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Abstract
In 1969, Roberts introduced proper and unit interval graphs and proved that these classes are
equal. Natural generalizations of unit interval graphs called k-length interval graphs were con-
sidered in which the number of different lengths of intervals is limited by k. Even after decades of
research, no insight into their structure is known and the complexity of recognition is open even
for k = 2. We propose generalizations of proper interval graphs called k-nested interval graphs in
which there are no chains of k + 1 intervals nested in each other. It is easy to see that k-nested
interval graphs are a superclass of k-length interval graphs.

We give a linear-time recognition algorithm for k-nested interval graphs. This algorithm adds
a missing piece to Gajarský et al. [FOCS 2015] to show that testing FO properties on interval
graphs is FPT with respect to the nesting k and the length of the formula, while the problem
is W[2]-hard when parameterized just by the length of the formula. Further, we show that a
generalization of recognition called partial representation extension is polynomial-time solvable
for k-nested interval graphs, while it is NP-hard for k-length interval graphs, even when k = 2.
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1 Introduction

An interval representation R of a graph G is a collection
{
〈u〉 : u ∈ V (G)

}
of intervals of

the real line such that uv ∈ E(G) if and only if 〈u〉 ∩ 〈v〉 6= ∅. A graph is an interval graph if
it has an interval representation, and we denote this class by INT.

An interval representation is called proper if 〈u〉 ⊆ 〈v〉 implies 〈u〉 = 〈v〉, and unit if the
length of all intervals 〈u〉 is one. The classes of proper and unit interval graphs (denoted
PROPER INT and UNIT INT) consist of all interval graphs which have proper and unit
interval representations, respectively. Roberts [27] proved that PROPER INT = UNIT INT.
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Figure 2 (a) The Hasse diagram of proper inclusions of the considered classes. (b) We can label
each interval by the length of a maximal chain of nested intervals ending in it. We code the graph
by the left-to-right sequence of left endpoints ` and right endpoints r together with their labels.

The Studied Classes. In this paper, we consider two hierarchies of subclasses of interval
graphs which generalize proper and unit interval graphs. The class k-NestedINT consists of
all interval graphs which have representations with no k + 1 intervals 〈u0〉 , . . . , 〈uk〉 such
that 〈u0〉 ( 〈u1〉 ( · · · ( 〈uk〉; see Fig. 1a. The class k-LengthINT consists of all interval
graphs which have representations having at most k different lengths of intervals; see Fig. 1b.
We know by [27] that 1-NestedINT = PROPER INT = UNIT INT = 1-LengthINT.

For an interval graph G, we denote the minimum nesting over all interval representations
by ν(G), and the minimum number of interval lengths by λ(G). Since nested intervals have
different lengths, we know that ν(G) ≤ λ(G) and this inequality may be strict (as in Fig. 1b).
For each k ≥ 2, (k − 1)-LengthINT ( k-LengthINT ( k-NestedINT ( (k + 1)-NestedINT.
Fishburn [10, Theorem 5, p. 177] shows that graphs G in 2-NestedINT have unbounded λ(G),
so 2-NestedINT 6⊆ k-LengthINT for each k. See Figure 2a.

Partial Representation Extension. This problem was introduced by Klavík et al. [19]. A
partial representation R′ of G is an interval representation

{
〈x〉′ : x ∈ V (G′)

}
of an induced

subgraph G′ of G. The vertices of G′ and the intervals of R′ are called pre-drawn. A
representation R of G extends R′ if and only if it assigns the same intervals to the vertices
of G′: 〈x〉 = 〈x〉′ for every x ∈ V (G′).

Problem: Partial Representation Extension – RepExt(C)
Input: A graph G and a partial representation R′ of an induced subgraph G′.

Output: Is there an interval representation of C of G extending R′?

An O(n2)-time algorithm for RepExt(INT) was given in [19]. There are two different
linear-time algorithms [3, 18] for this problem. Minimal obstructions making partial repres-
entations non-extendible are described in [21]. A linear-time algorithm for proper interval
graphs [16] and a quadratic-time algorithm for unit interval graphs [30] are known.

