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—— Abstract

The modularity is a quality function in community detection, which was introduced by Newman
and Girvan (2004). Community detection in graphs is now often conducted through modularity
maximization: given an undirected graph G = (V, E), we are asked to find a partition C of V' that
maximizes the modularity. Although numerous algorithms have been developed to date, most of
them have no theoretical approximation guarantee. Recently, to overcome this issue, the design
of modularity maximization algorithms with provable approximation guarantees has attracted
significant attention in the computer science community.

In this study, we further investigate the approximability of modularity maximization. More

specifically, we propose a polynomial-time (cos (%W) - 1+T‘/g)-additive approximation algo-

rithm for the modularity maximization problem. Note here that cos %W — % < 0.42084
holds. This improves the current best additive approximation error of 0.4672, which was recently
provided by Dinh, Li, and Thai (2015). Interestingly, our analysis also demonstrates that the
proposed algorithm obtains a nearly-optimal solution for any instance with a high modularity
value. Moreover, we propose a polynomial-time 0.16598-additive approximation algorithm for
the maximum modularity cut problem. It should be noted that this is the first non-trivial ap-
proximability result for the problem. Finally, we demonstrate that our approximation algorithm
can be extended to some related problems.
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1 Introduction

Identifying community structure is a fundamental primitive in graph mining [11]. Roughly
speaking, a community (also referred to as a cluster or module) in a graph is a subset
of vertices densely connected with each other, but sparsely connected with the vertices
outside the subset. Community detection in graphs is a powerful way to discover components
that have some special roles or possess important functions. For example, consider the
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graph representing the World Wide Web, where vertices correspond to web pages and edges
represent hyperlinks between pages. Communities in this graph are likely to be the sets of
web pages dealing with the same or similar topics, or sometimes link spam [14].

To date, numerous community detection algorithms have been developed, most of which
are designed to maximize a quality function. Quality functions in community detection
return some value that represents the community-degree for a given partition of the set of
vertices. The best known and widely used quality function is the modularity, which was
introduced by Newman and Girvan [24]. Let G = (V, E) be an undirected graph consisting
of n = |V| vertices and m = |E| edges. The modularity, a quality function for a partition
C={Cy,...,Cr} of V (ie, Ule C; =V and C;NC; =0 for i # j), can be written as

Qe =Y (”;f - (52)2) ,

cecC

where m¢ represents the number of edges whose endpoints are both in C, and D¢ represents
the sum of degrees of the vertices in C. The modularity represents the sum, over all
communities, of the fraction of the number of edges within communities minus the expected
fraction of such edges assuming that they are placed at random with the same degree
distribution.

Although the modularity is known to have some drawbacks (e.g., the resolution limit [12]),
community detection is now often conducted through modularity maximization: given an
undirected graph G = (V, E), we are asked to find a partition C of V' that maximizes
the modularity. Note that the modularity maximization problem has no restriction on
the number of communities in the output partition; thus, the algorithms are allowed to
specify the best number of communities by themselves. Brandes et al. [5] proved that
modularity maximization is NP-hard. A wide variety of applications (and this hardness
result) have promoted the development of modularity maximization heuristics. In fact,
there are numerous algorithms based on various techniques such as greedy procedure [4, 24],
simulated annealing [17], spectral optimization [23], and mathematical programming [1, 20, 6].
Although some of them are known to perform well in practice, they have no theoretical
approximation guarantee at all.

Recently, to overcome this issue, the design of modularity maximization algorithms with
provable approximation guarantees has attracted significant attention in the computer science
community. DasGupta and Desai [8] designed a polynomial-time e-additive approximation
algorithm? for dense graphs (i.e., graphs with m = Q(n?)) using an algorithmic version of the
regularity lemma [13], where € > 0 is an arbitrary constant. Moreover, Dinh, Li, and Thai [9]
very recently developed a polynomial-time 0.4672-additive approximation algorithm. This is
the first polynomial-time additive approximation algorithm with a non-trivial approximation
guarantee (that is applicable to any instance).? Note that, to our knowledge, this is the
current best additive approximation error. Their algorithm is based on the semidefinite
programming (SDP) relaxation and the hyperplane separation technique.

