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Abstract
In this paper, we study the effect of surrogate objective functions in optimization problems.
We introduce surrogate ratio as a measure of such effect, where the surrogate ratio is the ratio
between the optimal values of the original and surrogate objective functions.

We prove that the surrogate ratio is at most µ|1/p−1/q| when the objective functions are p- and
q-norms, and the feasible region is a µ-dimensional space (i.e., a subspace of Rµ), a µ-intersection
of matroids, or a µ-extendible system. We also show that this is the best possible bound. In
addition, for µ-systems, we demonstrate that the ratio becomes µ1/p when p < q and unbounded
if p > q. Here, a µ-system is an independence system such that for any subset of ground set the
ratio of the cardinality of the largest to the smallest maximal independent subset of it is at most
µ. We further extend our results to the surrogate ratios for approximate solutions.
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1 Introduction

When we model real-world problems as mathematical optimization problems, we often
face some difficulties choosing appropriate objective functions for the problems. This, for
instance, follows from ambiguity and computational difficulty of real objective functions. We
demonstrate such examples below. In order to overcome such difficulties, it is natural to
make use of surrogate objective functions.

Ambiguity: The first example is for ambiguous objective functions. For instance, consider
car navigation system to find a fastest route from an origin to a destination in a road
network. It usually solves the shortest path problem with estimated transit time for each
road. This is simply because we do not know the actual transit time which depends on
traffic congestion. Thus, estimated objective functions are used as surrogate ones.

Computational difficulty: Second, we sometimes approximate the objective function to
reduce computational cost. For example, consider the following sparse approximation
problem: we are given a vector b ∈ Rm and a matrix A ∈ Rm×n (n � m), and we are
asked to find a vector x to minimize ‖x‖0 (= | supp(x)|) subject to Ax = b. Unfortunately,
the problem is computationally intractable (NP-hard) [19], and it is often replaced to
minimizing ‖x‖1 (=

∑n
i |xi|) or ‖x‖2 (=

∑n
i x

2
i ) (see, e.g., [20]). The resulting problem

can be regarded as a linear or convex programming problem, and thus, we can efficiently
solve the surrogate optimization problem.
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41:2 Surrogate Optimization for p-Norms

Multi-objective optimization: Consider a scenario in which we have multiple objectives. In
this case, we sometimes use their weighted sum as a surrogate objective function. For
instance, in a mean-variance portfolio optimization: given an expected return vector
p̄ ∈ Rn and a variance-covariance matrix V ∈ Rn×n, we are asked to find a weight vector
x ∈ Rn (

∑n
i=1 xi = 1, xi ≥ 0 ∀i = 1, . . . , n) to maximize the expected return p̄>x and

minimize the risk x>V x. A standard way to obtain a solution for the problem is to
maximize p̄>x− λx>V x, where λ is called a risk-aversion coefficient [4].

Fairness-efficiency trade-off: The next example follows from the trade-off between efficiency
and fairness. Consider the following facility location problem: given a set of demand
points D ⊆ V in a metric space (V, d), we are asked to select k facilities F ⊆ V to open
while minimizing p

√∑
i∈D(minj∈F d(i, j))p for p ≥ 1. We can see that the case of p = 1

(i.e., k-median problem) is efficient and the other extreme case p = +∞ (i.e., k-center
problem) is fair. Furthermore, an optimal solution for each p can be regarded as a solution
which balances the efficiency and the fairness (see discussion in [7]). Golovin et al. [7]
have suggested that the optimal solution for sufficiently large p is good for this trade-off.
Namely, sufficient large p provides a good surrogate objective function.

Potential games: The last example is in potential games. A game is said to be a potential
game if the incentive of all players to change their strategy can be expressed by using a
single global function called potential function [18]. Potential games always admit a pure
Nash equilibrium and, in particular, any minimizer of the potential function is a pure
Nash equilibrium. Thus, the potential minimizers are recognized as important solution
concept in potential games. On the other hand, the efficiency of a solution is measured
by the social cost, which is, for example, the sum or maximum of players’ cost. For
instance, consider the following load balancing game [21]. There are n users N and m
identical machines M . Each user i ∈ N has a job with weight wi and chooses a machine
to place the job. A combination of choices yields an assignment A : N →M . The load
of machine j ∈ M under assignment A is defined as lj(A) =

∑
i∈N :A(i)=j wi. The cost

of user i ∈ N corresponds to the load on machine A(i), i.e., lA(i)(A). Then, a potential
for the problem is ‖l(A)‖2

2 (=
∑
j∈M lj(A)2) and a social cost is (usually) the makespan

‖l(A)‖∞ (= maxj∈M lj(A)).