The partial representation extension problems were considered for other graph classes.
Polynomial-time algorithms are known for circle graphs [7], and permutation and function
graphs [15]. The problems are NP-hard for chordal graphs [17] and contact representations
of planar graphs [6]. The complexity is open for circular-arc and trapezoid graphs.
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Previous Results and Motivation. The classes k-LengthINT were introduced by Graham
as a natural hierarchy between unit interval graphs and interval graphs; see Fig. 2a. Unfortu-
nately, even after decades, the only results known are curiosities that illustrate the incredibly
complex structure of k-LengthINT, very different from the case of unit interval graphs. For
instance, k-LengthINT is not closed under disjoint unions; see Fig. 1b.

Leibowitz et al. [23] show that the class 2-LengthINT contains caterpillars, threshold, and
unit interval graphs with one additional vertex. Further, there exist graphs G with λ(G) > 2
such that λ(G \ x) ≤ λ(G)− 2 for x ∈ V (G) [23]. Fishburn [9] shows that there are infinitely
many forbidden induced subgraphs for 2-LengthINT (where UNIT INT are interval graphs
just without K1,3). It is also known [8] that there are graphs in 2-LengthINT such that, when
the shorter length is fixed to 1, the longer one can be one of the real numbers belonging to
arbitrary many distinct intervals of the real line, arbitrary far from each other.

Not much is known about the computational complexity of problems involving k-LengthINT,
even recognition is open for k = 2. In [5], a polynomial-time algorithm is given for computing
λ(G) for interval graphs G which are extended bull-free or almost threshold (which highly
restricts them). Skrien [29] characterized 2-LengthINT which can be realized by lengths zero
(points) and one (unit intervals), leading to a linear-time recognition algorithm. As most
of the efficient algorithms for intersection graph classes require representations, very little
is known how to algorithmically use that a given interval graph can be represented by k
lengths. In this paper, we show that partial representation extension is NP-hard already for
2-LengthINT.

All these difficulties lead us to introduce another hierarchy of k-NestedINT which general-
izes proper interval graphs; see Fig. 2. We illustrate the nice structure of k-NestedINT by
describing a relatively simple linear-time recognition algorithm which we also generalize to a
more involved polynomial-time algorithm for partial representation extension. To the best of
our knowledge, the only reference is Fishburn’s book [10] in which the parameter ν(G) called
depth is considered and linked to k-LengthINT. There are some different generalizations of
proper interval graphs [26], which are less rich and not linked to k-LengthINT.

Since k-NestedINT seem to share many properties with proper interval graphs, several
future directions of research are immediately offered. It should be possible to describe
minimal forbidden induced subgraphs. For the computational problems which are tractable
for proper interval graphs and hard for interval graphs, the complexity of the intermediate
problems for k-NestedINT can be studied. (One such problem is FO property checking,
discussed below.)

Our Results. In [14], a polynomial-time algorithm is given for recognizing 2-LengthINT
when intervals are partitioned into two subsets A and B, each of one length, and both G[A]
and G[B] are connected. This approach might be generalized for partial representation
extension, but we show that removing the connectedness condition makes it hard:

I Theorem 1. The problem RepExt(2-LengthINT) is NP-hard when every pre-drawn interval
is of one length a. It remains NP-hard even when (i) the input prescribes two lengths a = 1
and b, and (ii) for every interval, the input assigns one of the lengths a or b. Also, it is
W[1]-hard when parameterized by the number of pre-drawn intervals.

In comparison, we give a dynamic programming algorithm for recognizing k-NestedINT,
based on a data structure called an MPQ-tree. We show that we can optimize nesting
greedily from the bottom to the top. We compute three different representations for each
subtree and we show how to combine them.

ISAAC 2016
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I Theorem 2. The minimum nesting number ν(G) can be computed in time O(n + m)
where n is the number of vertices and m is the number of edges. Therefore, the problem
Recog(k-NestedINT) can be solved in linear time.

This result has the following application in the computational complexity of deciding
logic formulas over graphs. Let ϕ be the length of a first-order logic formula for graphs. By
the locality, this formula can be decided in G in time nO(ϕ). Since it is W[2]-hard to decide
it for general graphs when parameterized by ϕ, it is natural to ask for which graph classes
there exists an FPT algorithm running in time O(nc · f(ϕ)).

