreund, Shaltiel and Ta-Shma [4]; they proved that for every α(n) = o(1) there is a
distribution D that is samplable in quasipolynomial-time such that for every NP-complete
language L every polynomial-time randomized algorithm fails to compute L with probability
at least α(n) for infinitely many n unless NP ⊆ BPP. In contrast to [4] Theorem 1 is
unconditional, uses the strong notion of hardness and additionally states that L is easy for
all polynomial-time samplable distributions, on the other hand the distribution from [4] is
the same for all NP-complete languages and NP-complete languages are important while a
language from Theorem 1 is an artificial language based on the tricky diagonalization.

In Section 3.2 we consider the weak notion of hardness and f(n) = poly(g(n)). Analogously
to the strong hardness we show that in this case the affirmative answer to our question is
equivalent to the following conjecture:

I Conjecture 2. There exist infinitely small functions β(n) and α(n) = o(β(n)) such that
for all integer a > 0 and b > 0 there exist an ensemble of distributions D ∈ PSamp, an
increasing sequence of integers ln and a sequence of sets Sn ⊆ {0, 1}ln such that the following
holds: D(Sn) > β(ln) for all n; for all F ∈ Samp[na], F (Sn) ≤ α(ln) for infinitely many n.

Nontrivial condition on this condition is that α(n) is infinitely small. For constants α and β
(α < β) the statement follows from Watson’s theorem. For infinitely small α the statement
is nontrivial even in the case α(n) = β(n). We prove the following theorem.

I Theorem 3. For all integer a > 0 and b > 0 there exist an ensemble of distributions
D ∈ PSamp, a sequence of integers ln and a sequence of sets Sn ⊆ {0, 1}ln such that the
following holds:

D(Sn) > 1
lbn

for all n;

For all F ∈ Samp[na], F (Sn) ≤ 1
lbn

for infinitely many n.

Computable distributions. In Section 4 we consider a complexity of a distribution as the
complexity of computing the distribution function. In case of computable distributions in
contrast to samplable ones it is possible to find an element with small probability using
binary search in polynomial time. However there is the following difficulty: it is not clear
how to verify efficiently whether an algorithm computes a distributional function or not.
This difficulty prevents to construct the universal computable distribution that dominates all
other computable distributions while it is possible to do in the samplable case. We overcome
this difficulty and prove the following result for the strong hardness and f(n) = poly(g(n)):

I Theorem 4. For every a > 0 there exists a language L and an ensemble of polynomial-time
computable distributions D such that:

there exists a linear-time algorithm A such that Prx←En [A(x) 6= L(x)] = O(2−n) for all
E that are computable in O(na) steps;
for every algorithm A and for all n, Prx←Dn [A(x) 6= L(x)] > 1− 1

2n−1 .

D.M. Itsykson, A. A. Knop, and D.O. Sokolov 38:5

2 Preliminaries

An ensemble of distributions is a sequence {Dn}∞n=1, where Dn is a probability distribution on
{0, 1}n. Sometimes it is convenient to assume that Dn is concentrated on {0, 1, . . . , 2n − 1}.

For two distributions A and B on {0, 1}n the statistical distance between them is
∆(A,B) = maxS⊆{0,1}n |Prx←A[x ∈ S]− Prx←B [x ∈ S]|.

A distributional problem is a pair (L,D) that consists of the language L and the ensemble
of distributions D. Let δ : N→ [0, 1] be a function. We say that a distributional problem
(L,D) is heuristically decidable it time t(n) with error δ(n) if there exists an algorithm
A such that A runs in O(t(n)) steps on the inputs of length n and the following holds:
Prx←Dn [A(x) 6= L(x)] ≤ δ(n) for all n. We denote it as (L,D) ∈ Heurδ(n)DTime[t(n)]. We
also define a class of distributional problems Heurδ(n)P =

⋃
c>0 Heurδ(n)DTime[nc].

We also define a class Heurδ(n)R that consists of all distributional problems (L,D) such
that there exists an algorithm A such that Prx←Dn [A(x) 6= L(x)] ≤ δ(n) for all n.

We say that an ensemble of distributions D is samplable in time t(n) if there exists a
randomized algorithm S that on the input 1n runs in at most O(t(n)) steps and S(1n) is
distributed accordingly Dn. The set of all ensembles that are samplable in time t(n) we
denote as Samp[t(n)]. We consider the set PSamp =

⋃
c>0 Samp[nc] of all polynomial-time

samplable ensembles.

