Computing the Pattern Waiting Time: A Reuvisit
of the Intuitive Approach*®

Kai Jin

Department of Computer Science, University of Hong Kong, Hong Kong
cscjjk@gmail.com

—— Abstract

We revisit the waiting time of patterns in repeated independent experiments. We show that
the most intuitive approach for computing the waiting time, which reduces it to computing the
stopping time of a Markov chain, is optimum from the perspective of computational complexity.
For the single pattern case, this approach requires us to solve a system of m linear equations,

where m denotes the length of the pattern. We show that this system can be solved in O(m +n)
time, where n denotes the number of possible outcomes of each single experiment. The main
procedure only costs O(m) time, while a preprocessing procedure costs O(m + n) time. For the
multiple pattern case, our approach is as efficient as the one given by Li [14].

Our method has several advantages over other methods. First, it extends to compute the
variance or even higher moment of the waiting time for the single pattern case. Second, it is
more intuitive and does not entail tedious mathematics and heavy probability theory. Our main
result (Theorem 2) might be of independent interest to the theory of linear equations.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Pattern match-
ing, G.3 [Probability and Statistics] Markov processes, G.1.3 [Numerical Linear Algebra] Linear
systems

Keywords and phrases Pattern Occurrence, Waiting Time, Penney’s Game, Markov Chain

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.39

1 Introduction

In this paper, we revisit the waiting time of patterns in repeated independent experiments.
Consider an experiment with countably many outcomes, denoted by 1,...,n, where the
probabilities of the outcomes might be nonidentical. Let the experiment be performed
repeatedly. Given a collection of ¢ finite sequences of possible outcomes, called patterns, we
compute the expected waiting time till one of the pattern is observed in a run of experiments.
We also compute the probability for each pattern to be the first to appear.

These quantities have been extensively studied in history and different approaches were
invented for computing them. The existing approaches apply complicated mathematical
tools, e.g. the generating functions applied in [12] and [4], the martingale theory applied in
[14], and the renewal theory applied in [4]. In this paper we revisit a much more intuitive
approach for computing them and we show that this approach is computationally optimal.

For the single pattern case, we use the following approach to compute the expected
waiting time. We reduce it to compute the expected stopping time of a Markov chain (see
its construction in Subsection 1.2), which consists of m nonterminal states, where m is

* This work is done at Institute for Interdisciplinary Information Sciences (IIIS), Tsinghua University. Sup-
ported in part by the National Basic Research Program of China Grant 2007CB807900, 2007CB807901,
and the National Natural Science Foundation of China Grant 61033001, 61061130540, 61073174.

© Kai Jin;
37 licensed under Creative Commons License CC-BY

27th International Symposium on Algorithms and Computation (ISAAC 2016).
Editor: Seok-Hee Hong; Article No. 39; pp. 39:1-39:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.39
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

39:2

Computing the Pattern Waiting Time: A Revisit of the Intuitive Approach

the length of the given pattern. The expected stopping time can easily be computed in
polynomial time by standard methods, since it reduces to solve a system of linear equations
with m equations and m variables. We propose a novel method to solve this system and thus
compute the expected stopping time starting from any state of the Markov chain, which only
costs O(m + n) time and thus is computationally optimal. This time complexity cannot be
guaranteed by standard linear system solving; for achieving it we exploit structural properties
of the Markov chain and some insights about pattern matching.

Our method easily extends to compute the variance or even higher moments of the waiting
time for a single pattern, starting from any state of the Markov chain. The running time is
still O(m + n) for the variances, and is O(m - k% + n) for the k-th moments.

For the multiple pattern case, computing the expected waiting time and the probability
for each pattern to be first to appear reduces to solving a system of linear equations with ¢+ 1
variables and t 4+ 1 equations, in which the coefficients can be computed by our algorithm for
the single pattern case. Our algorithm has the same time complexity as the one given in [14].

1.1 Related work and applications

The waiting time of patterns is a classic problem in probability theory which arises in 1960s
([17, 23]). Since then it has drawn a lot of attentions and has been studied extensively. It
has many applications in different fields, including computer science, telecommunication,
molecular biology, statics and applied probability; see [22, 11, 16, 15] and the references
within.