1A feasible solution is a-additive approzimate if its objective value is at least the optimal value minus c.
An algorithm is called an «-additive approximation algorithm if it returns an a-additive approximate
solution for any instance. For an a-additive approximation algorithm, « is referred to as an additive
approximation error of the algorithm.

2 A l-additive approximation algorithm is trivial because Q({V'}) = 0 and Q(C) < 1 for any partition C.
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1.1 OQur Contribution

In this study, we further investigate the approximability of modularity maximization. Our
contribution can be summarized as follows:

% ) -additive approximation algorithm

1. We propose a polynomial-time (cos (3*4—‘/570 —
for the modularity maximization problem. Note here that cos (%ﬂ') — 14%7\/5 < 0.42084
holds; thus, this improves the current best additive approximation error of 0.4672,
which was recently provided by Dinh, Li, and Thai [9]. Interestingly, our analysis also
demonstrates that the proposed algorithm obtains a nearly-optimal solution for any
instance with a high modularity value.

2. We propose a polynomial-time 0.16598-additive approximation algorithm for the maximum
modularity cut problem. It should be noted that this is the first non-trivial approximability
result for the problem.

3. We demonstrate that our additive approximation algorithm for the modularity maximiza-
tion problem can be extended to some related problems.

First result

Let us describe our first result in details. Our additive approximation algorithm is also based
on the SDP relaxation and the hyperplane separation technique. However, our analysis is
essentially different from the one by Dinh, Li, and Thai [9], and is much more effective for
many practical instances.

The algorithm by Dinh, Li, and Thai [9] reduces the SDP relaxation for the modularity
maximization problem to the one for MAXAGREE problem arising in correlation clustering
(e.g., see [2] or [7]) by adding an appropriate constant to the objective function. Then, the
algorithm adopts the SDP-based 0.7664-approximation algorithm® for MAXAGREE prob-
lem [7]. Specifically, their algorithm generates 2 and 3 random hyperplanes to obtain feasible
solutions, and then returns the better one. Their analysis of the additive approximation
guarantee depends heavily on the above reduction; the additive approximation error of 0.4672
is just derived from 2(1 — k), where k represents the approximation ratio of the SDP-based
algorithm for MAXAGREE problem (i.e., K = 0.7664). The analysis of the SDP-based
algorithm for MAXAGREE problem [7] aims at multiplicative approximation rather than
additive one. As a result, the analysis by Dinh, Li, and Thai [9] has caused a gap in terms of
additive approximation. In fact, as shown in our analysis, their algorithm already has the
approximation error of cos (3*4—‘/577) — % (< 0.42084).

In contrast, our algorithm and analysis do not depend on such a reduction. In fact,
our algorithm just solves the SDP relaxation for the modularity maximization problem
without any transformation. Moreover, our algorithm employs a hyperplane separation
procedure that extends the one used in their algorithm. Specifically, our algorithm chooses
an appropriate number of hyperplanes using the information of the optimal solution to the
SDP relaxation so that the lower bound on the expected modularity value is maximized. It
should be emphasized that our analysis directly evaluates an additive approximation error
of the proposed algorithm, unlike the analysis by Dinh, Li, and Thai [9]. As a result, our
analysis improves their additive approximation error, and demonstrates that the proposed

3 A feasible solution is a-approzimate if its objective value is at least « times the optimal value. An
algorithm is called an a-approxzimation algorithm if it returns an a-approximate solution for any instance.
For an a-approximation algorithm, « is referred to as an approzimation ratio of the algorithm.
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algorithm has a much better lower bound on the expected modularity value for many practical
instances. In particular, for any instance with optimal value close to 1 (a trivial upper
bound), our algorithm obtains a nearly-optimal solution. Note here that, as reported in
previous work [4, 6, 25], there are many large real-world networks that have a partition with
a very high modularity value. At the end of our analysis, we summarize a lower bound on
the expected modularity value with respect to the optimal value of a given instance.