In [13], it is shown that the problem above is W[2]-hard even for interval graphs. On the
other hand, if an interval graph is given together with a k-length interval representation, [13]
gives an FPT algorithm with respect to the parameters ϕ and the particular lengths of the
intervals. It was not clear whether such an algorithm is inherently geometrical. Recently,
Gajarský et al. [12] give a different FPT algorithm for FO property testing for interval graphs
parameterized by ϕ and the nesting k, assuming that a k-nested interval representation is
given by the input. By our result, this assumption can be removed since we can compute an
interval representation of the optimal nesting in linear time.

The problem RepExt(k-NestedINT) is more involved since a straightforward greedy
optimization from the bottom to the top does not work. We describe a complex dynamic
programming algorithm which computes with exponentially many possibilities efficiently.

I Theorem 3. The problem RepExt(k-NestedINT) can be solved in polynomial time.

The last result contrasts with Theorem 1. Partial representation extension of k-NestedINT
and k-LengthINT are problems for which the geometrical version (at most k lengths) is much
harder than the corresponding topological problem (the left-to-right ordering of endpoints of
intervals). A generalization of partial representation extension called bounded representations
is NP-complete for unit interval graphs [16], but polynomial-time solvable for proper interval
graphs [2]. Partially embedded planar graphs can be extended in linear time [1], but extension
of geometric straight-line embeddings is NP-hard [25].

2 Extending Partial Representations with Two Lengths

The complexity of recognizing k-LengthINT is a long-standing open problem, even for k = 2.
In this section, we show that RepExt is NP-complete even when k = 2.

Proof of Theorem 1. Assume (i) and (ii). We adapt the reduction from 3-Partition used
in [17, 16]. Let A1, . . . , A3s and M be input of 3-Partition, with M

2 < Ai <
M
4 and∑

Ai = Ms. The task is to split Ai’s into s triples, each summing to exactly M .
We solve this problem by constructing an interval graph G and a partial representation

R′ as depicted in Fig. 3. We claim that R′ can be extended using two lengths of intervals if
and only if the original instance of 3-Partition is solvable. We set a = 1 and b = s · (M + 1).
The partial representation R′ consists of s+1 disjoint pre-drawn intervals v0, . . . , vs of length
a, with their pre-drawn positions `′(vi) = i · (M + 2). So they split the real line into s equal
gaps of size M + 1 and two infinite regions.

Aside v0, . . . , vs, the graph G contains exactly one vertex w of the length b, adjacent to
every vertex in G. Further, for each Ai, the graph G \ w contains P2Ai

(a path with 2Ai

vertices) as one component, with each vertex of the length a.
This reduction is clearly polynomial. It remains to show that R′ is extendible if and

only if the instance of 3-Partition is solvable. First, because of the length constraint, in
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Figure 3We consider the following input for 3-Partition: s = 2,M = 7, A1 = A2 = A3 = A4 = 2
and A5 = A6 = 3. The associated graph G is depicted on top, and at the bottom we find one of its
extending representations, giving the 3-partitioning {A1, A3, A6} and {A2, A4, A5}.

every extending representation has `(w) = 1; otherwise it would not intersect either v0, or vs.
Therefore, each of the paths P2Ai

has to be placed in exactly one of the s gaps. In every
representation of P2Ai

, it requires the space at least Ai + ε for some ε > 0. Therefore, three
paths can be packed into the same gap if and only if their three integers sum to at most M .
Therefore, an extending representation R′ gives a solution to 3-Partition, and vice versa.
We get W[1]-hardness by a similar reduction from BinPacking, as in [17].

The above reduction can be easily modified when (i) and (ii) are avoided. We add two
extra vertices: w0 adjacent to v0 and ws adjacent to vs such that both are non-adjacent to
w. It forces the length of w to be in the interval [s · (M + 1), s · (M + 1) + 2), so the length b
does not have to be prescribed. Also, this reduction works even when each interval does not
have a length assigned, aside the pre-drawn intervals in R′ indeed. J

3 Basic Properties of k-Nested Interval Graphs

The nesting defines a partial ordering ( of intervals and we denote by ν(u) the length of the
longest chain of nested intervals ending with 〈u〉. By Pred(u), we denote the set of all direct
predecessors of 〈u〉 in (.