In this paper, we quantify the effect of surrogate objective functions by introducing
surrogate ratio. The surrogate ratio compares the optimal solutions with respect to the
original and surrogate objective functions. Our approach is analogous to the worst-case
performance analysis in algorithm theory, such as the approximation ratio, the competitive
ratio, and the robustness factor. As the first step in analyzing the surrogate ratio, this paper
focuses on optimization problems of maximizing p-norms. Maximizing p-norms are well
studied in many areas as shown above. For n-dimensional real vector x ∈ Rn and positive
real p ∈ R+, p-norm of x is defined by ‖x‖p = p

√∑n
i=1 |xi|p. We remark that ‖ · ‖p for p with

p < 1 is not a norm, but we treat ‖ · ‖p for any positive real p. We also use the notation that
‖x‖∞ = limp→∞ ‖x‖p = maxi |xi| for a real vector x ∈ Rn.

Our model

We discuss the following four types of surrogate ratios between p- and q-norms for maximiza-
tion problems with a compact non-empty feasible region S ⊆ Rµ:

ρ(S, p, q) = max{‖x‖p : x ∈ S}/min{‖x‖p : x ∈ arg maxx∈S ‖x‖q},
η(S, p, q) = max{‖x‖p : x ∈ S}/max{‖x‖p : x ∈ arg maxx∈S ‖x‖q},
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ρα(S, p, q) = max{‖x‖p : x ∈ S}/min{‖x‖p : x ∈ α-arg maxx∈S ‖x‖q},
ηα(S, p, q) = max{‖x‖p : x ∈ S}/max{‖x‖p : x ∈ α-arg maxx∈S ‖x‖q},

where α ≥ 1 and

α-arg maxx∈S f(x) = {x ∈ S : f(x) ≥ f(x′)/α (∀x′ ∈ S)}.

Here, we assume for simplicity that the ratios are 1 if S = {0}. Then any optimal (α-
approximate) solution for q-norm is a ρ(S, p, q)-approximate (ρα(S, p, q)-approximate) solution
for p-norm and there exists an optimal (α-approximate) solution for q-norm that is an
η(S, p, q)-approximate (ηα(S, p, q)-approximate) solution for p-norm. The ratios above are
respectively called the worst surrogate ratio, the best surrogate ratio, the worst α-approximation
surrogate ratio, and the best α-approximation surrogate ratio. By definitions, we have

1 ≤ ηα(S, p, q) ≤ η(S, p, q) ≤ ρ(S, p, q) ≤ ρα(S, p, q)

for any S, p, q > 0, and α ≥ 1. Moreover, ρ(S, p, q) = ρ1(S, p, q) and η(S, p, q) = η1(S, p, q)
hold. We remark that the surrogate ratios between general two functions can be defined in
the same way.

In this paper, we deal with maximum weight independent set problems, which are fun-
damental in combinatorial optimization and contain a number of important problems such
as maximum weight stable set problem, maximum weight matching problem, and knapsack
problem (see, e.g., [15]). An independence system is a set system (E,F), i.e., E is a finite
set and F is a family of subsets of E, with the following two properties: (I1) ∅ ∈ F and (I2)
Y ⊆ X ∈ F implies Y ∈ F . Given an independence system (E,F), a subset F of E is called
independent set if F belongs to F , and an (inclusion-wise) maximal independent set is called
a base. For an independence system (E,F) and non-negative weight w(e) for e ∈ E, the
maximization problem with p-norm is defined as max{wp(X) : X ∈ F} where we define

wp(X) = p

√∑
e∈X

w(e)p.

An independence system (E,F) is called matroid if X,Y ∈ F , |X| < |Y | implies the existence
of v ∈ Y \X such that X ∪ {v} ∈ F , and µ-intersection if it is an intersection of µ matroids
defined over E. As extensions of µ-intersection, we consider µ-extendible systems and
µ-systems. An independence system (E,F) is called µ-extendible1 if

∀X,Y ∈ F , ∀e ∈ Y \X, ∃Z ⊆ X \ Y such that |Z| ≤ µ, X ∪ {e} \ Z ∈ F ,

and µ-system if for all S ⊆ E the ratio of the cardinality of the largest to the smallest
maximal independent subset of S is at most µ. For simplicity, we assume that µ ≥ 1 in this
paper (although we can take µ = 0 for (E, 2E)). It is known that classes of these systems
have the following relationships [17]:

µ-intersection ⊆ µ-extendible ⊆ µ-system.

For an independence system (E,F) with a weight w : E → R+, we denote the best
surrogate ratio as ρ(E,F , w; p, q). We also define η(E,F , w; p, q), ρα(E,F , w; p, q), and
ηα(E,F , w; p, q) similarly.

1 Kakimura and Makino [11] called this system µ-exchangeable.
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41:4 Surrogate Optimization for p-Norms

Table 1 Summary of the surrogate ratios for maximization problems.