Second result

Here we describe our second result in details. The modularity maximization problem has
no restriction on the number of clusters in the output partition. On the other hand, there
also exist a number of problem variants with such a restriction. The maximum modularity
cut problem is a typical one, where given an undirected graph G = (V, E), we are asked to
find a partition C of V' consisting of at most two components (i.e., a bipartition C of V') that
maximizes the modularity. This problem appears in many contexts in community detection.
For example, a few hierarchical divisive heuristics for the modularity maximization problem
repeatedly solve this problem either exactly [6] or heuristically [1], to obtain a partition C of
V. Brandes et al. [5] proved that the maximum modularity cut problem is NP-hard (even on
dense graphs). More recently, DasGupta and Desai [8] showed that the problem is NP-hard
even on d-regular graphs with any fixed d > 9. However, to our knowledge, there exists no
approximability result for the problem.

Our additive approximation algorithm adopts the SDP relaxation and the hyperplane
separation technique, which is identical to the subroutine of the hierarchical divisive heuristic
proposed by Agarwal and Kempe [1]. Specifically, our algorithm first solves the SDP relaxation
for the maximum modularity cut problem (rather than the modularity maximization problem),
and then generates a random hyperplane to obtain a feasible solution for the problem.
Although the computational experiments by Agarwal and Kempe [1] demonstrate that
their hierarchical divisive heuristic maximizes the modularity quite well in practice, the
approximation guarantee of the subroutine in terms of the maximum modularity cut was not
analyzed. Our analysis shows that the proposed algorithm is a 0.16598-additive approximation
algorithm for the maximum modularity cut problem. At the end of our analysis, we again
present a lower bound on the expected modularity value with respect to the optimal value of
a given instance. This reveals that for any instance with optimal value close to 1/2 (a trivial
upper bound in the case of bipartition), our algorithm obtains a nearly-optimal solution.

Third result

Finally, we describe our third result. We first extend our additive approximation algorithm
for the modularity maximization problem to the well-known graph partitioning problem
called the clique partitioning problem [16]. Then, we apply the result for the following three
special cases of the clique partitioning problem: the weighted modularity maximization
problem [22], the directed modularity maximization problem [19], and Barber’s bipartite
modularity maximization problem [3], all of which are NP-hard (see [8] and [21]).

1.2 Related Work
Multiplicative approximation algorithms

There also exist multiplicative approximation algorithms for modularity maximization.
DasGupta and Desai [8] designed an (1/log d)-approximation algorithm for the modularity
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maximization problem on d-regular graphs with d < ﬁ. They extended the approximation
algorithm to the weighted modularity maximization problem. On the other hand, Dinh and
Thai [10] developed algorithms for scale-free graphs with a prescribed degree sequence. In
their graphs, the number of vertices with degree d is fixed to some value proportional to d~7,

where — is called the power-law exponent.

Inapproximability results

There are some inapproximability results for the modularity maximization problem. Das-
Gupta and Desai [8] showed that it is NP-hard to obtain a (1 — €)-approximate solution for
some constant € > 0 (even for complements of 3-regular graphs). More recently, Dinh, Li,
and Thai [9] proved a much stronger statement, that is, there exists no polynomial-time
(1 — e)-approximation algorithm for any € > 0, unless P = NP. It should be noted that these
results are on multiplicative approximation rather than additive one. In fact, there exist no
inapproximability results in terms of additive approximation for modularity maximization.

1.3 Preliminaries

Here we introduce definitions and notation used in this paper. Let G = (V, E) be an
undirected graph consisting of n = |V| vertices and m = |E| edges. Let P =V x V. By
simple calculation, as mentioned in Brandes et al. [5], the modularity can be rewritten as

Q€)= 5 X (4= G2 )alctn.ci).

(1,7)€P

where A;; is the (4, ) component of the adjacency matrix A of G, d; is the degree of i € V,
C(i) is the (unique) community to which i € V belongs, and ¢ is the Kronecker symbol equal
to 1 if two arguments are identical and 0 otherwise. This form is useful to write mathematical
programming formulations for modularity maximization. For convenience, we define

Ay did

2m  4m?
We can divide the set P into the following two disjoint subsets: P> = {(#,j) € P | ¢;; > 0}
and Py = {(i,j) € P | ¢;; < 0}. Clearly, we have Z(i,j)EPZO ij +_Z(z‘,j)eP<U Gij =
Z(i,j)ep ¢i; = 0, and thus Z(i,j)ePzg qij = E(i,j)eP<o —gi;. We denote this value by ¢, i.e.,
q= Z(i,j)eP>o gij- Note that for any instance, we have ¢ < 1.