I Lemma 4. An interval graph belongs to k-NestedINT if and only if it has an interval
representation which can be partitioned into k proper interval representations.

Proof. Let R be an interval representation partitioned into proper interval representations
R1, . . . ,Rk. No chain of nested intervals contains two intervals from some Ri, so the nesting
is at most k. On the other hand, let R be a k-nested interval representation. We label each
interval by the length of the longest chain of nested intervals ending in it; see Fig. 2b. Notice
that the intervals of each label i ∈ {1, . . . , k} form a proper interval representation Ri. J

Interval graphs and the subclasses k-NestedINT and k-LengthINT are closed under in-
duced subgraphs, so they can be characterized by minimal forbidden induced subgraphs.
Lekkerkerker and Boland [24] describe them for interval graphs, and Roberts [27] proved that
1-NestedINT=1-LengthINT are claw-free interval graphs. On the other hand, 2-LengthINT
have infinitely many minimal forbidden induced subgraphs [9] which are interval graphs.

4 Maximal Cliques and MPQ-trees

I Lemma 5 (Fulkerson and Gross [11]). A graph is an interval graph if and only if there
exists a linear ordering < of its maximal cliques such that, for each vertex, the maximal
cliques containing this vertex appear consecutively.

ISAAC 2016



45:6 On the Classes of Interval Graphs of Limited Nesting and Count of Lengths

pq
s t

y

r u

v w

x z

py
s t

q

z x

v w

u r

Figure 4 Two equivalent MPQ-trees with denoted sections. In all figures, we denote P-nodes by
circles and Q-nodes by rectangles.

An ordering of the maximal cliques satisfying the statement of Lemma 5 is called a
consecutive ordering. Each interval graph has O(n) maximal cliques of total size O(n+m)
which can be found in linear time [28].

PQ-trees. A PQ-tree T is a rooted tree, introduced by Booth and Lueker [4]. Its leaves are
in one-to-one correspondence with the maximal cliques. Its inner nodes are of two types:
P-nodes and Q-nodes. Each P-node has at least two children, each Q-node at least three. The
orderings of the children of inner nodes are given. The PQ-tree T represents one consecutive
ordering <T called the frontier of T which is the ordering of the leaves from left to right.

The PQ-tree T represents all consecutive orderings of G as frontiers of equivalent PQ-trees
which can be constructed from T by sequences of equivalent transformations of two types:
(i) an arbitrary reordering of the children of a P-node, and (ii) a reversal of the order of the
children of a Q-node; see Fig. 4. A subtree of T consists of a node and all its descendants.
For a node N , its subtrees are the subtrees which have the children of N as the roots.

MPQ-trees. The MPQ-tree [22] is an augmentation of the PQ-tree in which the nodes of
T have assigned subsets of V (G) called sections. To a leaf representing a clique C, we assign
one section s(C). Similarly, to each P-node P , we assign one section s(P ). For a Q-node Q
with subtrees T1, . . . , Tq, we have q sections s1(Q), . . . , sq(Q) ordered from left to right, each
corresponding to one subtree. Examples of sections are depicted in Fig. 4.

The section s(C) has all vertices contained in the maximal clique C and no other maximal
clique. The section s(P ) of a P-node P has all vertices that are contained in all maximal
cliques of the subtree rooted at P and in no other maximal clique. Let Q be a Q-node with
subtrees T1, . . . , Tq. Let x be a vertex contained only in maximal cliques of the subtree
rooted at Q, contained in maximal cliques of at least two subtrees. Then x is contained in
every section si(Q) such that some maximal clique of Ti contains x.

Every vertex x is in sections of exactly one node of T . In the case of a Q-node, it is
placed in consecutive sections of this node. For a Q-node Q, if x is placed in a section si(Q),
then x is contained in all cliques of Ti. Every section of a Q-node is non-empty, and two
consecutive sections have a non-empty intersection.

5 Recognizing k-nested Interval Graphs

Our linear-time algorithm is a dynamic programming on the MPQ-tree. We process from
the bottom to the top, and we optimize the minimal nesting.