µ-dimensional
space

µ-intersection µ-extendible µ-system

ρ, η µ|1/p−1/q|

[Thms. 2, 3]

µ|1/p−1/q|

[Thm. 6]

µ|1/p−1/q|

[Thm. 6]

{
µ1/p (p < q),
∞

(
p>q
µ>1

)
,

1 (otherwise)

[Thm. 13]

ηα

(α > 1)
max

{
1, µ
|1/p−1/q|

α

}
[Thm. 3]

max
{

1, µ
|1/p−1/q|

α

}
[Thm. 3]

max
{

1, µ
|1/p−1/q|

α

}
[Thm. 3]

{
µ1/p (p < q),
∞

(
p>q

µ1/q>α

)
,

1 (otherwise)

[Thm. 13]

ρα
(α > 1)

α · µ|1/p−1/q|

[Thm. 2]

{
∞ (p 6= q)
α (p = q)

[Thm. 9]

{
∞ (p 6= q)
α (p = q)

[Thm. 9]

{
∞ (p 6= q)
α (p = q)

[Thm. 9]

Our results

In this paper, we analyze the surrogate ratios. For a µ-dimensional compact feasible region
S ⊆ Rµ, we show that the best and the worst surrogate ratios are both µ|1/p−1/q|. Analogously,
we prove that the best and worst surrogate ratios for a µ-intersection of matroids and a
µ-extendible system are µ|1/p−1/q|. On the other hand, for a µ-system with µ > 1, we cannot
bound the surrogate ratios by µ|1/p−1/q|. The ratios become µ1/p if p < q, and unbounded if
p > q. Note that, optimality of a matroid (when µ = 1) is independent of p, since the greedy
algorithm, which always produces an optimal solution, does not need the values of weights
but the ordering of them. Thus, the surrogate ratios are 1 in this case. Moreover, for any
independence system, the greedy solution2 coincides with an optimal solution for a p-norm
with a sufficiently large p. Our result for µ-systems implies that the greedy solution is a
µ-approximate solution by choosing p = 1 and q as a sufficiently large number, that is also
shown by Jenkyns [10] and Korte and Hausmann [14]. The best α-approximation surrogate
ratio is basically α times smaller than the previous one, i.e. the case α = 1. On the contrary,
the worst α-approximation surrogate ratio goes to infinity except for the µ-dimensional
compact case.

Our results are summarized as Table 1.

Related work

The surrogate ratio is not just an analogy of the ratios shown below, but also closely related
to them.

For a multi-objective or robust optimization problem, a natural measure of goodness of
a solution is the ratio between the value of the solution and the optimal one for the worst
objective function. The ratio is called robustness factor [9] (also studied under the name of
simultaneous approximation ratio [6] or global approximation ratio [16]). To be more precise,
assume that we want to maximize f1, . . . , fn under the constraint x ∈ S. Then a solution
x ∈ S is β-robust if fi(x) ≥ fi(y)/β holds for all y ∈ S and i = 1, . . . , n. Thus, we can obtain
a β-robust solution by maximizing g, if the surrogate ratio is at most β for each fi and g.

2 To be precise, “greedy solution” may not be unique when there exist ties in the weights. However, we
can perturb the weights slightly to break the ties with arbitrarily small changes in the values of p-norms.
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Azar et al. [3] introduced a concept of an all-norm ρ-approximation algorithm, which
supplies one solution that guarantees ρ-approximation to p-norms simultaneously. They gave
a 2-approximation polynomial time algorithm for the p-norm load balancing problem (or
rather, the problem of restricted assignment model).

Hassin and Rubinstein [9] studied a robustness version of maximum weight independent
set problem when the objective functions are the sum of the k largest weights of selected
elements for all positive integer k. They showed that, when the family of independent set is
that of matchings in a graph, the optimal solution for p-norm (p ≥ 1) is min{2(1/p)−1, 2−1/p}-
robust. This implies the existence of

√
2-robust solution for any graph by choosing p = 2.

They also proved that
√

2-robust is the best possible. Fujita et al. [5] extended the result
to the matroid intersection case. Kakimura and Makino [11] further extended the result to
the µ-extendible system and showed that the optimal solution with respect to p-norm is
min{µ(1/p)−1, µ−1/p}-robust. We remark that this result does not imply our results.

For a potential game, consider a surrogate ratio of a social cost and a potential function.
Then the surrogate ratio can be used to quantify the inefficiency of selfish behavior in the
game. In fact, the ratio is studied under the name of the inefficiency ratio of stable equilibria
[2] or the potential-optimal price of anarchy [13]. Note that, in algorithmic game theory, one
of the most famous measures to quantify the inefficiency of a game is the price of stability,
which is the ratio of the social cost at the best equilibrium to the minimum social cost possible
[1]. An upper bound on the price of stability is often calculated by using the surrogate ratio.
This bounding technique is called potential function method [1]. Moreover, we can see that
the price of stability is a surrogate ratio where we do not replace the objective function but
the feasible region is restricted from all the possible strategy profiles to the set of equilibria.

2 Surrogate ratios for µ-dimensional space

In this section, we study the surrogate ratios for µ-dimensional space. The following
proposition plays an important role to obtain upper bounds on the surrogate ratios.