0ij for each (4, j) € P.

1.4 Paper Organization

In Section 2, we revisit the SDP relaxation for the modularity maximization problem, and
then describe an outline of our algorithm. In Section 3, the approximation guarantee of the
proposed algorithm is carefully analyzed. In Section 4, we present our additive approximation
algorithm for the maximum modularity cut problem. We mention the extension of our
additive approximation algorithm to some related problems in Section 5. Due to space
limitations, some proofs are omitted, which can be found in the full version [18].

2  Algorithm

The modularity maximization problem can be formulated as follows:

max. Z qij (yt . yj) s.t. y; € {61, .. .,en} (V’L S V),
(3,5)EP
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Algorithm 1 Hyperplane(k)

Input: Graph G = (V| E)

Output: Partition C of V
1: Obtain an optimal solution X* = (z7;) to SDP
2: Generate k random hyperplanes and obtain a partition Cx, = {C1,...,Cox} of V
3: return Cy,

where ey, (1 <k < n) represents the vector that has 1 in the kth coordinate and 0 elsewhere.
We denote by OPT the optimal value of this original problem. Note that for any instance,
we have OPT € [0,1). We introduce the following semidefinite relaxation problem:

SDP : max. Z qi;Tij st. x; =1 (VZ € V), Tij >0 (VZ,] S V), X = (.13”) S 8_7_,
(i,9)eP

where S7 represents the cone of n X n symmetric positive semidefinite matrices. It is easy
to see that every feasible solution X = (z;;) of SDP satisfies x;; < 1 for any (4,7) € P.
Although the algorithm by Dinh, Li, and Thai [9] reduces SDP to the one for MAXAGREE
problem by adding an appropriate constant to the objective function, our algorithm just
solves SDP without any transformation. Let X* = (xfj) be an optimal solution to SDP,
which can be computed (with an arbitrarily small error) in time polynomial in n and m.
Using the optimal solution X*, we define the following two values:

1 1
* * * *
zy = - g gijr;; and 2l =— g QijTij
(1,3)€P>0 (1,3)€P<o

both of which are useful in the analysis of the approximation guarantee of our algorithm.
Clearly, we have 0 < 2z} < 1and -1 < 2* <0.

We apply the hyperplane separation technique to obtain a feasible solution of the mod-
ularity maximization problem. Specifically, we consider the following general procedure:
generate k random hyperplanes to separate the vectors corresponding to the optimal solution
X*, and then obtain a partition Cx, = {C1,...,Ca} of V. For reference, the procedure is
described in Algorithm 1. Note here that at this time, we have not yet mentioned how to
determine the number k of hyperplanes we generate. As revealed in our analysis, we can
choose an appropriate number of hyperplanes using the value of 2} so that the lower bound
on the expected modularity value of the output of Hyperplane(k) is maximized.

3 Analysis

In this section, we first analyze an additive approximation error of Hyperplane(k) for each
positive integer k € Z~g. Then, we provide an appropriate number k* € Z~ of hyperplanes,
which completes the design of our algorithm. Finally, we present a lower bound on the
expected modularity value of the output of Hyperplane(k*) with respect to the value of OPT.

When k random hyperplanes are generated independently, the probability that two vertices
1,7 € V are in the same cluster is given by (1 — arccos(xjj)/w) , as mentioned in previous
works (e.g., see [7] or [15]). For simplicity, we define the function fi(z) = (1 — arccos(z) /m)"
for « € [0, 1]. Here we present the lower convex envelope of each of fi(z) and — fi(x).

» Lemma 1. For any positive integer k, the lower convex envelope of fi(x) is given by
fr(z) dtself, and the lower convex envelope of — fr.(xz) is given by the linear function hy(x) =
—1/2% + (1/2% — 1)z for x € [0,1].
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The following lemma lower bounds the expected modularity value of the output of
Hyperplane(k).

» Lemma 2. Let Cy be the output of Hyperplane(k). For any positive integer k, it holds that
E[Q(Cr)] = q (fu(2}) + hi(—2%)) .