3 Samplable distributions

3.1 Strong hardness
IDefinition 5. We say that time constructible functions f and g satisfy the hierarchy property
of sampling distributions with parameter λ(n) if there exists an ensemble of distributions
D ∈ Samp[f(n)] such that for every ensemble of distributions F ∈ Samp[g(n)], there exist
infinitely many numbers n such that the statistical distance between Dn and Fn is at least
1− λ(n).

I Definition 6. We say that time constructible functions f and g satisfy the hierarchy
property on complexity of distributional problems with parameters α(n) > 0 and β(n) > 0 if
there exist a language L and an ensemble of distributions D ∈ Samp[f(n)] steps such that:

(L,F) ∈ Heurα(n)P for all F ∈ Samp[g(n)];
(L,D) /∈ Heur1−β(n)P.

We say that f and g satisfy strong hierarchy property on complexity of distributional problems
if the conditions are formulated as:

There is a linear-time algorithm A such that for all F ∈ Samp[g(n)] Prx←Fn [A(x) =
L(x)] ≥ 1− α(n) for all n large enough;
(L,D) /∈ Heur1−β(n)R.

I Lemma 7. For every time constructible functions f(n), h(n) and g(n) ≥ n if f and h satisfy
the hierarchy property on sampling distributions with parameter λ(n) and g(n) log g(n) =
o(h(n)) then f and g satisfy the strong hierarchy property on complexity of distributional
problems with parameters α(n) and λ(n) for α(n) = ω(λ(n)).

Proof. Let Ai be an enumeration of all randomized algorithms supplied with an alarm clock
that interrupt their executions after O(g(n)) steps. We will think about Ai as algorithms
that sample distributions; that is the output of Ai(1n) we interpret as a string from {0, 1}n
by some fixed way. Let B be an algorithm that samples a distribution as follows: on input

ISAAC 2016

38:6 Complexity of Distributions and Average-Case Hardness

1n with probability 1
2 it executes A1(1n) (and returns its result), with probability 1

22 it
executes A2(1n), . . . , with probability 1

2n−1 it executes An−1(1n) and with probability 1
2n−1

executes An(1n). Let B define an ensemble of distributions E. It is straightforward that
E ∈ Samp[h(n)].

Since f and h satisfy the hierarchy property of sampling distributions, there exists an
ensemble D ∈ Samp[f(n)] such that ∆(Dn, En) ≥ 1− λ(n) for infinitely many numbers n.
We denote the set of all such n as I = {n1, n2, . . . }. For n ∈ I there exists a set Sn ⊆ {0, 1}n
such that Dn(Sn)− En(Sn) ≥ 1− λ(n), hence En(Sn) ≤ λ(n).

We will define a language L such that L ⊆
⋃
n∈I Sn. Let Ti be an enumeration of all

algorithms. We define L such that for every x ∈ Snk , x ∈ L if and only if Tk does not stop
on the input x or rejects it. By the construction (L,D) /∈ Heur1−λ(n)R.

We consider an algorithm that returns 0 on every input. If R ∈ Samp[g(n)], then there
exists i such that Ai samples R. For n ≥ i for every set S ⊆ {0, 1}n the following inequality
holds: E(S) ≥ 2−iR(S). Hence for every ensemble R from Samp[g(n)] this algorithm has
error at most cλ(n), where c is a constant that depends only on the ensemble R; cλ(n) < α(n)
for n large enough. J

We also prove the opposite implication.

I Lemma 8. If f and g satisfy the hierarchy property of complexity of distributional problems
with parameters α(n) and β(n) then f and g satisfy the sampling hierarchy property with
parameter α+ β.