I Proposition 1 (Norm Inequalities (see, e.g., [8])). For any n-dimensional vector x ∈ Rn
and 0 < p ≤ q ≤ ∞, it holds that ‖x‖q ≤ ‖x‖p ≤ n

1
p−

1
q ‖x‖q.

We first evaluate the worst (α-approximation) surrogate ratio.

I Theorem 2. For any 0 < p, q ≤ ∞ and α ≥ 1, we have

max
S⊆Rµ:non-empty

compact

max{‖x‖p : x ∈ S}
min{‖x‖p : x ∈ α-arg maxx∈S ‖x‖q}

= α · µ|1/q−1/p|. (1)

Proof. We first claim that the left hand side of (1) is upper bounded by α · µ|1/q−1/p|. Let
M = max{‖x‖q : x ∈ S}. Then we have

max{‖x‖p : x ∈ S}
min{‖x‖p : x ∈ α-arg maxx∈S ‖x‖q}

≤ max{‖x‖p : ‖x‖q ≤M}
min{‖x‖p : ‖x‖q ≥M/α}

.

By Proposition 1, if p ≤ q, we have max{‖x‖p : ‖x‖q ≤M} ≤ µ1/p−1/q ·M and min{‖x‖p :
‖x‖q ≥ M/α} ≥ M/α. Otherwise (i.e., p > q), we have max{‖x‖p : ‖x‖q ≤ M} ≤ M

and min{‖x‖p : ‖x‖q ≥ M/α} ≥ µ1/p−1/q ·M/α. Therefore, we obtain max{‖x‖p : ‖x‖q ≤
M}/min{‖x‖p : ‖x‖q ≥M/α} = α · µ|1/q−1/p|.

Next, we show that there exists a µ-dimensional compact set S that attains the maximum
in (1). Let Aγ = {aγ ,1} where aγ = (γ · µ1/q, 0, . . . , 0)> ∈ Rµ and 1 = (1, 1, . . . , 1)> ∈ Rµ.

ISAAC 2016



41:6 Surrogate Optimization for p-Norms

Then, we can observe that the worst α-approximation surrogate ratio of Aα or A1/α is
α · µ|1/q−1/p|. J

This theorem yields that any α-approximate solution for q-norm is α ·µ|1/q−1/p|-approximate
solution for p-norm.

Next, we evaluate the best (α-approximation) surrogate ratio.

I Theorem 3. For any 0 < p, q ≤ ∞ and α ≥ 1, we have

sup
S⊆Rµ:non-empty

compact

max{‖x‖p : x ∈ S}
max{‖x‖p : x ∈ α-arg maxx∈S ‖x‖q}

= max{1, µ|1/q−1/p|/α}. (2)

Proof. We first claim that max{‖x‖p : x ∈ S}/max{‖x‖p : x ∈ α-arg maxx∈S ‖x‖q} ≤
max{1, µ|1/q−1/p|/α} holds for any non-empty, compact set S ⊆ Rµ. Let xp ∈ arg max

x∈S
‖x‖p.

If α ≥ µ|1/q−1/p|, then xp ∈ α-arg maxx∈S ‖x‖q by Theorem 2 (with α = 1). Thus,
max{‖x‖p : x ∈ S}/max{‖x‖p : x ∈ α-arg maxx∈S ‖x‖q} = 1. Otherwise, i.e., µ|1/q−1/p| >

α ≥ 1, let r satisfies α = µ|1/q−1/r| and min{p, q} ≤ r ≤ max{p, q}, and let xr ∈
arg maxx∈S ‖x‖r. Then xr ∈ α-arg maxx∈S ‖x‖q by Theorem 2 and hence

max{‖x‖p : x ∈ S}
max{‖x‖p : x ∈ α-arg maxx∈S ‖x‖q}

≤ max{‖x‖p : x ∈ S}
‖xr‖p

≤ max{‖x‖p : x ∈ S}
min{‖x‖p : x ∈ arg maxx∈S ‖x‖r}

≤ µ|1/r−1/p| = µ|1/q−1/p|

α

where the last inequality holds by Theorem 2.
Conversely, the best α-approximation surrogate ratio of Aα+ε or A1/(α+ε) in the proof

of Theorem 2 converges to max{1, µ|1/q−1/p|/α} as ε goes to +0. Thus, we obtain the
theorem. J

This theorem implies that there exists x ∈ (α-arg maxx∈S ‖x‖p) ∩ (β-arg maxx∈S ‖x‖q) if
αβ ≥ µ|1/p−1/q|.

3 Independence systems

In this section, we study some properties of independence systems.
For an independence system (E,F) and A ⊆ E, define F|A = {X : A ⊇ X ∈ F}.

