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Abstract
We study a scheduling problem arising in demand response management in smart grid. Con-
sumers send in power requests with a flexible feasible time interval during which their requests
can be served. The grid controller, upon receiving power requests, schedules each request within
the specified interval. The electricity cost is measured by a convex function of the load in each
timeslot. The objective is to schedule all requests with the minimum total electricity cost. Pre-
vious work has studied cases where jobs have unit power requirement and unit duration. We
extend the study to arbitrary power requirement and duration, which has been shown to be NP-
hard. We give the first online algorithm for the general problem, and prove that the worst case
competitive ratio is asymptotically optimal. We also prove that the problem is fixed parameter
tractable. Due to space limit, the missing proofs are presented in the full paper.
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1 Introduction

We study a scheduling problem arising in “demand response management” in a smart
grid [15, 20, 28]. The electrical smart grid is one of the major challenges in the 21st century [25].
The smart grid [22] is a power grid system that makes power generation, distribution and
consumption more efficient through information and communication technologies. Peak
demand hours happen only for a short duration, yet makes existing electrical grid less
efficient. It has been noted in [7] that in the US power grid, 10% of all generation assets
and 25% of distribution infrastructure are required for less than 400 hours per year, roughly
5% of the time [25]. Demand response management1 attempts to overcome this problem by
shifting users’ demand to off-peak hours in order to reduce peak load.

It is demonstrated in [20] that demand response is of remarkable advantage to consumers,
utilities, and society. Effective demand load management brings down the cost of operating
the grid, energy generation and distribution [19]. It is not only advantageous to the supplier
but also to the consumers as well. It is common that electricity supplier charges according
to the generation cost. Therefore, it is to the consumers’ advantage to reduce electricity
consumption at high price and hence reduce the electricity bill [24].
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The operator and consumers communicate through smart metering devices [22]. A
consumer sends in a power request with the power requirement, required duration of service,
and the time interval that this request can be served (giving some flexibility). For example,
a consumer may want the dishwasher to operate for one hour during the periods from 8am
to 11am. The grid operator upon receiving requests has to schedule them in their respective
time intervals using the minimum energy cost. The load of the grid at each timeslot is the
sum of the power requirements of all requests allocated to that timeslot. The electricity cost
is modeled by a convex function on the load: we consider the cost to be the α-th power of
the load, where α > 1 is some constant. Typically, α is small, e.g., α = 2 [10].

Previous work. Koutsopoulos and Tassiulas [17] have formulated a similar problem to our
problem where the cost function is piecewise linear. They show that the problem is NP-hard,
and their proof can be adapted to show the NP-hardness of the general problem studied in
this paper [6]. Burcea et al. [6] gave polynomial time optimal algorithms for the case of unit
height (cf. unit power requirement) and unit width (cf. duration of request). Feng et al. [12]
have claimed that a simple greedy algorithm is 2-competitive for the unit case and α = 2.
However, in our full paper [18], we show a counter example that the greedy algorithm is at
least 3-competitive. This implies that it is still an open question to derive online algorithms
for the problem. Salinas et al. [24] considered a multi-objective problem to minimize energy
consumption cost and maximize some utility. A closely related problem is to manage the load
by changing the price of electricity over time [21, 11]. Reviews of smart grid can be found
in [15, 20, 28]. The combinatorial problem in this paper has analogy to the load balancing
problem [3] and machine minimization problem [8, 9, 23] but the main differences are the
objective being maximum load and jobs are unit height [8, 9, 23]. Minimizing maximum load
has also been looked at in the context of smart grid [1, 27], some of which further consider
allowing reshaping of the jobs [1]. As to be discussed in the full paper, our problem is more
difficult than minimizing the maximum load. Our problem also has resemblance to the
dynamic speed scaling problem [2, 26, 5] and our algorithm has employed some techniques
there.

Our contribution. We propose the first online algorithm for the general Grid problem with
competitive ratio polylogarithm in the max-min ratio of the duration of jobs (Section 4);
and show that the competitive ratio is asymptotically optimal. The algorithm is based on
an O(1)-competitive online algorithm for jobs with uniform duration (Section 3). We also
propose O(1)-competitive online algorithms for jobs with uniform power requirement and
agreeable deadlines (Section 5). Table 1 gives a summary. In addition, we show that the Grid
problem is fixed parameter tractable by proposing the first fixed parameter exact algorithms
for the problem; and derive lower bounds on the running time (Section 6). Interestingly,
both our online algorithm and exact algorithms depend on the variation of the job widths
but not the variation of the job heights.