Proof. For all F ∈ Samp[g(n)] there exists a polynomial time algorithm A that solves (L,F)
in Heurα(n)P and also (L,D) /∈ Heur1−β(n)P. Let Sn be set of all x ∈ {0, 1}n such that
A(x) = L(x). We know that Fn(Sn) ≥ 1−α(n) for all n and Dn(Sn) ≤ β(n) for for infinitely
many n. Hence ∆(Dn, Fn) ≥ Fn(Sn)−Dn(Sn) ≥ 1− α(n)− β(n) for infinitely many n. J

Lemma 7 and Lemma 8 implies that if f and g satisfy the hierarchy property of the complexity
of distributional problems with two infinitely small parameters then f and g/ log2 g satisfy
the strong hierarchy property on the complexity of distributional problems with two infinitely
small parameters. As we mentioned Watson [9] proved that for every a > 0, ε > 0 and every
constant k there exists b > 0 such that na and nb satisfy the hierarchy property on sampling
distributions with parameter 1

k + ε. In fact Watson proved the stronger statement since
ensemble D is concentrated on k inputs. Watson conjectured that for every a > 0 there exists
infinitely small function α(n) there exists b > 0 such that na and nb satisfy the hierarchy
property on sampling distributions with parameter α(n). This statement is still an open
question. We prove the following theorem:

I Theorem 9. For every a, b, c such that 0 < a < b and c > 0 functions f(n) = nlogb n and
g(n) = nloga n satisfies the sampling hierarchy property with the parameter λ(n) = 1

2(log log logn)c .

I Corollary 10. For every a, b, c such that 0 < a < b and c > 0 functions f(n) = nlogb n and
g(n) = nloga n satisfies the strong hierarchy property on complexity of distributional problems
with parameters α(n) = β(n) = 1

2(log log logn)c .

Note that Theorem 1 stated in the introduction follows from Corollary 10.
Before giving a formal proof of Theorem 9 we present an idea of the proof.
In the following, we assume that random variables and elements of ensembles of distribu-

tions take values from the set {0, 1, . . . , 2n − 1} instead of {0, 1}n.
Our proof like a proof of the Watson’s theorem is based on the tree-like diagonalization.

We construct a distribution D and diagonalize over all distributions samplable in O(g(n))

D.M. Itsykson, A. A. Knop, and D.O. Sokolov 38:7

steps by the enumeration of their generators Ai. For the i-th distribution we will prove that
the statistical distance between D and Ai(1n) is large for some n from [ni, n∗i], where n∗i is
significantly more than ni. For every i we construct a tree Ti with vertices uniquely marked
with numbers from [ni, n∗i]. The root of Ti is marked by n∗i and leaves of Ti are marked with
numbers that are about ni. The number of a parent is greater than the number of a child
also the number of a parent is bounded by a quasipolynomial in numbers of its child. Let t
be an element from {0, 1, . . . , 2ni − 1} such that in all leaves Ai-probability of t is less then
λ(mi), where mi is the maximum leaf. Such t exists since there are not too many leaves,
the possible values of distributions is at least 2ni and for every distribution the number of
elements with probability at least λ(n) is at most 1

λ(n) . The distribution Dn∗
i
is concentrated

on t. We assume that for all n ∈ [ni;n∗i] the statistical distance between Ai(1n) and Dn

is less than 1 − λ(n). Our goal is to define D in such a way that in at least one leaf D is
concentrated on t. This will contradict our assumption and the definition of t.

We will transmit information about t from a parent to at least one of its children.
The distribution D on the children of p has the following property: if Dp is concentrated
(with probability 1 − ε) on some element, then Dn is concentrated on the same element
for at least one child n of p. From the assumption about statistical distances we have that
Pr[Ai(1p) = t] ≥ λ(p)− ε, hence there are at most 2

λ candidates on the role of t if we have an
access to Ai(1p). We generate a list of all elements with Ai(1p)-probability at least λ(p)− ε.
In the first child of p we make D concentrated on the first element of the list, on the second
child on the second element and so on. There is a problem that there are possibly different
lists will be generated in different children; we solve this problem by using several thresholds
for frequencies. Formally we do it in the following lemma:

I Lemma 11. There is an algorithm C•(n, i, δ, λ) that has an oracle access to some random
variable γ taking values in {0, 1, . . . , 2n−1} such that for all positive integer n and δ, λ ∈ (0, 1]
if Pr[γ = t] ≥ λ for some t, then there is some integer 0 ≤ i ≤ d1 + 1

λe
2 such that

Pr[Cγ(n, i, δ, λ) = t] ≥ 1− δ and C• runs at most poly(n, log 1
δ ,

1
λ) steps.