Then (A,F|A) is called the restriction of (E,F) to A. Also, define for (E,F) and A ⊆ E,
F \ A = {X \ A : X ∈ F} and F/A = {X \ A : A ⊆ X ∈ F}. Then (E \ A,F \ A) and
(E \A,F/A) are called the deletion and the contraction of (E,F) by A, respectively. If an
independence system (E,F) is µ-extendible, then (A,F|A), (A,F \ A), and (E \ A,F/A)
are also µ-extendible [11].

Since a µ-extendible system is a µ-system, we have the following proposition.

I Proposition 4. If (E,F) is a µ-extendible system, then we have |X| ≤ µ · |Y | for any bases
X,Y of (E,F).

Next, we see that the supremum of the worst surrogate ratio coincides with that of the
best surrogate ratio for any independence system.
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I Lemma 5. For any independence system (E,F) and p, q > 0, we have

sup
w:E→R+

ρ(E,F , w; p, q) = sup
w′:E→R+

η(E,F , w′; p, q). (3)

4 Surrogate ratios for µ-intersection and µ-extendible systems

In this section, we provide the maximum value of the surrogate ratio for µ-intersection and
µ-extendible system. By Lemma 5, we only need to consider the worst one. We remind that
we use the notation ρ(E,F , w; p, q) = max{wp(X):X∈F}

min{wp(X):X∈arg maxX∈F wq(X)} for the worst surrogate
ratio.

We show that the tight bound of the surrogate ratio is µ|1/q−1/p|.

I Theorem 6. For any 0 < p ≤ ∞ and 0 < q <∞, we have

max
(E,F):µ-intersection

w:E→R+

ρ(E,F , w; p, q) = max
(E,F):µ-extendible

w:E→R+

ρ(E,F , w; p, q) = µ|1/q−1/p|.

We first provide the lower bound.

I Lemma 7. For any 0 < p ≤ ∞, 0 < q <∞, and µ (≥ 1), there exists a µ-intersection of
matroids (E,F) and a weight w : E → R+ such that

ρ(E,F , w; p, q) = µ|1/q−1/p|.

Proof. Let F = {X : X = {e0} or X ⊆ L} for L = {e1, . . . , eµ}. Here, (E,F) is a µ-
intersection of matroids. In fact, F =

⋂µ
i=1 Fi holds for partition matroids Fi = {X ⊆

{e0, e1, . . . , eµ} : |X ∩ {e0, ei}| ≤ 1}. Let w(e0) = µ1/q, w(e1) = w(e2) = · · · = w(el) = 1.
Then wp({e0}) = wq({e0}) = µ1/q and wp(L) = µ1/p, wq(L) = µ1/q. Thus, the surrogate
ratio is

max{wp(X) : X ∈ F}
min{wp(X) : X ∈ arg maxX∈F wq(X)} = max{µ1/p, µ1/q}

min{µ1/p, µ1/q}
= µ|1/q−1/p|,

which proves the lemma. J

We next present the upper bound.

I Lemma 8. For any 0 < p ≤ ∞ and 0 < q < ∞, any µ-extendible independence system
(E,F) (µ ≥ 1) and any weight w : E → R+, we have

ρ(E,F , w; p, q) ≤ µ|1/q−1/p|.

Proof. We assume that p 6= q since the claim is obvious for the case p = q. We show
ρ(E,F , w; p, q) ≤ µ|1/q−1/p| for any µ-extendible system (E,F) and any weight w : E → R+
by contradiction. We only prove the case p > q because the case p < q can be observed in a
similar way. Assume that there exists a µ-extendible system (E,F) and a weight w : E → R+
such that ρ(E,F , w; p, q) > µ|1/q−1/p|. We choose such (E,F) so that |E| is as small as
possible and w so that ρ(E,F , w; p, q) is maximal for (E,F). Such a w exists since we can
pick

w ∈ arg max
{
up(Xp) : u

p(Xq)=1, uq(Xq)≥uq(X) (∀X∈F), ue≥0 (∀e∈E),
Xp,Xq∈F

}
,

ISAAC 2016



41:8 Surrogate Optimization for p-Norms

where the objective function is continuous and the feasible region is non-empty and compact.
Here, the feasible region is bounded because ue ≤ uq(Xq) ≤ |Xq||1/q−1/p| · up(Xq) ≤
|E||1/q−1/p| for each e ∈ E and closed because intersection or union of finitely many closed
sets is closed. Let

Xp ∈ arg max
X∈F

wp(X) and Xq ∈ arg min{wp(X) : X ∈ arg max
X∈F

wq(X)}.

Without loss of generality, we may assume Xp and Xq are bases of (E,F). We consider the
following seven cases.

Case 1. |Xp| = 1. Let Xp = {e∗}. Then |Xq| ≤ µ by Proposition 4. Therefore, we have
that the surrogate ratio is at most

wp(Xp)
wp(Xq)

≤ w(e∗)
min{up(Xq) : uq(Xq) ≥ w(e∗)} = w(e∗)

µ1/p−1/q · w(e∗)
= µ|1/q−1/p|

where the second equality holds by the norm inequality (Proposition 1) and |Xq| ≤ µ.