Two vertices x and y are twins if and only if N [x] = N [y]. The standard observation is
that twins can be ignored since they can be represented by identical intervals, and notice
that this does not increase nesting and the number of lengths. We can locate all twins in
time O(n+m) [28] and we can prune the graph by keeping one vertex per equivalence class
of twins. So no two vertices belong to the exactly same sections of the MPQ-tree.
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Figure 5 The graphs Ga, Gb and Gc with representations, defining the triple (a, b, c) of T . The
vertices of G[T ] are adjacent to the added vertices u and v and not to the others.

Triples. We compute triples (a, b, c) for each subtree of the MPQ-tree: a is the optimal
nesting of the entire subtree, b is the nesting when the subtree is placed on a side of its
parent, and c is used for Q-nodes. We define for a subtree T a triple (a, b, c) as follows. Let
G[T ] be the interval graph induced by the vertices of the sections of T . Let Ga, Gb and Gc

be graphs as in Fig. 5. We define a = ν(Ga)− 1 = ν(G[T ]), b = ν(Gb)− 1, and c = ν(Gc)− 1.
The triple can be interpreted as increase in the nesting, depending how G[T ] is represented

with respect to the rest of the graph. We compute these triples from the leaves to the root,
and output a of the root as ν(G).

I Lemma 6. For any subtree T , its triple (a, b, c) satisfies a− 1 ≤ b ≤ c ≤ a.

Proof. We prove equivalently that ν(Ga)− 1 ≤ ν(Gb) ≤ ν(Gc) ≤ ν(Ga). We trivially know
that ν(Gb) ≤ ν(Gc) since Gb is an induced subgraph of Gc.

Our definition ofGa implies that ν(Ga) = ν(G[T ])+1, since in every interval representation
of Ga, both endpoints of 〈u〉 are covered by attached paths, and there the representation
of G[T ] is nested in 〈u〉. Since ν(Gb) ≥ ν(G[T ]), the inequality ν(Ga)− 1 ≤ ν(Gb) follows.
Alternatively, for a representation of Gb optimizing nesting, we stretch 〈u〉 (which increases
nesting by at most one) and add the second attached path, to get a representation of Ga.

It remains to show the last inequality that ν(Gc) ≤ ν(Ga). Consider the representation
of Ga with optimal nesting, in which G[T ] is strictly contained inside 〈u〉. By shifting r(u)
to the left and adding 〈v〉, we get a representation of Gc with the same nesting. J

Leaves. We initiate (a, b, c) for every leaf L of the MPQ-tree as follows. If s(L) = ∅, we
put (0, 0, 0); otherwise we put (1, 0, 0). The reason is that the vertices of s(L) form a clique.

P-nodes. Let T1, . . . , Tp be the children of a P-node P , with p ≥ 2, with the computed
triple (ai, bi, ci) for each subtree Ti. We want to compute (a, b, c) for P . We first assume
that s(P ) 6= ∅. Let w ∈ s(P ), then the vertices of every subtree except two outer subtrees Ts

and Tt are nested inside 〈w〉, so their minimal nesting number is increased by one. We can
choose optimally two outer subtrees Ts and Tt, and their outer maximal cliques. Only the
intervals contained in these two outer maximal cliques are not nested inside 〈w〉.

We get the following formulas (see Fig. 6):

a =
{

max{a1, . . . , ap}, s(P ) = ∅,
mins 6=t max{bs, bt, ai : i 6= s, t}+ 1, s(P ) 6= ∅.

b = min
s

max{bs, ai : i 6= s},

c = max{a1, . . . , ap}.

ISAAC 2016
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(1, 0, 0)

(1, 1, 1)

(2, 1, 1)

(2, 2, 2)

(3, 2, 2)

R

Figure 6 An MPQ-tree representing G with the computed triples (a, b, c) (equal on each level)
and a representation minimizing nesting. We have that ν(G) = 3.

I Lemma 7. The formulas compute the triple (a, b, c) of a P-node P correctly.