Due to the practical importance of the waiting time, several approaches were invented
for studying it. Guibas and Odlyzko [12] studied it via a combinatorial approach. They
computed the generating function of the number of strings with any fixed length which
contain none of the given patterns. Breen, Waterman and Zhang [4] obtained similar results
via a probabilistic approach, in which the renewal theory of Feller [7] is applied. Li [14]
studied it via martingale theory and general Markov chain theory (See also [19]). Most
approaches entail tedious mathematics and heavy probability theory, even for the single
pattern case. Useful reviews of different approaches can be found in two recent books: [3, 8.

To compute the waiting time, there is an intuitive approach as aforementioned. It appears
in several literatures and is usually called Markov Embedding approach. However, to the
best of our knowledge, researches have not recognized that this approach is optimum from
the perspective of computational complexity. (Usually, the stopping time of a Markov chain
cannot be computed in linear time).

Many variants of the original problem have been studied. For example, Fudos, Pitoura
and Szpankowski [9] studied the probability of exactly r occurrences of a pattern in a
fixed number of Bernoulli experiments (independent identical experiments). In addition,
people also considered the waiting time in Markovian experiments (Markovian dependent
experiments) instead of Bernoulli experiments; see [5, 18, 2] and the references within.

A closely related topic to the waiting time is the frequency of patterns. Régnier and
coauthors made important contributions to this topic. Let Oy, denote the number of occurrence
of a given pattern in k& Markovian experiments when overlapping is counted separately. [21]
computed the mean and variance of Op. This result was extended to the higher order
Markovian experiments, for non-overlap or overlap counting, in [20].

The literature of the problem concerning the probability for each pattern to be the first
to appear starts from [17]. This problem is referred to as Penney’s Game ([1]). Conway gave
a beautiful formula for the 2-players Penney’s Game (See [10]). The best strategy is known
for choosing the pattern so that the winning probability is optimal; see [10, 12, 6].

K. Jin

Figure 1 The Markov chain corresponding to the above example.

1.2 Technique overview

Now, we define the aforementioned Markov chain corresponding to a single pattern, state
our main result and present the overview of our techniques.

The Markov chain corresponding to pattern W

Denote m = |W| and assume W = Wy W,..W,,,. Denote w@ = W1..7], which is the prefix of
W with length i. Recall that there are n possible outcomes and assume that the probability
of outcome i is Pr(i). Note that Pr(1),..., Pr(n) are fixed parameters.

The Markov chain consists of m + 1 states, state 0 to state m, each of which corresponds
to a prefix of W. State m is the terminal state. For each state (0 < i < m — 1), there

are n outgoing edges whose ending points are denoted by 7(i,1),...,7(i,n), respectively.

Specifically, if it’s now at state i and the next outcome is j, the next state should be
7(i,7) = max{h | W is a suffix of (W® +)}, (1)

The j-th outgoing edge of each state has an associated probability Pr(j).
Note: The symbol ‘+’ in Equation 1 indicates concatenation of strings.

» Example 1. Let W = “131”. n = 3. The corresponding Markov chain is drawn in Figure 1.

Clearly, computing the expected waiting time of pattern W reduces to computing the
expected stopping time of the preceding Markov chain.

Our Main Results

Suppose (co, - . ., cm—1) are m constants. We consider the following system of linear equations.
0 1 =m;
;= ’ . . ’ 2
! { ¢+ Pr(j) xray), i=0.m—1 (2)
Note that there are m + 1 variables in this system, which are z, ..., z,,, and there are

also m + 1 equations. Our main result is the following.
» Theorem 2. The solution of system (2) can be computed in O(m + n) time.

Denote e; as the expected “stopping time” starting from state i; and denote f; as the
expected “square of stopping time” starting from state i. Formally,

e; = Zt - Pr(It takes t steps to get the terminal state from state 7); (3)
>0

fi = Zt2 - Pr(It takes t steps to get the terminal state from state 7). (4)
>0

39:3

ISAAC 2016

39:4

Computing the Pattern Waiting Time: A Revisit of the Intuitive Approach

The following equations are easy to prove.