Case 2. w(e) = 0 for some e ∈ E. In this case, ρ(E,F , w; p, q) = ρ(E \ {e},F \ {e}, w; p, q)
holds since Xp \ {e} ∈ arg maxX∈F\{e} wp(X) and Xq \ {e} ∈ arg min{wp(X) : X ∈
arg maxX∈F\{e} wq(X)}. This contradicts the minimality of |E|.

Case 3. Xp ∪ Xq ( E. Let e ∈ E \ (Xp ∪ Xq). Then ρ(E,F , w; p, q) ≤ ρ(E \ {e},F \
{e}, w; p, q) since Xp ∈ arg max

X∈F\{e}
wp(X) and Xq ∈ arg min{wp(X) : X ∈ arg max

X∈F\{e}
wq(X)}.

This contradicts the minimality of |E|.

Case 4. Xp ∩Xq 6= ∅. Let e ∈ Xp ∩Xq. Then ρ(E,F , w; p, q) ≤ ρ(E \ {e},F/{e}, w; p, q)
since Xp \{e} ∈ arg max

X∈F/{e}
wp(X) and Xq \{e} ∈ arg min{wp(X) : X ∈ arg max

X∈F/{e}
wq(X)}. This

contradicts the minimality of |E|.

Case 5. There exists X ′p ∈ arg maxX∈F wp(X) such that X ′p 6= Xp. We may assume that
w(e) > 0 for any e ∈ E by Case 2, Xp∪Xq = E by Case 3, and Xp∩Xq = ∅ by Case 4. Then
X ′p ∪Xq ( Xp ∪Xq = E holds because X ′p ∪Xq = E implies X ′p ) Xp and w(X ′p) > w(Xp),
a contradiction. Thus we have X ′p ∈ arg maxX∈F|(X′p∪Xq) w

p(X) and Xq ∈ arg min{wp(X) :
X ∈ arg maxX∈F|(X′p∪Xq) w

q(X)}. This contradicts the minimality |E|.

Case 6. There exists X ′q ∈ arg maxX∈F wq(X) such that X ′q 6∈ {Xp, Xq}. We may assume
that w(e) > 0 for any e ∈ E by Case 2, and Xp ∪Xq = E and Xp ∩Xq = ∅ by Cases 3 and
4. Then wp(Xp)/wp(Xq) is at most

p

√√√√max
{∑

e∈Xp\X′q
w(e)p∑

e∈Xq∩X′q
w(e)p ,

∑
e∈Xp∩X′q

w(e)p∑
e∈Xq\X′q

w(e)p

}
= max

{
wp(Xp \X ′q)
wp(Xq ∩X ′q)

,
wp(Xp ∩X ′q)
wp(Xq \X ′q)

}

by the mediate inequality. Let F1 = (F|(Xp∪X ′q))/(Xp∩X ′q) and F2 = (F|(Xq∪X ′q))/(Xq∩
X ′q). Then Xp \X ′q ∈ arg maxX∈F1 w

p(X), Xq ∩X ′q ∈ arg maxX∈F1 w
q(X), Xp ∩X ′q ∈ F2,



Y. Kawase and K. Makino 41:9

and Xq \X ′q ∈ arg maxX∈F2 w
q(X). Thus, we have

wp(Xp \X ′q)
wp(Xq ∩X ′q)

≤ maxX∈F1 w
p(X)

min{wp(X) : X ∈ arg maxX∈F1 w
q(X)} ≤ µ

|1/q−1/p|,

wp(Xp ∩X ′q)
wp(Xq \X ′q)

≤ maxX∈F2 w
p(X)

min{wp(X) : X ∈ arg maxX∈F2 w
q(X)} ≤ µ

|1/q−1/p|

by the minimality of |E| and hence we have wp(Xp)/wp(Xq) ≤ µ|1/q−1/p|, a contradiction.

Case 7. The other case, i.e., |Xp| ≥ 2, wp(Xp) > wp(X) for any X ∈ F \ {Xp}, wq(Xq) >
wq(X) for any X ∈ F \ {Xp, Xq}, Xp ∩Xq = ∅, Xp ∪Xq = E, and w(e) > 0 for any e ∈ E.
Let s, t ∈ Xp such that s 6= t and w(s) ≥ w(t). For a sufficiently small positive number ε,
define

ŵe =


w(e) (e ∈ E \ {s, t}),
(w(e)q + ε)1/q (e = s),
(w(e)q − ε)1/q (e = t).

Recall that q < ∞. Then Xp ∈ arg maxX∈F ŵp(Xp) and {Xq} = arg maxX∈F ŵq(X).
Here, ŵp(Xp) > wp(Xp) and ŵp(Xq) = wp(Xq). Thus ρ(E,F , w; p, q) = wp(Xp)/wp(Xq) <
ŵp(Xp)/ŵp(Xq) = ρ(E,F , ŵ; p, q), which contradicts the maximality of ρ(E,F , w; p, q). J

By Lemmas 7 and 8, we obtain Theorem 6.