Proof. Let T be the subtree with P as the root. We know that a = ν(G[T ]). If s(P ) = ∅, then
G[T ] is the disjoint union of G[T1], . . . , G[Tp] with ai = ν(G[Ti]), so a = max{a1, . . . , ap}.
Otherwise, let {w} = s(P ). Vertices of every subtree except for two outer Ts and Tt, which
we are free to choose, are completely nested inside; so we minimize over all possible choices of
Ts 6= Tt. For every i 6= s, t, we have the optimal nesting ai increased by one because of 〈w〉.
Now, Ts can be placed on one side of 〈w〉, while the other side is blocked by the remaining
vertices. Therefore, we can simulate this by Gb of G[Ts], where u corresponds to w, so the
optimal nesting of G[T ] is at least bs + 1, and similarly for Tt and bt + 1.

Concerning b, we have in every representation 〈u〉 with one side covered by the attached
path. Therefore all vertices of G[T ] are either nested in 〈u〉, or intersect the other side. We
can always place all vertices of s(P ) in such a way that they are not nested in 〈u〉, and so we
can ignore them. All vertices of G[T ] except for one subtree Ts, which we can arbitrarily
choose, have to be nested in 〈u〉. Therefore, their optimal nesting ai is increased by one by
〈u〉. For Ts, the nesting again corresponds to the optimal nesting of Gb of G[Ts], which is
bs + 1. Therefore we get ν(Gb) = mins max

(
{ai + 1 : i 6= s} ∪ {bs + 1}

)
, which gives the

formula for b since b = ν(Gb)− 1. Concerning c, we have also 〈v〉. We can choose Ts and Tt

so that Ts has optimized nesting with respect to 〈u〉 and Tt with respect to 〈v〉. But anyway
all intervals of G[Ts] are nested in 〈v〉 and all intervals of G[Tt] are nested in 〈u〉. Therefore
this optimization is useless and we just get ν(Gc) = max{a1, . . . , ap}+ 1. J

I Lemma 8. For a P-node with p children, the triple (a, b, c) can be computed in O(p).

Proof. By Lemma 6, we always have either bi = ai − 1, or bi = ai. Only in the former case,
we can optimize the nesting by choosing s or t equal i. We call these Ti savable. Concerning
c, we just find the maximum ai which can be done in time O(p). Concerning a and b, we
first locate all Ti which maximize ai. If at least one of them is not savable, say Tj , then
a = aj + 1 and b = aj . Otherwise if all are savable, then the values depend on the number of
Ti’s maximizing ai. If there are at most two, then a = ai, otherwise a = ai + 1. If there is at
most one, then b = bi, otherwise b = bi + 1. J

Q-nodes. To optimize Q-nodes, the values c are also required. Let Q be a Q-node with
children T1, . . . , Tq, where q ≥ 3, each with a triple (ai, bi, ci). We first work with each section
si(Q) separately. For intervals of sections of Q, we define their nesting ( as follows: u ( v if
v is contained in a section more to the left than all sections of u and in a section more to the
right than all sections of u. (In every representation, 〈u〉 is contained in 〈v〉.)

For each subtree Ti, we choose whether to optimize its left side, or its right side. For the
optimized side, the nesting is increased by bi, while for the other side it is increased by ci.
We denote the increase in the nesting on the left side by ©←i and on the right side by ©→i .
So we choose either ©←i = bi and ©→i = ci, or ©←i = ci and ©→i = bi.
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Suppose that we have some choice of ©←i and ©→i for each subtree Ti. Let ν(x) be the
length of the longest chain of nested intervals ending with 〈x〉, minimized over all possible
interval representations of G. We compute the nesting ν(x) for each x belonging to sections
of Q, from bottom to the top of (. Suppose that we process some x and we know ν(y) for
every direct predecessor of x, and let ss(Q) be the leftmost section of x and st(Q) be the
rightmost section. We get the following formula:

ν(x) = max{©←s ,©→t , ai, ν(y) : s < i < t and y ∈ Pred(x)
}

+ 1.

Then, we compute (a, b, c) as follows:

a = max{a1, . . . , aq, ν(y) : y ∈ Pred(u)},
b← = max{b1, a2, . . . , aq, ν(y) : y ∈ Pred(u)},
b→ = max{a1, . . . , aq−1, bq, ν(y) : y ∈ Pred(u)},
c = max{a1, . . . , aq, ν(y) : y ∈ Pred(u) or y ∈ Pred(v)}.

We put b = min{b←, b→}. For each of numbers a, b and c, we choose the minimum over all
possible choices of ©←i and ©→i .