1 =m,;

0,
€; = n . . 5
{ (ijl Pr(j) ~eT(i,j)) +1, 1 =0..m—1. (5)

f 07 1= m; (6)
t (Z?:l Pr(j) 'f‘l'(i,j)> + (2¢; — 1), i=0..m—1.
Proof of (5). Assume i < m; otherwise it is trivial. By First-Step-Analysis,

e; = T‘L_lPr(j)Z (t+ 1) - Pr(It takes ¢ steps to get state m from state 7(i, j))
Jj= t>0

n

= Pr(j) - (eraj +1)

j=1

- (Z;lzlpr(j) : eT(i,j)) + 1L

<
Proof of (6). Assume i < m; otherwise it is trivial. By First-Step-Analysis,
fi= Z::1PT(j)Zt20(t +1)2 - Pr(It takes t steps to get state m from state (4, 7))
=3 Pr(i) (Frep + 20n0p) +1)
= (X Prl) - frp) +20ei =1 +1.
<
According to Theorem 2, we can compute array e = (ep,...,€n) in O(m + n) time.
Moreover, after array e has been computed, we can further compute array f = (fo,..., fm)

in O(m + n) time. The expected stopping time is eg, and its variance is fo — €3.

» Corollary 3. Given a pattern W with length m, the expected waiting time of W and the
variance of the waiting time of W can be computed in O(m + n) time.

The above method for computing the expectation and variance can be easily generalized
to compute the higher moments. We show this generalization in Section 5.

Technique overview — solve system (2)

System (2) has m unknowns g, ..., Z,—1 to compute. Rather than compute them directly,
we define y; = x¢p — z; and compute the unknowns y1,...,y,,. The difficulty on computing
y; lies in computing the term ijlun,jyéwiﬂ Pr(j) - yr(.5), which is denoted by z;.

Let 7: {0,..,m} — {—1,..,m — 1} be the well-known prefix function of W. Formally,

S 0 (7)
"7 max{h|h <iand W is a suffix of WD}, i>0.

Our key observation is that z; can be computed from z,, in O(1) time. More specifically,

2i = zm, + [Ymir1 - Pr(Wes1)] = [yo, - Pr(Wis)] (for 1 <i<m),

where o; = 7(m;, Wit1).

Based on this observation, we compute y and z in O(m) time. Besides, we spend O(n+m)
time to compute the auxiliary array ¢. Our method is computationally optimum, since
inputting the task instance would already cost O(n 4+ m) time.

K. Jin

Technique overview — the multiple pattern case

For the multiple pattern case, we only consider the expectation of waiting time and the
probability for each pattern to be first to appear; we do not consider variance of even higher
moments of the waiting time. Our method is similar to the one of Li [14]. Specifically, we
shall solve the same system of linear equations (which consists of ¢ 4+ 1 variables) proposed
by Li. However, we use a different approach to compute the coefficients of this system.

Outline. We prove Theorem 2 in Section 2. We present an alternative linear algorithm for
computing eg, ..., e,_1 in Section 3. We consider the multiple pattern case in Section 4. We
compute the higher moments of the waiting time of a single pattern in Section 5.

2 Solving system (2) in linear time

» Definition 4. For 0 < i < m, we define a periods set

L 0}, i=0;
@) _{ Plr) Ui}, i>0.

The following lemmas can be found in any textbook on finite automata and is the basis
of the famous KMP (Knuth-Morris-Pratt) algorithm ([13]). We omit their trivial proofs.

» Lemma 5. Suppose 0 <i<m and 0 < h <i. Then,
h € P(i) if and only if W is a suffiz of W,
» Lemma 6. For1 <i<m and 1 < j <n, we have

’i+1, j:WiJrl;

m(id) = { T(7i,7), J# Wiy (®)

In this section, we prove Theorem 2, which states that the system of linear equations
stated in (2) can be solved in linear time.

We do not compute z directly; instead, we compute another array y = (yo,---,Ym),
which are defined as follows. To compute y efficiently, we introduce two more arrays
z=1(20,--+,2m-1) and 0 = (01, ...,0,—1) as follows.

yi = wo—x; (0<i<m) (9)

zi = Z Pr(j) yru5 (0<i<m) (10)

J=1.n,j# Wit
o; = T(Wi,WZ‘+1) (Vl §2<m) (11)

We state two formulas. (Their proofs are deferred for a moment.)

Yi = (Ci—l + Yi—1 — Zi_1)/P7“(Wi) (fOI‘ 1< < m) . (12)
zi = Zmg+ [Ymipr PrWe,1)] = Yo, - Pr(Wiya)] (for 1 <i<m) (13)

We give the algorithm in Algorithm 1.