5 Worst α-approximation surrogate ratio

In this section, we prove that the worst α-approximation surrogate ratio (α > 1)

ρα(E,F , w; p, q) = max{wp(X) : X ∈ F}
min{wp(X) : X ∈ α-arg maxX∈F wq(X)}

is unbounded even if (E,F) is a free matroid (i.e., F = 2E), when p 6= q.

I Theorem 9. For any α > 1 and 0 < p ≤ ∞, 0 < q < ∞ (p 6= q), there ex-
ists a sequence of matroids (Ek,Fk) and non-negative weights wk : Ek → R+ such that
limk→∞ ρα(Ek,Fk, wk; p, q) =∞.

Proof. Let E = {e1, . . . , ek, ek+1} and let wk(e1) = · · · = wk(ek) = 1, wk(ek+1) =
q
√

(αq − 1) · k. Define F = 2E . Then maxX∈F wpk(X) = wpk(E) = p
√

((αq − 1) · k)p/q + k

and maxX∈F wqk(X) = wqk(E) = α ·k1/q. Here, A = {e1, . . . , ek} is an α-approximate solution
for wqk since wqk(A) = k1/q. Thus, the surrogate ratio of α-approximation is at least

wpk(E)
wpk(A) =

p
√

((αq − 1) · k)p/q + k

k1/p = p

√
(αq − 1)p/q · kp/q−1 + 1→∞ (k →∞)

when p > q > 0.
The proof for the case q > p > 0 is similar. J

We remark that ρα(E,F , w; p, p) ≤ α holds by the definition. In addition, it holds that
ρα(E,F , w; p, p) = α when E = {x, y}, F = 2E , and w(x) = α− 1, w(y) = 1.
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6 Best α-approximation surrogate ratio

In this section, we provide the best α-approximation surrogate ratio (α > 1)

ηα(E,F , w; p, q) = max{wp(X) : X ∈ F}
max{wp(X) : X ∈ α-arg maxX∈F wq(X)}

for µ-intersection of matroids and µ-extendible systems.

I Theorem 10. For any 0 < p ≤ ∞, 0 < q <∞, and α ≥ 1, we have

sup
(E,F):µ-intersection

w:E→R+

ηα(E,F , w; p, q) = sup
(E,F):µ-extendible

w:E→R+

ηα(E,F , w; p, q) = max
{

1, µ
|1/q−1/p|

α

}
.

We first provide the lower bound.

I Lemma 11. For any 0 < p ≤ ∞, 0 < q < ∞, and α ≥ 1, integer µ (≥ 1), and ε > 0,
there exists a µ-intersection of matroids (E,F) and a weight w : E → R+ such that

max{wp(X) : X ∈ F}
max{wp(X) : X ∈ α-arg maxX∈F wq(X)} = max{1, µ|1/q−1/p|/(α+ ε)}.

Proof. Let F = {X : X = {e0} or X ⊆ B} for B = {e1, . . . , eµ}. Here, (E,F) can be viewed
as µ-intersection of matroids. In fact, F =

⋂µ
i=1 Fi when Fi = {X ⊆ E : |X ∩ {e0, ei}| ≤ 1}.

Then the lemma holds, for the case p < q, by setting w(e0) = (α + ε) · µ1/q and w(e1) =
w(e2) = · · · = w(eµ) = 1. Also, for the case p > q, we can observe the lemma by analyzing
the weights u(e0) = µ1/q/(α+ ε) and u(e1) = u(e2) = · · · = u(eµ) = 1. J

We next present the upper bound.

I Lemma 12. For any p, q > 0, α ≥ 1, a µ-extendible independence system (E,F) and a
weight w : E → R+, we have

max{wp(X) : X ∈ F}
max{wp(X) : X ∈ α-arg maxX∈F wq(X)} ≤ max{1, µ|1/q−1/p|/α}.

Proof. Let Xp ∈ arg maxX∈F wp(X) and Xq ∈ arg maxX∈F wq(X). If α ≥ µ|1/q−1/p|, then
Xp ∈ α-arg maxX∈F wq(X) by Lemma 8. Thus, max{wp(X) : X ∈ F}/max{wp(X) : X ∈
α-arg maxX∈F wq(X)} = 1.