Proof. Consider the following algorithm Cγ(n, i, δ, λ):
1. Let k = d 1

λ + 1e and ε = λ3

10k ;
2. We interpret i as a pair (a, b), where a, b ∈ [k];
3. Request the oracle for N = d 2(n+1+log 1

δ)
ε2 e samples of γ;

4. Consider the list y1, . . . , ys of all elements with frequency at least λ− εa;
5. Return yb if b ≤ s or 0 otherwise.

Note that for λ ∈ (0, 1]

k(λ− ε(2k)) ≥ (1
λ

+ 1)(λ− λ3/5) = 1 + λ− λ2/5− λ3/5 > 1. (1)

Hence the number of elements x such that Pr[γ = x] > λ − εk is less than k; by the
similar reasons s < k, where s the size of the list in the 4-th step of the algorithm C.

Consider intervals Ij = [λ−εj−ε/2;λ−εj+ε/2]. There is a ∈ [k] such that Pr[γ = x] /∈ Ia
for all x since otherwise 1 =

∑
x Pr[γ = x] ≥ k(λ− εk − ε/2) that contradicts inequality (1).

Hence there is a ∈ [k] such that |Pr[γ = x]− λ− εa| > ε/2 for all x.
Let x1, . . . , xl be the list of all elements x such that Pr[γ = x] > λ− εa. We know that

if Pr[γ = x] > λ − εa, then Pr[γ = x] > λ − εa + ε/2 and also if Pr[γ = x] ≤ λ − εa, then
Pr[γ = x] < λ − εa − ε/2. For given a for every j ∈ [l], xj appears in the list from 4th
step of algorithm C with probability at least 1 − 2e−ε2N/2. If Pr[γ = x] ≤ λ − εa then by
Chernoff bound x does not appear in the list from the 4th step of the algorithm C with

ISAAC 2016

38:8 Complexity of Distributions and Average-Case Hardness

probability at least 1−2e−ε2N/2. Since γ is concentrated on the set of size 2n with probability
at least 1− 2n+1e−ε

2N/2 ≥ 1− δ the list generated on 4th step of algorithm C is precisely
the list x1, . . . , xl. Since Pr[D = t] > λ, there is b such that xb = t. Hence if i = (a, b) then
Pr[Cγ(n, i, δ, λ) = t] ≥ 1− δ. J

Proof of Theorem 9. Our proof is based on the tree-like delayed diagonalization. We diag-
onalize against all randomized algorithms supplied with a O(g(n))-alarm clock, we interpret
them as samplers of distributions. Let A1, A2, . . . be an enumeration of all randomized
algorithms supplied with a O(g(n))-alarm clock.

Let us consider an ε > 0 such that (1 + a)(1 + ε) < (1 + b) and fix some c. We
define integer sequences ni and n∗i such that n1 = 1, n∗i = 2(logni)(1+ε)di , where di =
dlog1+ε 2ed(log logni)2e and ni+1 = n∗i +1. For every i we define an ensemble of distributions
Dn for n ∈ {ni, ni + 1, . . . , n∗i } such that there exists k ∈ {ni, ni + 1, . . . , n∗i } such that
∆(Dk, Ai(1k)) ≥ 1− λ(k).

I Lemma 12. For every ε > 0 there exists a family of trees Ti such that:
1. The set of vertices of Ti is a subset of {ni, ni + 1, . . . , n∗i };
2. n∗i is the root of Ti;
3. All leaves of Ti have numbers at most mi = 2ni;
4. The depth of Ti is di = dlog1+ε 2ed(log logni)2e;
5. If p is a parent of n then p ≤ 2log1+ε n;
6. There is an algorithm that for any vertex n of Ti outputs the parent p of n and the number

of children of p that are less than n in poly(n) steps;
7. For every inner vertex v of Ti, v has k = d 1

λ(n∗
i

) + 1e2 children.

Proof. Let us denote δ = dlog1+ε 2e. We define a tree Ti as a complete balanced tree
with depth di. The number of leaves in the tree can be estimated as follows: kdi ≤
(2(log log logn∗i)3c)δ(log logni)2 ≤ (2(log logni)12c)δ(log logni)2 = 2δ(log logni)24c ≤ ni.

The root n∗i is the only vertex on the zero level. There are exactly ks vertices on s-th
level. Let ai,j = 2(logni)(1+ε)j , where j ∈ {0, 1, 2, . . . }. Vertices of Ti on level (di − s) are
[ai,s; ai,s + kdi−s − 1].

Note that ai,s+1−ai,s ≥ ai,1−ai,0 = 2(logni)(1+ε)−ni ≥ 2(logni)(1+ε)−1 > ni ≥ kdi ≥ kdi−s.
Hence on all levels there is enough place for vertices.