Note that when we compute z; in Line 5, we have m; < i,7 + 1 < i and o; < i. These
inequalities respectively imply that the quantities zx,, ¥, +1, and y,, have been computed
before we compute z;. Therefore, Algorithm 1 is correct according to (12) and (13).

39:5

ISAAC 2016

39:6 Computing the Pattern Waiting Time: A Revisit of the Intuitive Approach

Algorithm 1 Algorithm for computing x

1: Compute 7 and o; > See the detailed algorithm in the next subsection.
2: Yo, 2o O,

3: fori=1..m—1do

4: Yi < (cim1 +yi—1 — zi—1)/Pr(W;). > Applying (12).
5: zi < Zpy + Yni+1 - Pr(Wae,41) — Yo, - Pr(Wit) > Applying (13).
6: end for

7 Ym = (Cm1 + Ymo1 — Zm1)/ Pr(W); > Applying (12).
8 Xy < Ym- > Because vy, = zog — p = 29 — 0 = xp.
9: Compute x1,...,Zy_1 from y by formula z; = x¢ — y;.

Proof of (12). Assume 1 < i < m. Then,

Yi—1+Cim1 =To — Ti—1 +Ci—1 (due to (9))
— Tt~ Z Pr(j) - @15 (due to (2))
j=1l..n
=(Z Pr(j)) - zo — Z Pr(j) - z¢-1,) (since ZPr(j) =1)
j=l.n j=l..n j=1

(7) - (zo — Tr(i-1,5))

Il
2\
'E

j=l.n
= Z Pr(j) - yr(i-1,5) (due to (9))
j=l.n
= Z Pr(j) - yrii—1,5) + Pr(Wi) - yri—1,w)
J=1.m,i#W,
=zi-1 + Pr(Wi) - yr—1,wi) (due to (10))
= zi_1+ Pr(W;) - y;. (since 7(i — 1, W;) = 1)
This further implies (12). <

Proof of (13). Assume 1 <i < m. We have
Zi = Z Pr(j) - yr(ig) = Z Pr(j) “Yr(mid)
1<j<n,j# Wit 1<j<n,j# Wit

The first equation follows from the definition (10), whereas the second follows from (8).
On the other side, by the definition (10) of z.,, we have

Zry = Z PT(]) : y'r('n'i,j) .
1<j<n,j#Wr, 41

Therefore,

zi = 2my = Pr(We 1) “ Yr(mo W 1)) — PrWit1) » Yr (e, wis)-
Substituting 7(m;, Wiy1) and 7(m;, W, 41)) by 0; and m; + 1 respectively, we obtain (13). <

» Remark. Proving Formula 13 is the key step in designing our linear time algorithm. This
formula shows that we can rapidly compute z; from z.,. The proof of this formula mainly
applies the properties of 7 stated in Lemma 6.

In a more straight-forward way, we may apply Formula 10 instead of Formula 13 to
compute z; at Line 5. This would produce an alternative algorithm that runs in O(m?) time.

K. Jin

2.1 Preprocessing procedure — computing 7 and o in linear time

The prefix function 7 can be computed in O(m) time by using the famous KMP (Knuth-
Morris-Pratt) algorithm, see [13]. Next, we assume that 7 is computed and we present the
algorithm for computing o = (o1, ...,0m—1). Recall that o; = 7(m;, W;t1).

We describe the algorithm in Algorithm 2. It uses a Depth-First-Search (DFS).

Algorithm 2 Compute o by a DFS

1: Tr[l..n] is a temporary array.

2: procedure COMPUTESIGMA (i) > When entering this procedure, Tr[] = 7(i, %)
3 for j: m(j) =i do

4: 0j < TF[W]_;,_ﬂ,

5: TrWipa]l <5+ 1 > Here, Tr[x] becomes 7 (7, *)
6 ComputeSigmal(j);

7 Tr[Wjt1] + o3 > Let Tr[*] return to 7(i,)
8 end for

9: end procedure

10: Tr[1],...,Tr[n] < 0O;

11: Tr[Wh] « 1; > The last two lines make Tr[x] = 7(0, *)
12: ComputeSigma(0)

The correctness of Algorithm 2 is obvious. When entering the procedure ComputeSigma
with parameter 4, the temporary array Tr[1,...,n] stores 7(i,1),...,7(%,n).