Proof. Recall that Ci (i) for each i € V denotes the (unique) cluster in Cj, that includes the
vertex i. Note here that §(Ci(¢),Cx(4)) for each (i,j) € P is a random variable, which takes
1 with probability fi(z};) and 0 with probability 1 — fx(z};). The expectation E[Q(Cx)] can
be transformed as follows

EQEC]I=E| > i0(Cu(i),Cu(j))

(i,5)EP
= > gl = D aph@)+ YD —ay - (—fulah)).
(i,5)EP (1,5)EP>0 (1,3)€P<o

Using Lemma 1, we have

E[Q(Ck)] > Z @i fe(z3;) + Z —@ijhi(z7;)

(4,5)€P>0 (i,5)€P<o

- (q) ple)+ X (7)) may)

(iyePso N 1 (id)ePeo N 1

(2,9 eP>0 (2,7)EP<o
=4q fk + hk )

where the last inequality follows from Jensen’s inequality. <

The following lemma provides an additive approximation error of Hyperplane(k) by
evaluating the above lower bound on E[Q(Cy)] using the value of OPT.

» Lemma 3. For any positive integer k, it holds that

E[Q(C1)] > OPT — ¢ <zi R+ ;k) |

Proof. Clearly, (27}, 2" ) satisfies q(2} + 2*) > OPT and z* < 0. Thus, we obtain
q (fe(z}) + ha(=27)) = (OPT — q(2} +27)) + q (fr(2}) + hu(=27))
= (OPT —q(zf + 2%)) +q (fu(23) — 1/2% + (1/2% — 1)(—2%))
= OPT —q (2} — fulz}) + 1/2% + (1/2%)2%)
> OPT — ¢ (2% — fu(z}) +1/2%).

Combining this with Lemma 2, we have E[Q(Cy)] > ¢ (fr(z}) + hu(—2%)) > OPT —
q (2% — fr(z3) +1/2%), as desired. <

For simplicity, we define the function gx(z) = z — fy(z) + 1/2* for z € [0,1]. Then, the
inequality of the above lemma can be rewritten as

E[Q(Cr)] > OPT — ¢ - gr(2}).

ISAAC 2016
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Figure 1 A brief illustration of the additive approximation error of Hyperplane(k) with respect
to the value of 2z} . For simplicity, we replace ¢ by its upper bound 1. Specifically, the function
gr(z) = x — fr(x) + 1/2" for « € [0,1] is plotted for k = 1,2,3,4, and 5, as examples. The point

(COS (37\/371') , COS (3*4—‘/5%) — %) is an intersection of the functions g»(z) and gs(x).

4

Figure 1 plots the above additive approximation error of Hyperplane(k) with respect to the
value of z7.

As can be seen, the appropriate number of hyperplanes (i.e., the number of hyperplanes
that minimizes the additive approximation error) depends on the value of 27 . Intuitively, we
wish to choose k** that satisfies k** € argmingcy_ gr(27). However, it is not clear whether
Hyperplane(k*™*) runs in polynomial time. In fact, the number k** becomes infinity if the
value of 2z} approaches 1. Therefore, alternatively, our algorithm chooses

*

k" € arg min gk (21)
ke{l,...,max{3,[log, n]}}

First, we analyze the worst-case performance of Hyperplane(k*). The following lemma
says that (i) the worst-case performance of Hyperplane(k*) is exactly the same as that of
Hyperplane(k**); and moreover (ii) to achieve the same worst-case performance as that of
Hyperplane(k**), it suffices to choose k from the set {2, 3}.

» Lemma 4. Let S be one of the sets {2,3}, {1,...,max{3, [logyn]}}, and Z~¢. It holds
that

max min g (z) = cos

z€[0,1] k€S

<34\/57T> 1 +8\/5.

» Remark. Here we consider the algorithm that executes Hyperplane(2) and Hyperplane(3),
and then returns the better solution. Note that this algorithm is essentially the same as
that proposed by Dinh, Li, and Thai [9]. The above lemma implies that the algorithm by
Dinh, Li, and Thai [9] already has the worst-case performance exactly the same as that of
Hyperplane(k*) (and Hyperplane(k**)). However, as shown below, Hyperplane(k*) has a much
better lower bound on the expected modularity value for many instances.