Otherwise, i.e., µ|1/q−1/p| > α ≥ 1, let r satisfies α = µ|1/q−1/r| and min{p, q} ≤ r ≤
max{p, q}, and let Xr ∈ arg maxX∈F wr(X). Then Xr ∈ α-arg maxX∈F wq(X) by Lemma 8
and hence

max{wp(X) : X ∈ F}
max{wp(X) : X ∈ α-arg maxX∈F wq(X)} ≤

max{wp(X) : X ∈ F}
wp(Xr)

≤ max{wp(X) : X ∈ F}
min{wp(X) : X ∈ arg maxX∈F wr(X)}

≤ µ|1/r−1/p| = µ|1/q−1/p|

α

where the last inequality holds by Lemma 8. J

By Lemmas 11 and 12, we get Theorem 10.
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7 Surrogate ratios for µ-system

In this section, we show the surrogate ratios for µ-systems. By Theorem 9, the worst
α-approximation surrogate ratio (α > 1) goes to infinity when p 6= q. Hence, we here only
analyze the best (approximation) surrogate ratio.

I Theorem 13. For any p, q > 0 and α ≥ 1, we have

sup
(E,F):µ-system

w:E→R+

ηα(E,F , w; p, q) =


µ1/p (p < q),
∞ (p > q, µ1/q > α),
1 (otherwise).

We first prove the lower bound.

I Lemma 14. For any p, q > 0, µ (≥ 1), and α ≥ 1, there exists a sequence of µ-systems
(Ek,Fk) and weights wk : Ek → R+ (k = 1, 2, . . . ) such that

lim
k→∞

ηα(Ek,Fk, wk; p, q) =
{
µ1/p (p < q),
∞ (p > q, µ1/q > α).

Proof. Let Ek = {e1, e2, . . . , ek·µ, f}, Fk = {F ⊆ Ek : f 6∈ F or |F | ≤ k}. Then (Ek,Fk)
is a µ-system. Let X = {e1, . . . , ek·µ} and Yσ = {f, eσ(1), . . . , eσ(k−1)} (1 ≤ σ(1) < · · · <
σ(k− 1) ≤ k ·µ). We can see the lemma, for the case p > q > 0 and µ1/q > α ≥ 1, by setting
wk(ei) = 1 (i = 1, . . . , k · µ), wk(f) = q

√
k · (µ/β − 1) + 1 where β is an arbitrary number

such that µ > β > αq. Also we can observe the lemma, for the case q > p > 0, by choosing
wk(ei) = 1 (i = 1, . . . , k · µ) and wk(f) = α q

√
k · µ. J

We next provide the upper bound for the case p < q.

I Lemma 15. For any q > p > 0, µ-system (E,F) (µ ≥ 1), and weight w : E → R+, we
have ρ(E,F , w; p, q) ≤ µ1/p.

Proof. Let Xq = {a1, . . . , ak} ∈ arg min{wp(X) : X ∈ arg maxX∈F wq(X)} and Xp =
{b1, . . . , bl} ∈ arg maxX∈F wp(X). Without loss of generality, we may assume Xp and Xq

are bases. Thus, we have l ≤ µ ·k because (E,F) is a µ-system. We additionally assume that
w(a1) ≥ w(a2) ≥ · · · ≥ w(ak) and w(b1) ≥ w(b2) ≥ · · · ≥ w(bl). For simplicity, define w(bi) =
0 for i > l. Since (E,F) is a µ-system, there exists a feasible set {a1, . . . , ai, bji+1 , . . . , bjk}
for each i ∈ {0, 1, . . . , k − 1} such that jt ≤ (t − 1) · µ + 1 (t = i + 1, . . . , k). As Xq is
an optimal solution for wq, we have wq({a1, . . . , ak}) ≥ wq({a1, . . . , ai, bji+1 , . . . , bjk}) ≥
wq({a1, . . . , ai, bi·µ+1, . . . , b(k−1)·µ+1}) and thus

w(ai+1)q + · · ·+ w(ak)q ≥ w(bi·µ+1)q + · · ·+ w(b(k−1)·µ+1) (i = 0, . . . , k − 1).

Hence, we have w(ak)p+w(ak−1)p+· · ·+w(a1)p ≥ w(b(k−1)µ+1)p+w(b(k−2)µ+1)p+· · ·+w(b1)p
by Karamata’s inequality [12]. (Karamata’s inequality is also known as Hardy–Littlewood–
Pólya inequality [8].) Therefore, we obtain

wp(Xq) = p

√√√√ k∑
i=1

w(ai)p ≥ p

√√√√ k∑
i=1

w(b(i−1)µ+1)p ≥ p

√√√√ 1
µ

µ·k∑
i=1

w(bi)p = 1
µ1/p · w

p(Xp),

which proves the lemma. J
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Finally, we show the upper bound for the case p > q and µ1/q ≤ α.

I Lemma 16. For any p > q > 0, µ1/q ≤ α, µ-system (E,F) (µ ≥ 1) and any weight
w : E → R+, we have ηα(E,F , w; p, q) ≤ 1.

Proof. By Lemma 15, there exists X∗ ∈ arg max{wp(X) : X ∈ F} such that wq(X∗) ≥
max{wq(X) : X ∈ F}/µ1/q. Thus, we have ηα(E,F , w; p, q) = 1. J

Therefore, we get Theorem 13 by Lemmas 14, 15, and 16.
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