This preprocessing procedure runs in O(n + m) time.
» Remark. There is a chance that this preprocessing procedure may be improved to O(m)
time. However, for two reasons the O(n + m) time solution is just fine. First, inputting the
task instance would cost O(n + m) time. Second, usually we can assume that n < m. (If
n > m, we may modify the input parameters and merge the redundant outcomes at first.)

3 An alternative method followed by Li’s approach

In this section, we restate some beautiful results proved by Shuo-yen Robert Li in [14]. Then,
we show that based on these results, we can design an alternative algorithm which computes
€0 -+ -»m—1 in O(m) time. We then compare this algorithm to Algorithm 1.

» Definition 7. Let A = A41A45... A; and W = W W, ... W,, be two strings over {1..n}.
For every pair (1, j) of integers, write

Pr(Wj)’l, if1<i<s,1<j<mandA; =W
0ij = . (14)
0, otherwise.
Then define
AxW = 611022 ...055 + 0210332 ... 53,5—1 + ...+ 051 (15)

» Example 8. Let A = “2113”, W = “131”. Assume that Pr(1) = %, Pr(2) = 1, P
Then W+«W =2-6-2+0-0+2=26,and A«xW=0-0-2-0+2-0-0+2-6+ 0 12.

» Lemma 9 ([14]). Given a starting string A, the expected waiting time for a pattern W is

WxW — AxW,

provided that W is not a substring of A. In particular, the waiting time of pattern W (without
a starting sequence) is W« W.

39:7

ISAAC 2016

39:8

Computing the Pattern Waiting Time: A Revisit of the Intuitive Approach

By Lemma 9, we have the following equation for eq,...,emn_1.
e =W W —WO W, (16)
In the following, we prove the following result.

» Theorem 10. We can compute the values of WO «W = 0, WD s«W, ... W «W = WsW

altogether in O(m) time, and thus compute eg,...,em—1 in O(m) time.

To prove this result, we first state the following equation of W) % .
Recall the periods set P(i) defined in Definition 4. Denote prod, = H?:1 Pr(w;)~1.
Then,

WO xW = 3" prod,, (17)
heP (i)

The proof of Equation 17 is deferred for a moment.
Furthermore, recall that
N {0}, i =0;
) = { P(r)U{i}, i>0.
We obtain the following equation based on (17).

0 i=0;

! 1
W) « W + prod;, i > 0. (18)

W(i)*W:{

According to this recursive equation, we obtain Theorem 10 immediately. The detailed
algorithm is omitted. In the following we prove Equation 17.

Proof of (17). Set A =W, According to the definition of A * W in (15),
WOsW =AxW
= 011022 ...05 + 021032 ... 6551+ ... + i1
= (W is a suffix of WW]. Pr(Wy)~t ... Pr(W;) "1+
(W= s a suffix of W] Pr(Wy)~L... Pr(W;_1) "t +...
+ WM is a suffix of W] . Pr(W;)™!
= Z (W™ is a suffix of W] - prod,

1<h<i

Z prod;

heP(i)

The last step is due to Lemma 5. |

» Remark. In designing the above linear algorithm for computing W@ « W, ... W™ « W,
the key is to apply the recursive formula (18). This formula tells us that we can compute
W@ « W rapidly from W™ @) « 1. We note that the same technique is applied in the
previous algorithm for computing z1, ..., z;—1 shown in Section 2.

Lemma 9 provides a concise and beautiful formula, which reveals many insights of the
problem. However, its proof requires some advanced mathematic tools; for example, the
Doob’s fundamental theorem on stopping times of martingales. In addition, it only computes
the expected waiting time, while our approach easily extends to compute the variance.

K. Jin

4 The multiple pattern case

In this section, we consider the multiple pattern case. Given a set of ¢ patterns W1, ..., W;.

Suppose that they are reduced, which means that no pattern is a substring of another. We

compute the expected waiting time till one of the pattern is observed in a run of experiments.

We also compute the probability for each pattern to be first to appear.
Our method is similar to the one given by Li [14].