The parent of j-th vertex on s-th level has number b jk c. Let h(n) = nlogε n. Since
h(n+ k) ≥ h(n) + k we have h(2log(1+ε)s ni + j) ≥ h(2log(1+ε)s ni) + j ≥ 2log(1+ε)s+1

ni + j/k,
therefore the property 5 is satisfied. The verification of other properties is straightforward. J

Now we describe an algorithm that samples Dn for n ∈ {ni, . . . , n∗i } in O(f(n)) steps.
1. If n = n∗i then output the minimal ti ∈ {0, 1, . . . , 2ni − 1} such that for all l ∈ [ni;mi] we

have that Pr[Ai(1l) = ti] < λ(ni)/2. Such ti indeed exists since for every l there are at
most 2

λ(ni) elements with Ai(1l)-probability at least λ(ni)/2 and 2
λ(ni)mi ≤ 2ni . Such ti

can be found in at most micig(mi)2cig(mi) steps by brute force search over all possible
random bits, where ci is a constant that depends on i.

micig(mi)2cig(mi) ≤ 2mig(mi) ≤ 22nig(2ni) ≤ 22ni(2ni)2 loga ni
<

224 log(1+a) ni ≤ 2224(1+a) log logni
≤ 222(log logni)2

< n∗i = o(f(n∗i))

2. If n is not a vertex of Ti then return 0.

D.M. Itsykson, A. A. Knop, and D.O. Sokolov 38:9

3. Otherwise, let p be the parent of n and j is a number of n in the list of all children of p.
By the property of Ti, p ≤ 2log1+ε n and such p can be found in poly(n) steps. We return
CAi(1p)(p, j, λ(n)/2, λ(p)/2), where C is the algorithm from Lemma 11. By Lemma 11 C
runs at most poly(p) steps and on every step the simulation of Ai(1p) occupies at most
cig(p) steps. Note that cig(p)poly(p) < 22 loga+1 p < 22 log1+a(2log1+ε n) = 22 log(1+a)(1+ε) n <

2log(1+b) n = f(n).

For the sake of contradiction we assume that for all n ∈ {ni, . . . , n∗i }, ∆(Dn, Ai(1n)) <
1 − λ(n). By induction on the level s of Ti we prove that there is a vertex v of level s in
Ti such that Dv(ti) ≥ 1 − λ(v)/2. If Dv(ti) ≥ 1 − λ(v) for some leaf v then Pr[Ai(1v) =
ti] ≥ (1− λ(v)/2)− (1− λ(v)) = λ(v)/2 but we define ti such that Pr[Ai(1v) = ti] < λ(v)/2.
Hence we will get a contradiction in leaves.

The base of induction follows from the construction of Dn∗
i
. Let us prove the inductive

step from s to s + 1. Let v be a vertex of level s such that Dv(ti) ≥ 1 − λ(v)/2. If v is a
leaf then we are done. Otherwise Pr[Ai(1v) = ti] > λ(v)/2 since ∆(Dv, Ai(1v)) < 1− λ(v).
Hence by Lemma 11 there is a child u with number j among the all children of v such that
Pr[CAi(1v)(v, j, λ(u)/2, λ(v)/2) = ti] > 1− λ(u)/2. J

Our proof in contrast to Watson’s proof does not use error correcting codes with list decoding.
This is because we find one element that has a small probability for all leaves of the tree. This
trick was impossible in Watson’s case since all distributions were concentrated on a constant
number of points. In Watson’s proof, there were a lot of information transmitted from the
root to leaves, and parts of this information were stored in different vertices. Watson used
list error decoding codes in order to prevent information distortion.

Now we show why this approach cannot be adapted to the case of g(n) = na and
polynomial f(n). The problem is the following: for nonconstant λ(n) the tree Ti should have
nonconstant degree: every inner vertex has at least ki children, where ki goes to infinity.
In the root of the tree, we have to make exponential in any leaf number of steps; and the
parent of every node n should be at most polynomial of every children. Thus for every leaf l
the distance between root and l is at least Ω(log `). Let mi be the leaf with the maximal
number; then the distance from the root to mi is at least L = Ω(logmi). Let S be the set of
vertices such that their numbers are less then mi but the numbers of their parents are more
then mi. Note that all vertices on the distance L from the root must either be in S or have
a descendent in S. Therefore the size of S should be at least kLi that is greater then mi for
large i, since ki goes to infinity. But this is a contradiction since S is set of vertices with
numbers less then mi.