Finally, we present a lower bound on the expected modularity value of the output of
Hyperplane(k*) with respect to the value of OPT (rather than 2% ). The following lemma is
useful to show that the lower bound on the expected modularity value with respect to the
value of OPT is not affected by the change from &** to k*.
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» Lemma 5. For any k' € argmingc;_ gr(OPT), it holds that k' < max{3, [logy n]}.
We are now ready to prove the main result of this paper.

» Theorem 6. Let Cp+ be the output of Hyperplane(k™). It holds that

3—\/57T>_1+\/5).

B[Q(Ck-)] > OPT — g (cos ( : .

In particular, if OPT > cos (%T() holds, then E[Q(Ck+)] > OPT — gmingez. , gx(OPT).
Note here that ¢ < 1 and cos (%w) - 1+T§/5 < 0.42084.

Proof. From Lemmas 3 and 4, it follows directly that

3 —4\/57T> 1 +8\/5) _

BIQ(C)] > OPT — g ( (

Here we prove the remaining part of the theorem. Assume that OPT > cos (3_4\/57r)
holds. By simple calculation, for any k € Zso, we have g/(z) < 0 for z € (0,1).
This means that for any k € Zsq, the function gx(z) is strictly concave, and more-

over, so is the function mingery, . max{3,Mog, n]}} k(). From Lemma 4 and the fact that
MiNge (1, max{3,[log, n]}} Ik (cos (3*4\/571')) = cos (%ﬂ') - % holds, we see that the

function minge(y,... max{3,log, n]}} 9% () attains its maximum at x = cos (3’4‘/577) Thus, the

function minge (1. max{3,log, n]}} Ik (x) is strictly monotonically decreasing over the interval

,,,,

[cos (%TF) , 1}. Therefore, we have

E[Q(Ck+)] > OPT —¢q

min 2
ke{l,...,max{3,[log, n]}} gk( +)

> OPT — ¢ . (OPT) = OPT — ¢ min g;(OPT),
k€Z~o

min g
ke{l,...,max{3,[log, n]}}

where the second inequality follows from 2% > OPT/q > OPT and the last equality follows
from Lemma 5. <

Figure 2 depicts the above lower bound on E[Q(Cg~)]. As can be seen, if OPT is close to
1, then Hyperplane(k*) obtains a nearly-optimal solution. For example, for any instance with
OPT > 0.99990, it holds that E[Q(Ck~)] > 0.96109, i.e., the additive approximation error is
less than 0.03891. For such instances, the reduction-based analysis by Dinh, Li, and Thai [9]
provides no guarantee better than the worst-case performance.

» Remark. The additive approximation error of Hyperplane(k*) depends on the value of ¢ < 1;
the less the value of ¢, the better the additive approximation error. Thus, it is interesting to
find some graphs that have a small value of ¢q. For instance, for any regular graph G that
satisfies m = %nz, it holds that ¢ = 1 — «, where « is an arbitrary constant in (0,1). Here
we prove the statement. Since G is regular, we have d; = 2m/n = an for any ¢ € V. Hence,

for any {i,j} € E, it holds that ¢;; = 124”1 — jf;jg = aig — # > 0. Therefore, we have
— =2 —om (L - L) =1
q= Z qij = Z Qij = <m oz w2 )T —a.

(1,5)€P>0 {ijleE

43:9

ISAAC 2016



43:10

Additive Approximation Algorithms for Modularity Maximization

005(37/1‘6 3’4*@77)
)
1 T T H
—— OPT '
— — trivial H
L% 08| —k' =2 : J
> k=3 !
= k=4 |
o 06| — kK =5 i b
S . '
E o i
-
z  04r d b
2 i
- 1
[} 1
2 o02f | 1
= i
0 L L :
0 0.2 0 8 1

OPT

Figure 2 A brief illustration of the lower bound on the expected modularity value of the output
of Hyperplane(k*) with respect to the value of OPT. For simplicity, we replace ¢ by its upper bound
1. Note that k" € argmingcz_, gx(OPT).