Our online algorithms are based on identifying a relationship with the dynamic speed
(voltage) scaling (DVS) problem [26]. The main challenge, even when jobs have uniform
width or uniform height, is that in time intervals where the “workload” is low, the optimal
DVS schedule may have much lower cost than the optimal Grid schedule because jobs in DVS
schedules can effectively be stretched as flat as possible while jobs in Grid schedules have rigid
duration and cannot be stretched. In such case, it is insufficient to simply compare with the
optimal DVS schedule. Therefore, our analysis is divided into two parts: for high workload
intervals, we compare with the optimal DVS schedule; and for low workload intervals, we
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Table 1 Summary of online algorithms for different input instances.

Width Height Competitive Ratio

Uniform Arbitrary O(1)-competitive [Section 3]
Arbitrary Arbitrary Θ(logα(wmax

wmin
))-competitive [Section 4]

Arbitrary Uniform O(1)-competitive [input with agreeable deadlines] [Section 5]

directly compare with the optimal Grid schedule via a lower bound on the total workload
over these intervals (Lemmas 2 and 11). For jobs with arbitrary width, we adopt the natural
approach of classification based on job width. We then align the “feasible interval” of each
job in a more uniform way so that we can use the results on uniform width (Lemma 6).

In designing exact algorithms we use interval graphs to represent the jobs and the
important notion maximal cliques to partition the time horizon into disjoint windows. Such
partition usually leads to optimal substructures; however, non-preemption makes it trickier
and requires a smart way to handle jobs spanning multiple windows. We describe how to
handle such jobs without adding a lot of overhead. We remark that our approach can solve
other problems like minimizing peak load in Grid and the machine minimization problem.

2 Definitions and preliminaries

The input. The time is labeled from 0 to τ and we consider events (release time, deadlines)
occurring at integral time. We call the unit time [t, t+ 1) timeslot t. We denote by J a set
of input jobs in which each job J comes with release time r(J), deadline d(J), width w(J)
representing the duration required by J , and height h(J) representing the power required
by J . We assume r(J), d(J), w(J), and h(J) are integers. The feasible interval, denoted by
I(J), is defined as the interval [r(J), d(J)) and we say that J is available during I(J).

In Section 4, we consider an algorithm that classifies jobs according to their widths. To
ease discussion, we let wmax and wmin be the maximum and minimum width over all jobs,
respectively. We further define the max-min ratio of width, denoted by K, to be K = wmax

wmin
.

Without loss of generality, we assume that wmin = 1. We say that a job J is in class Cp
if and only if 2p−1 < w(J) ≤ 2p for any 0 ≤ p ≤ dlogKe.

Feasible schedule. A feasible schedule S assigns for each job J a start time st(S, J) ∈ Z
meaning that J runs during [st(S, J), et(S, J)), where the end time et(S, J) = st(S, J)+w(J).
Note that this means preemption is not allowed. The load of S at time t, denoted by
`(S, t) is the sum of the height (power request) of all jobs running at t, i.e., `(S, t) =∑
J:t∈[st(S,J),et(S,J)) h(J). We drop S and use `(t) when the context is clear. We use A(J )

to denote the schedule of an algorithm A on J . We denote by O the optimal algorithm.
The cost of a schedule S is the sum of the α-th power of the load over all time, for

a constant α > 1, i.e., cost(S) =
∑
t(`(S, t))α. For a set of timeslots I (not necessarily

contiguous), we denote by cost(S, I) =
∑
t∈I(`(S, t))α. The objective is to find a feasible

schedule with minimum cost. We call this the Grid problem.

Online algorithms. We consider online algorithms, where the job information is only
revealed at the time the job is released; the algorithm has to decide which jobs to run at the
current time without future information and decisions made cannot be changed later. Let A
be an online algorithm. We say that A is c-competitive if for all input job sets J , we have
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53:4 Optimal Nonpreemptive Scheduling in a Smart Grid Model

cost(A(J )) ≤ c · cost(O(J )). In particular, we consider non-preemptive algorithms where a
job cannot be preempted to resume/restart later.

Special input instances. A job J is said to be unit-width (resp. unit-height) if w(J) = 1
(resp. h(J) = 1). A job set is said to be uniform-width (resp. uniform-height) if the width
(resp. height) of all jobs are the same. A job set is said to have agreeable deadlines if for any
two jobs J1 and J2, r(J1) ≤ r(J2) implies d(J1) ≤ d(J2).