» Lemma 11. For 1 <i<t, let N; be the random variable which indicate the waiting time
till W5 is observed, and let p; be the probability that W; precedes the remaining t — 1 patterns
and be the first pattern to appear. Let N = min(Ny,...,N;). Let e;), denote the expected
stopping time of the Markov chain corresponding to W, starting from its state k. For every

i,7 such that 1 <i,j <t, we denote by k(i,j) the largest k such that Wi(k) is a suffiz of Wj.

Then
t
eio=EN+> pieiney 1<i<t) (19)
=1
Proof.
ei)o = E(Nz)

— EN + E(N; — N)

N3 BN - N N =) Pr(N =)

Jj=1

t
=EN+ Y pjeiniy) <

Jj=1

Note that the value of e can be computed by our algorithm for the simple pattern case. Also
note that we have another simple equation as follows.

dopi=1 (20)

In the matrix form, the ¢ equations in (19) and the equation in (20) become:

0 1 . 1 EN 1
1 €1,k(1,1) -+ C1k(1,1) p1 _ €1,0 (21)
1 Ct.k(t,1) -+ Ctk(t,t) Pt €t,0

Let M denote the coefficient matrix of this system. Li [14] proved that M is nonsingular.

So, we can compute EN, py,...,p: by solving this system of linear equations.

5 Higher moments of the waiting time of a single pattern
For any integer k > 0 and for any 0 < i < m, denote

Jk,i = Z tk . Pr(It takes t steps to get the terminal state from state 7). (22)
>0

39:9

ISAAC 2016

39:10 Computing the Pattern Waiting Time: A Revisit of the Intuitive Approach

In Subsection 1.2, we defined array e = g; and array f = go and we show that both of
them can be computed efficiently by applying Theorem 2. In the following we show that
arrays gi,...,gr can be computed altogether in O(m - k?) time (after the preprocessing
procedure for computing o). As a corollary, we obtain:

» Corollary 12. Given a pattern W with length m, the first k moments of the waiting time

of W can be computed in O(n +m - k?) time.

We state an equation of gj at first. For & > 1,

0,
I, { (Z?ler(j)'gkr m) + Xhmo () (-

» Example 13. For i < m, we have

g1, = (Z:Zlf)?“ 91,7) +90,5

92,i = (Z:lef " 92,7() +291,i — 90,3

93,0 = (2:21137“ " 93,7() +392,i — 3916 + go,i;
g4,i = (Z;l:lp?" "G4 T(l,])) +4g3,; — 692, + 491,

)klh

Ghis

— 90,i;

1 =m;

t=0.m—1

(23)

According to (23), we can apply Theorem 2 to compute g after we have computed

4o, - - -, gk—1- Therefore, we obtain the aforementioned results and Corollary 12.

We apply the following identity to prove (23).

zk: (i) (};) (-1)"=0 (when k >1>0)

S EOe-2 06)= ()%

K. Jin

Proof of (23). Assume i < m; otherwise it is trivial. By First-Step-Analysis,

ki = n IPr(j)Zt (t +1)* - Pr(It takes t steps to get state m from state 7(i, 5))
i= >

-1/k
(h) - Pr(It takes t steps ... from state 7(%, j))

k
h

LY

S0

S o)
S

)

PN

:(n Pr(j * Gk,r(,])) gh‘r(z j)

Z::lPr “ Gk,

£ ()
S () ()
o (o)

j:lPT(j) - gk,r(m’)) + tho ((h>)

Zj 1Pr Gk, (ing)

PT * 9k, (1,5)

o)+
) -
wn) -
)-

™

Note that the second last step applies Identity 24. |

Acknowledgements. The author would like to thank Zhiyi Huang for taking part in fruitful
discussions, thank Jian Li and Andrew Yao and for much help, and thank several anonymous
reviewers from MFCS16 and ISAAC16 for much great suggestions.

—— References

1

10

11

Anonymous. Penney’s game. Technical report, Wikipedia, 2016. URL: https://en.

wikipedia.org/wiki/Penney’27s_game.

J.A.D. Aston and D.E.K. Martin. Waiting time distributions of competing patterns in
higher-order markovian sequences. Journal of Applied Probability, 42(4):977-988, 2005.

N. Balakrishnan and M. V. Koutras. Runs and Scans with Applications. Wiley, 2002.

S. Breen, M. S. Waterman, and N. Zhang. Renewal theory for several patterns. Journal of
Applied Probability, 22(1):228-234, 1985.