3.2 Weak hardness

In this section we consider statement of the problem with the weak notion of hardness and
tight hierarchy (f(n) = poly(g(n))). We start from equivalent formulations:

I Proposition 13. The following statements are equivalent:
1. There exists infinitely small functions β(n) and α(n) = o(β(n)) such that for all a > 0

there exists an ensemble of distributions D ∈ PSamp and a language L such that the
following holds:

(L,F) ∈ Heurα(n)P for all F ∈ Samp[na];
(L,D) /∈ Heurβ(n)P.

ISAAC 2016

38:10 Complexity of Distributions and Average-Case Hardness

2. There exists infinitely small functions β(n) and α(n) = o(β(n)) such that for all a > 0
there exist an ensemble of distributions D ∈ PSamp, an increasing sequence of integers
ln and a sequence of sets Sn ⊆ {0, 1}ln such that the following holds:
D(Sn) > β(ln) for all n;
For all F ∈ Samp[na], F (Sn) ≤ α(n) for infinitely many n.

3. There exists infinitely small functions β(n) and α(n) = o(β(n)) such that for all a > 0
there exists an ensemble of distributions D ∈ PSamp and a language L such that the
following holds:

there exists linear-time algorithm A such that for all F ∈ Samp[na], Prx←Fn [L(x) =
A(x)] ≥ 1− α(n) for all n large enough;
(L,D) /∈ Heurβ(n)R.

We prove the statement that is weaker than statement 2 from Proposition 13. Namely we
prove it in the case α(n) = β(n) = 1

nb
. By the similar way it is possible to prove it for other

infinitely small functions: 1
2n ,

1
logn etc.

Now we are ready for proving Theorem 3. We start from the intuition of the proof. For
simplicity we start from the proof of the other statement with threshold 1

2 instead of 1
lbn
. We

use the delayed diagonalization; we consider integer sequences ni and n∗i such that n1 = 1,
ni = n∗i + 1, n∗i = 2nai . Let Fi be enumeration of all randomized algorithms with alarm
clock na+1 such that every algorithm appears infinitely many times in this enumeration; we
consider Fi as samplers of distributions.

We denote by T0,n and T1,n the set of binary strings of length n starting with 0 and
1 respectively. Consider the following sampler of the distribution Dn: if n = n∗i , we find
ti ∈ {0, 1} such that Pr[Fi(1ni) ∈ Tti,ni] ≤ 1

2 and return the random element from Tti,n∗i ; if
ni ≤ n < n∗i we execute Fi(1n+1) if it returns a string starting with s ∈ {0, 1} we return a
random element from Ts,n.

Assume that there exists E ∈ Samp[na] such that for all n > n0 if for some S ⊆ {0, 1}n,
Pr[Dn ∈ S] > 1

2 , then Pr[Fi(1n) ∈ S] > 1
2 . Let Fi is a sampler for E and i > n0. We know

that Pr[Dn∗
i
∈ Tti,n∗i] = 1, then Pr[Fi(1n

∗
i) ∈ Tti,n∗i] > 1

2 , thus Pr[Dn∗
i
−1 ∈ Tti,n∗i−1] > 1

2 and
so on. Finally we get Pr[Fi(1ni) ∈ Tti,ni] > 1

2 and this contradicts the definition of ti.
For threshold 1

k the proof will be the same but we split {0, 1}n into log k parts. In case
of threshold 1

nb
we will have a different number of parts for different n, and we will use trees

of intervals instead of chains.

Proof of Theorem 3. Consider an enumeration of all randomized algorithms Fi with alarm
clock na+1 such that every algorithm appears infinitely many times in this enumeration; we
consider Fi as samplers of distributions. We define integer sequences ni and n∗i such that
n1 = 1, n∗i = 2nai , and ni+1 = 2n∗i .