I Lemma 9. The formulas compute the triple (a, b, c) of a Q-node Q correctly.

Proof. Notice that there exists a representation such that two intervals of sections of Q are
nested as in the relation ( defined above. For each subtree with some choice of ©←i and
©→i , we have precomputed what is the optimal nesting and what is the length of a longest
chain ending with a vertex not contained in the leftmost clique (©←i ), and of a longest chain
not ending with a vertex in the rightmost clique (©→i ). The formulas extends these chains
according to the vertices of sections of Q and of added vertices u and v in Ga, Gb, Gc. The
length of a longest chain ending with u or v is used. J

I Lemma 10. For each of a, b←, b→ and c, the choices of ©←i and ©→i are done greedily.

Proof. We argue for a, the argument is similar for the others. Notice that values ©←i and
©→i describe the starting length of some chains. We can easily compute how much are these
chains extended by the intervals of sections of Q and by u. We find out which side needs to
save more, for which we choose bi, and for the other side we choose ci. These values can be
chosen for different subtrees independently since their chains start differently. J

I Lemma 11. For a Q-node Q with q children, the triple (a, b, c) can be computed in time
O(q +mQ), where mQ is the number of edges of G[Q].

Proof. For every interval u in sections of Q, we know its leftmost section and its rightmost
section. We compute the DAG of nesting for all vertices of the sections of Q. This can be
done by considering all edges, and testing for each whether the pair is nested.

For each of a, b←, b→, and c, we add vertex u (and possibly v) to this DAG, together
with correct edges according to their nesting. Then for each vertex of this DAG, we compute
the length of the longest chain starting in this vertex. This can be done in linear time by
processing the DAG from top to the bottom. Next, we process the subtrees Ti. For each,
we compute how much chains of length ai, ©←i and ©→i are prolonged. Then we greedily
choose ©←i and ©→i from bi and ci. The total consumed time is O(q +mQ). J

Proof of Theorem 2. If a graph is an interval graph, we can compute its MPQ-tree in time
O(n+m). Then we process the tree from the bottom to the root and compute triples (a, b, c)
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for every node, as described above. We output a of the root which is the minimal nesting
number ν(G). By Lemmas 7 and 9, this value is computed correctly. By Lemmas 8 and 11,
the running time of the algorithm is O(n+m). J

6 Extending Partial Representations of Minimal Nesting

In this section, we sketch a polynomial-time algorithm of Theorem 3; see the full version [20].

Partial Ordering C. The paper [18] characterizes all extendible partial representations in
terms of consecutive orderings. A certain partial ordering C of maximal cliques is derived
from the partial representation R′.

I Lemma 12 ([18]). A partial representation R′ is extendible if and only if there exists a
consecutive ordering < of the maximal cliques extending C. The consecutive orderings of
extending representations are exactly the consecutive ordering extending C.

General Idea. We want to minimize the nesting similarly as in Section 5. A partial
representation R′ poses three restrictions: (i) Some pre-drawn intervals can be nested in
each other which increases the nesting. (ii) The consecutive ordering has to extend C which
restricts the possible shuffling of subtrees. (iii) Some subtrees can be optimized differently
depending whether they are placed on the left or on the right of its parent.

Concerning (iii), instead of a triple, we compute for every subtree T a tuple (a, b←, c→, b→, c←).
These number are equal to minimum nestings of extending representations of partial repres-
entations of Ga, Gb and Gc, in which the pre-drawn vertices of G[T ] are pre-drawn the same
and we have pre-drawn 〈u〉′ (and possibly 〈v〉′) with their added neighbors. The difference
between b← and b→ is whether 〈u〉′ covers the right side of G[T ], or covers the left side of
G[T ]; similarly for c← and c→.

For (i), we compute for pre-drawn intervals 〈x〉′ their nesting ν(x) in an optimal extending
representation of R′ constructed by the algorithm, from bottom to the top as they are
encountered in the MPQ-tree. We show that for each variable ν(x) and each b←, c→, b→ and
c←, their values are determined up to one and we can force some subtrees to optimize them.
Unfortunately, some of these values cannot be optimized simultaneously, so we introduce
the concept of an optimization graph H. The variables are represented by vertices and we
have an edge xy ∈ E(H) if and only if they cannot be optimized at the same time. The
optimizable subsets of variables are the independent sets in H.