Relating to the speed scaling problem. The Grid problem resembles the dynamic speed
scaling (DVS) problem [26] and we are going to refer to three DVS algorithms, namely, the
optimal YDS algorithm, the online algorithms called BKP [4] and AVR [26], which are 8eα-
and (2α)α/2-competitive, respectively. In the DVS problem, jobs come with release time
r(J), deadline d(J), and a work requirement p(J). A processor can run at speed s ∈ [0,∞)
and consumes energy in a rate of sα, for some α > 1. The objective is to complete all jobs by
their deadlines using the minimum total energy. The main differences of the DVS problem to
the Grid problem include (i) jobs in DVS can be preempted while preemption is not allowed
in the Grid problem; (ii) as processor speed in DVS can scale, a job can be executed for
varying time duration as long as the total work is completed while in Grid a job must be
executed for a fixed duration given as input; (iii) the work requirement p(J) of a job J in
DVS can be seen as w(J)× h(J) for the corresponding job in Grid.

Let OD and OG be the optimal algorithm for the DVS and Grid problems, respectively.
Given a job set JG for Grid, we can convert it into a job set JD for DVS by keeping the
release time and deadline for each job and setting the work requirement of a job in JD to
the product of the width and height of the corresponding job in JG.

I Observation 1. Given a schedule SG for JG, we can convert SG into a feasible schedule SD
for JD such that cost(SD(JD)) ≤ cost(SG(JG)); implying cost(OD(JD)) ≤ cost(OG(JG)).

Note that it is not always possible to convert a feasible DVS schedule to a feasible Grid
schedule. The observation does not immediately solve the Grid problem but as to be shown
it provides a way to analyze algorithms for Grid.

3 Online algorithm for uniform width jobs

To handle jobs of arbitrary width and height, we first study the case when jobs have uniform
width (all jobs have the same width w ≥ 1). The proposed algorithm UV (Section 3.2) is
based on a further restricted case of unit width, i.e., w = 1 (Section 3.1).

3.1 Unit width and arbitrary height
We present an online algorithm V which makes reference to an arbitrary feasible online
algorithm for the DVS problem, denoted by R. We require that the speed of R remains
the same during any integral timeslot. When jobs have integral release times and deadlines,
many known DVS algorithms satisfy this criteria, including YDS, BKP, and AVR.

Recall in Section 2 how an input for the Grid problem is converted to an input for the
DVS problem. We simulate a copy of R on the converted input and denote the speed used by
R at t as `(R, t). Our algorithm makes reference to `(R, t) but not the jobs run by R at t.

Algorithm V. For each timeslot t, schedule jobs to start at t until `(V, t) is at least `(R, t)
or until all available jobs have been scheduled. Jobs are chosen in an EDF manner.



F.-H. Liu, H.-H. Liu, and P.W.H. Wong 53:5

Analysis. Since V makes decision at integral time and jobs have unit width, each job is
completed before any further scheduling decision is made. In other words, V is non-preemptive.
To analyze the performance of V, we note that V gives a feasible schedule (Lemma 2 (i)),
and then analyze its competitive ratio (Theorem 3).

Let hmax(V, t) be the maximum height of jobs scheduled at t by V . We first classify each
timeslot t into two types: (i) hmax(V, t) < `(R, t), and (ii) hmax(V, t) ≥ `(R, t). We denote
by I1 and I2 the union of all timeslots of Type (i) and (ii), respectively. Notice that I1
and I2 can be empty and the union of I1 and I2 covers the entire time line. Lemma 2 (ii)
and (iii) bound the cost of V in each type of timeslots. By Lemma 2 and Observation 1, we
obtain the competitive ratio of V in Theorem 3.

I Lemma 2. (i) V gives a feasible schedule; (ii) cost(V, I1) ≤ 2α ·cost(R); (iii) cost(V, I2) ≤
2α · cost(O); and (iv) cost(V) = cost(V, I1) + cost(V, I2).

I Theorem 3. Algorithm V is 2α · (R+ 1)-competitive, where R is the competitive ratio of
the reference DVS algorithm R. V is 2α · (8 · eα + 1)-competitive and 2α · 2-approximate when
the algorithm BKP and YDS are referenced, respectively.

3.2 Uniform width and arbitrary height
The idea of handling uniform width jobs is to treat them as if they were unit width, however,
this would mean that jobs may have non-integral release times or deadlines. To remedy this,
we define a procedure AlignFI to align the feasible intervals (precisely, release times and
deadlines) to the new time unit.

Let J be a set of uniform width jobs each of width w. A job J is said to be tight if
|I(J)| ≤ 2w; otherwise, it is loose. Let JT and JL be the disjoint subsets of tight and
loose jobs of J , respectively. We design different strategies for tight and loose jobs. We
observe that tight jobs can be handled easily by starting them at their release times. For
any loose job, we modify it via Procedure AlignFI such that its release time and deadline
is an integral multiple of w. With this alternation, we can treat the jobs as unit width and
make scheduling decisions at time multiple of w.