Split all strings of length n on nb nonempty sets; we call them intervals and denote by
Tj,n for j ∈ {1, 2, . . . , nb}. For n ∈ [ni;n∗i] we define a graph (it will be a forest) as follows:

The set of vertexes of the graph is the set of all intervals Tj,n for n = 2k and ni ≤ n ≤ n∗i ;
All elements of Tj,ni are roots of trees of the forest;
For n ∈ {ni, 2ni, 4ni, . . . , n∗i /2}, Tj,n has 2b children: {Tj′,2n | 2b(j − 1) ≤ j′ ≤ 2bj − 1}.
All elements of Tj,n∗

i
are leaves of trees of the forest;

We define a sampler for D as follows. It gets on the input 1n:
If n = n∗i for some i, then find an interval Tj,ni with the smallest probability according to
Fi(1ni). If there are several such Tj,ni , we take one with the minimal j. (Note that this can
be done in poly(n∗i) time by brute-force). Then chose random descendent of Tj,ni on length
n∗i and return some string form this descendent. Note that Pr[Fi(1ni) ∈ Tj,ni] ≤ 1

nb
i

;

D.M. Itsykson, A. A. Knop, and D.O. Sokolov 38:11

If ni ≤ n < n∗i for some i, then run Fi(12n) and if the result belongs to a descendent of
Tj,n for some j, then return random string from Tj,n.

Let us prove that for all i there exists j and n ∈ [ni;n∗i] such that Pr[Dn ∈ Tj,n] > 1
nb

and Pr[Fi(1n) ∈ Tj,n] ≤ 1
nb
. (This will conclude the proof of the theorem if we choose

Si = Tj,n.) Assume the opposite; that is for all j and n ≤ n∗i if Pr[Fi(1n) ∈ Tj,n] ≤ 1
nb
,

then Pr[Dn ∈ Tj,n] < 1
nb
. Let Tj,ni be an interval with the smallest probability according to

Fi(1ni), hence Pr[Fi(1ni) ∈ Tj,ni] ≤ 1
nb
i

. By induction on l we prove that for all n = 2lni (and
n ≤ n∗i) there exists k such that Tk,n is a descendant of Tj,ni and Pr[Dn ∈ Tk,n] ≤ 1

nb
. The

base case l = 0 is already proved. Let us prove the inductive step from l to l+1. Let n = 2lni.
Assume that Pr[Dn ∈ Tk,n] ≤ 1

nb
then by the pigeonhole principle and construction of D there

is one of 2b children of Tk′,2n such that Pr[Fi(12n) ∈ Tk′,2n] ≤ 1
(2n)b and hence by assumption

Pr[D2n ∈ Tk′,2n] ≤ 1
(2n)b . Therefore there exists k such that Pr[Dn∗

i
∈ Tk,n∗

i
] ≤ 1

(n∗
i

)b and
Tk,n∗

i
is a descendant of Tj,ni , but the construction of D implies that the D-probability of

every descendant of Tj,ni on length n∗i is equal to nbi
(n∗
i

)b >
1

(n∗
i

)b . J

I Corollary 14. For all a > 0 and b > 0 there exists a ensemble of distributions D ∈ PSamp,
a language L and a linear-time algorithm A such that the following holds: Prx←Fn [A(x) 6=
L(x)] = O(1

nb
) for all F ∈ Samp[na]; (L,D) /∈ Heur 1

nb
R.

4 Computable distributions

Ensemble of distributions Dn is computable in time t(n) if for all n probabilities of all
elements according to Dn are binary rational numbers and there exists an algorithm A(x)
that runs in O(t(|x|)) steps and computes the cumulative distribution function of Dn (i.e.∑
y≤xDn(x), where ≤ is lexicographical order). The set of all ensembles that are computable

in time t(n) we denote as Comp[t(n)]. The set PComp =
⋃
c>0 Comp[nc] is the set of all

ensembles computable in polynomial time.

I Lemma 15. If an ensemble D ∈ PSamp and for all n the distribution Dn is concentrated
on one element, then D ∈ PComp.

It is possible to prove the statement that is analogous to hierarchy property of na and nb of
sampling distributions but for computable distributions.

I Proposition 16. For all a > 0 there exists an ensemble D ∈ PComp such that for all
ensembles F ∈ Comp[na] there are infinitely many numbers n such that ∆(Dn, Fn) ≥ 1−2−n.

Now we prove Theorem 4 that is similar to hierarchy property of na and nb on the complexity
of distributional problems but for computable distributions.

Proof. We cannot literally repeat the proof of Lemma 7 regardless of we have even already
proved Proposition 16. The reason is the following: not every algorithm computes the
distributional function, it is not necessary that it computes even monotonic function. And it
is not easy to verify that algorithms compute a distribution function.