Algorithm 2 Modularity Cut

Input: Graph G = (V, E)

Output: Bipartition C of V'
1: Obtain an optimal solution X* = (x7;) to SDPu
2: Generate a random hyperplane and obtain a bipartition Cou = {C1,Ca2} of V.
3: return Coyy

4 Maximum Modularity Cut

The maximum modularity cut problem can be formulated as follows:

1
max. o Z gij(yiy; +1) st oy, € {-1,1} (VieV).
(i,j)epP

We denote by OPT,,; the optimal value of this original problem. Note that for any instance,
it holds that OPT¢, € [0,1/2], as shown in DasGupta and Desai [8]. We introduce the
following semidefinite relaxation problem:

1
SDP_, : max. 5 Z Qij(xij —+ 1) st. x; =1 (VZ S V), X = (SC”) S S?_,
(i,5)eP

where recall that ST represents the cone of n x n symmetric positive semidefinite matrices.
Let X* = (z;) be an optimal solution to SDP¢y, which can be computed (with an arbitrarily
small error) in time polynomial in n and m. Note here that z}; may be negative for (i,j) € P
with ¢ # j, unlike SDP in the previous section.

We generate a random hyperplane to separate the vectors corresponding to the optimal
solution X*, and then obtain a bipartition C = {C, C2} of V. For reference, the procedure is
described in Algorithm 2. As mentioned above, this algorithm is identical to the subroutine
of the hierarchical divisive heuristic for the modularity maximization problem, which was
proposed by Agarwal and Kempe [1].

The main result of this section is the following theorem.
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Figure 3 An illustration of the lower bound on the expected modularity value of the output of
Algorithm 2.

» Theorem 7. Let o = min_j . <1 % (=~ 0.878567). Let Couy be the output of
Algorithm 2. It holds that

E[Q(Cout)] > OPT eyt — 0.16598.

In particular, if OPTey > YT=4 (=~ 0.385589) holds, then E[Q(Cour)] > & — 2recosCOPTen),

2 ™

Figure 3 depicts the above lower bound on E[Q(Cout)]. As can be seen, if OPT,; is close to
1/2, then Algorithm 2 obtains a nearly-optimal solution.

5 Extension

We first extend our additive approximation algorithm for the modularity maximization
problem to the clique partitioning problem. In the clique partitioning problem, we are given
a finite set V and a weight function ¢: V x V — R. Let P =V x V. The aim is to find a
partition C of V' that maximizes the sum of weights of the pairs within the same clusters, i.e.,

Qepp(C) = Y ¢;6(C(4),C(1)).

(1,j7)EP

Although our definition is slightly different from the traditional one (see e.g., [16]), it remains
essentially the same. Clearly, the modularity maximization problem can be reduced to the
clique partitioning problem. In fact, it suffices to set ¢;; = ¢;; for each (i,7) € P.

We can extend Hyperplane(k) to the clique partitioning problem by replacing ¢;; with
ci;j in the description of the algorithm. Furthermore, we can also extend our analysis of the
additive approximation error of Hyperplane(k). Note here that we should redefine

1 1
Zy = o E cijry; and 2l = . E CijTij,
(4,5)€P>0 ~ (i,5)€P<o

where ¢ =32 sep cijand co =3 o p  cij. This is due to the fact that ¢y = c_ does
not necessarily hold. For the clique partitioning problem, we have the following key lemma,
which is a generalization of Lemma 3.
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» Lemma 8. Let Cy, be the output of Hyperplane(k). It holds that

E[Qepr(Cr)] > OPT — (c+zj; el + c_2lk) .
Using this lemma, we can choose an appropriate number k* of hyperplanes and analyze the
additive approximation error of Hyperplane(k*). Note that if ¢; = c¢_ holds, then we obtain
the additive approximation error of ¢ (cos (3%6%) — HTﬁ)

Finally, we mention the results for the following three problems: the weighted modularity
maximization problem [22], the directed modularity maximization problem [19], and Barber’s
bipartite modularity maximization problem [3]. These problems are all special cases of the
clique partitioning problem, where ¢y = ¢_ < 1 holds. For the detailed description of the
above problems, see the full version [18]. We have the following corollary.

_ 145
8

» Corollary 9. There exist polynomial-time (COS (3747‘/571') )—additive approxima-

tion algorithms for the weighted modularity maximization problem, the directed modularity
mazimization problem, and Barber’s bipartite modularity maximization problem.
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