P-nodes. We have a P-node P with subtrees T1, . . . , Tp with the computed tuple
(ai, b

←
i , c

→
i , b

→
i , c

←
i ) and the optimization graph Hi for each subtree Ti and ν(x). Because of

(ii), we get that Ts has to be one of the minimal elements min(C) of C and Tt one of the
maximal elements max(C). Suppose that Ts ∈ min(C) and Tt ∈ max(C) is fixed.

We first compute ν(x) for intervals of s(P ), according to (. Assuming that we know ν(y)
for every y ∈ Pred(x), we compute ν(x) as follows:

ν(x) = max
{
b←s , b

→
t , ai, ν(y) : i 6= s, t and y ∈ Pred(x)

}
+ 1.
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Then, we compute (a, b←, b→, c→, c←):

a = max{a1, . . . , ap, ν(y) : y ∈ Pred(u)}.
b← = max{b←s , ai, ν(y) : i 6= s and y ∈ Pred(u)}.
c→ = max{b→t , ai, ν(y) : i 6= t and y ∈ Pred(v)}.
b→ = max{b→t , ai, ν(y) : i 6= t and y ∈ Pred(u)}.
c← = max{b←s , ai, ν(y) : i 6= s and y ∈ Pred(v)}.

The value of a can be always obtained greedily. Since the values given by T1, . . . , Tn are
not fully determined, we create a new optimization subgraph H of T as the disjoint union of
H1, . . . ,Hp together with new pre-drawn vertices of s(P ) and b←, b→, c← and c→, and we
add suitable edges.

We run the above computation over all choices of Ts ∈ min(C) and Tt ∈ max(C). Since
b← and c→ might be optimized using different subtrees Ts and Tt than b→ and c←, we argue
that the situation is not very limited, so we can combine optimizations together in one H.

Q-node. We have a Q-node Q with subtrees T1, . . . , Tq with the computed tuple
(ai, b

←
i , c

→
i , b

→
i , c

←
i ) and the optimization graph Hi for each subtree Ti and ν(x). Because

of (ii), we get that the Q-node might be flippable (which greatly restricts it), or not. For
a subtree Ti, we may optimize it with respect to its left side, which is encoded by b←i and
c→i , or with respect to the right side, which is encoded by c←i and b→i . In the former case,
we put ©←i = b←i and ©→i = c→i . In the latter case, we put ©←i = c←i and ©→i = b→i . We
have trade-offs leading to exponentially many possibilities how ©←i and ©→i can be chosen,
which we capture by the optimization graph H.

Suppose that we fix some choices of ©←i and ©→i . Unlike for P-nodes, we compute ν(x)
for all intervals of sections of Q, not just for the pre-drawn ones. For two such vertices, we
define ( by nesting of sections, similarly as in Section 5. We process them from the bottom
to the top according to (. Suppose that we process some x and we know ν(y) for every
direct predecessor of x, and let ss(Q) be the leftmost section of x and st(Q) be the rightmost
section. We get the following formula:

ν(x) = max{©←s ,©→t , ai, ν(y) : s < i < t and y ∈ Pred(x)
}

+ 1.

Then, we compute (a, b←, b→, c→, c←) as follows:

a = max{a1, . . . , aq, ν(y) : y ∈ Pred(u)}
b← = max{b←1 , ai, ν(y) : i > 1 and y ∈ Pred(u)}.
c→ = max{b→n , ai, ν(y) : i < n and y ∈ Pred(v)}.
b→ = max{b→n , ai, ν(y) : i < n and y ∈ Pred(u)}.
c← = max{b←1 , ai, ν(y) : i > 1 and y ∈ Pred(v)}.

By some involved structural properties, each variable is determined up to one. We encode all
possibilities into the optimization graph H, similarly as in the case of P-nodes.

Putting Together. We construct a polynomial-time algorithm for RepExt(k-NestedINT)
as follows. We process the MPQ-tree from the bottom to the top. We have to argue that
each step can be computed in polynomial time (easy) and that it computes the tuples
(a, b←, b→, c→, c←) and the optimization graph H correctly (involved).
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