Let Ai be an enumeration of all algorithms supplied with alarm-clock Cna, where C
is some constant. We interpret them as algorithms that compute distribution functions.
However, we remember that it is not necessary that all of them computes a correct distribution
function. We interpret the result of Ai(x) as a binary real number between 0 and 1.

For every n we will show that it is possible in poly(n) time to find xn ∈ {0, 1}n such that
if i ∈ {1, 2, . . . , n} and Ai is distributional function, then the Ai-probability of xn is at most

ISAAC 2016

38:12 Complexity of Distributions and Average-Case Hardness

2i−n. The distribution Dn would be concentrated on xn; the resulting ensemble is computable
in polynomial time by Lemma 15. If for all n we find such xn, then we may define L similarly
to the proof of Lemma 7. Namely we will choose L such that L ⊆

⋃
n{xn} and xn ∈ L if and

only if n-th algorithm in the enumeration of all algorithms rejects xn. For all F ∈ Comp[na]
the algorithm that returns 0 on all inputs decides (L,F) in Heur2i−nDTime[n], if F is
computable by Ai in our enumeration. By the construction (L,D) /∈ Heur1− 1

2n−1
P.

Now we describe the procedure of finding strings xn. Initially I = {1, 2, . . . , n}, we will
delete element i from I if we discover that Ai is not a distribution function on {0, 1}n.
On each iteration we define F (x) =

∑
i∈I

1
2iAi(x). By binary search we try to find such

element x ∈ {0, 1}n that F (x)− F (x′) ≤ 2−n, where x′ is lexicographical predecessor of x
and F (x′) = 0 if x = 0n. If binary search succeeds, then xn := x. If binary search fails then
it means that we discover nonmonotonicity of F (x), using this we may find i ∈ I such that
Ai is nonmonotonic and exclude all such i from I and start new iteration. If I = ∅ then
choose xn = 0n, in other cases for all i ∈ I if Ai computes a correct distribution function
then xn has probability at most 2i−n. J

Acknowledgements. The authors are grateful to anonymous reviewers for useful comments.

References
1 László Babai, Paul Erdős, and Stanley Selkow. Random graph isomorphism. SIAM J.

Comput., 9(3):628–635, 1980.
2 Shai Ben-David, Benny Chor, Oded Goldreich, and Michael Luby. On the theory of average

case complexity. J. Comput. Syst. Sci., 44(2):193–219, 1992. doi:10.1016/0022-0000(92)
90019-F.

3 Yuri Gurevich and Saharon Shelah. Expected computation time for hamiltonian path
problem. SIAM J. Comput., 16(3):486–502, 1987.

4 Dan Gutfreund, Ronen Shaltiel, and Amnon Ta-Shma. If NP languages are hard on
the worst-case, then it is easy to find their hard instances. Computational Complexity,
16(4):412–441, 2007. doi:10.1007/s00037-007-0235-8.

5 Dmitry Itsykson, Alexander Knop, and Dmitry Sokolov. Heuristic time hierarchies via
hierarchies for sampling distributions. In Algorithms and Computation – 26th International
Symposium, ISAAC 2015, Nagoya, Japan, December 9-11, 2015, Proceedings, pages 201–
211, 2015.

6 Ming Li and Paul M.B. Vitanyi. Average case complexity under the universal distribution
equals worst case complexity. Information Processing Letters, 42:145–149, 1992.

7 Konstantin Pervyshev. On heuristic time hierarchies. In IEEE Conference on Computa-
tional Complexity, pages 347–358, 2007. doi:10.1109/CCC.2007.20.

8 E.R. van Dama and M. Muzychuk. Some implications on amorphic association schemes.
Journal of Combinatorial Theory, Series A, 117:111–127, 2010.

9 Thomas Watson. Time hierarchies for sampling distributions. SIAM J. Comput.,
43(5):1709–1727, 2014. doi:10.1137/120898553.

http://dx.doi.org/10.1016/0022-0000(92)90019-F
http://dx.doi.org/10.1016/0022-0000(92)90019-F
http://dx.doi.org/10.1007/s00037-007-0235-8
http://dx.doi.org/10.1109/CCC.2007.20
http://dx.doi.org/10.1137/120898553

	Introduction
	Our results

	Preliminaries
	Samplable distributions
	Strong hardness
	Weak hardness

	Computable distributions