O. Chrysaphinou and S. Papastavridis. The occurrence of sequence patterns in repeated

dependent experiments. Theory of Probability & Its Applications, 35(1):145-152, 1991.

doi:10.1137/1135015.

J. A. Csirik. Optimal strategy for the first player in the penney ante game. Combinatorics,
Probability and Computing, 1:311-321, 1992. doi:10.1017/S0963548300000365.

W. Feller. An Introduction to Probability Theory and its Applications, volume 1. Wiley, 3
edition, 1968.

J.C. Fuand W.Y.W. Lou. Distribution Theory of Runs and Patterns and Its Applications.

World Scientific Publishing, 2003.

I. Fudos, E. Pitoura, and W. Szpankowski. On pattern occurrences in a random text.

Information Processing Letters, 57(6):307-312, 1996.

M. Gardner. On the paradoxical situations that arise from nontransitive relations. Scientific
American, 231(4), 1974.

R.L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation for
Computer Science. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd
edition, 1994.

39:11

ISAAC 2016

https://en.wikipedia.org/wiki/Penney%27s_game
https://en.wikipedia.org/wiki/Penney%27s_game
http://dx.doi.org/10.1137/1135015
http://dx.doi.org/10.1017/S0963548300000365

39:12

Computing the Pattern Waiting Time: A Revisit of the Intuitive Approach

12

13

14

15

16

17

18

19

20

21

22

23

L.J. Guibas and A.M. Odlyzko. String overlaps, pattern matching, and nontransitive
games. Journal of Combinatorial Theory, Series A, 30(2):183-208, 1981. doi:10.1016/
0097-3165(81)90005-4.

D.E. Knuth, Jr. J.H. Morris, and V.R. Pratt. Fast pattern matching in strings. SIAM
Journal on Computing, 6(2):323-350, 1977. doi:10.1137/0206024.

S.R. Li. A martingale approach to the study of occurrence of sequence patterns in repeated
experiments. The Annals of Probability, 8(6):1171-1176, 1980.

M. E. Lladser, M. D. Betterton, and R. Knight. Multiple pattern matching: a markov
chain approach. Journal of Mathematical Biology, 56(1):51-92, 2007. doi:10.1007/
s00285-007-0109-3.

M. Lothaire. Applied Combinatorics on Words. Cambridge University Press, 2005.

W. Penney. Problem 95: Penney-ante. Journal of Recreational Mathematics, page 241,
1969.

V. Pozdnyakov. On occurrence of patterns in markov chains: Method of gambling teams.
Statistics & Probability Letters, 78(16):2762-2767, 2008. doi:10.1016/j.spl.2008.03.
023.

V. Pozdnyakov and M. Kulldorff. Waiting times for patterns and a method of gambling
teams. The American Mathematical Monthly, 113(2):134-143, 2006.

M. Régnier. A unified approach to word occurrence probabilities. Discrete Applied Math-
ematics, 104:259-280, 2000.

M. Régnier and W. Szpankowski. On pattern frequency occurrences in a markovian se-
quence. Algorithmica, 22(4):631-649, 1998. doi:10.1007/PL00009244.

G. Reinert, S. Schbath, and M.S. Waterman. Probabilistic and statistical properties of
words: An overview. Journal of Computational Biology, 7(2):1-46, 2000.

A.D. Solov’ev. A combinatorial identity and its application to the problem concerning the
first occurrence of a rare event. Theory of Probability & Its Applications, 11(2):276-282,
1966. doi:10.1137/1111022.

http://dx.doi.org/10.1016/0097-3165(81)90005-4
http://dx.doi.org/10.1016/0097-3165(81)90005-4
http://dx.doi.org/10.1137/0206024
http://dx.doi.org/10.1007/s00285-007-0109-3
http://dx.doi.org/10.1007/s00285-007-0109-3
http://dx.doi.org/10.1016/j.spl.2008.03.023
http://dx.doi.org/10.1016/j.spl.2008.03.023
http://dx.doi.org/10.1007/PL00009244
http://dx.doi.org/10.1137/1111022

	Introduction
	Related work and applications
	Technique overview

	Solving system (2) in linear time
	Preprocessing procedure – computing pi and sigma in linear time

	An alternative method followed by Li's approach
	The multiple pattern case
	Higher moments of the waiting time of a single pattern