Procedure AlignFI. Given a loose job set JL in which w(J) = w and |I(J)| > 2 · w
∀J ∈ JL. We define the procedure AlignFI to transform each loose job J ∈ JL into a job
J ′ with release time and deadline “aligned” as follows: r(J ′)← mini≥0{i · w | i · w ≥ r(J)};
and d(J ′)← maxi≥0{i · w | i · w ≤ d(J)}. We denote the resulting job set by J ′.

After AlignFI, the release time and deadline of each loose job are aligned to timeslot
i1 · w and i2 · w for some integers i1 < i2. Hence, the job set J ′ can be treated as job set
with unit width, where each unit has duration w instead of 1. We further observe that a
feasible schedule of J ′ is also a feasible schedule of JL.

Online algorithm UV. The algorithm takes a job set J with uniform width w as input
and schedules the jobs in J as follows. Let JT be the set of tight jobs in J and JL be the
set of loose jobs in J . Note that the decisions of UV can be made online.
1. For any tight job J ∈ JT, schedule J to start at r(J).
2. Loose jobs in JL are converted to J ′ by AlignFI. For J ′, we run Algorithm V in

Section 3.1 with BKP. Jobs are chosen in an earliest deadline first (EDF) manner.

The “inflexibility” of tight jobs guarantees that the simple strategy (Step 1 of UV) gives
good enough ratio. That is, since tight jobs have short feasible intervals, even the optimal
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schedule has to have high cost if our strategy has high load. On the other hand, AlignFI
only increases the competitive factor of loose jobs by a constant factor because the feasible
interval duration is only decreased by at most two thirds. The overall performance is:
I Theorem 4. cost(UV(J )) ≤ 12α · (8eα + 1) · cost(O(J )).

4 Online algorithm for the general case

In this section, we present an algorithm G for jobs with arbitrary width and height. We
first transform job set J to a “nice” job set J ∗ (to be defined) and show that such a
transformation only increases the cost modestly. Furthermore, we show that for any nice
job set J ∗, we can bound cost(G(J ∗)) by cost(O(J ∗)) and in turn by cost(O(J )). Then we
can establish the competitive ratio of G.

4.1 Upper bound
A job J is said to be a nice job if w(J) = 2p, for some non-negative integer p and a job set
J ∗ is said to be a nice job set if all its jobs are nice. Note that the nice job J is in class Cp.

Procedure Convert. Given a job set J , we define the procedure Convert to transform
each job J ∈ J into a nice job J∗. We denote the resulting nice job set by J ∗ and the subset
in Cp by J ∗p . Suppose J is in class Cp. We modify it as follows: w(J∗)← 2p; r(J∗)← r(J);
and d(J∗)← r(J∗) + max{d(J)− r(J), 2p}.

We then define two procedures that transform schedules related to nice job sets.

Transformation RelaxSch. RelaxSch transforms a schedule S for a job set J into a
schedule S∗ for the corresponding nice job set J ∗ by moving the start and end time of every job
J such that st(S∗, J∗) = min{d(J∗)− w(J∗), st(S, J)}; and et(S∗, J∗) = st(S∗, J∗) + w(J∗).
I Observation 5. Consider any schedule S for J and the schedule S∗ constructed by
RelaxSch for the corresponding J ∗. We have [st(S∗, J∗), et(S∗, J∗)] ⊆ [r(J∗), d(J∗)]; in
other words, S∗ is a feasible schedule for J ∗.

Transformation ShrinkSch. ShrinkSch converts a schedule S∗ for a nice job set J ∗
to a schedule S for the corresponding J . We set st(S, J) ← st(S∗, J∗); and et(S, J) ←
st(S, J) + w(J), therefore, et(S, J) ≤ et(S∗, J∗). Let S∗p be the partial schedule for class Cp.

Online algorithm G. When a job J is released, it is converted to J∗ by Convert and
classified into one of the classes Cp. Jobs in the same class after Convert (being a uniform-
width job set) are scheduled by UV independently of other classes. We then modify the
execution time of J∗ in UV to the execution time of J in G by ShrinkSch. Note that all
these procedures can be done in an online fashion.

Using the results in Sections 3 and 4.1, we can compare the cost of G(Jp) with O(J ∗p )
and O(J ∗p ) with O(J ) for each class Cp. The most tricky part is in Lemma 6 (i). Intuitively,
one can show that for each class, the load of O(J ∗p ) at any time is bounded above by that of
O(Jp) at the current time and 2p−1 − 1 timeslots before and after the current time. This
allows us to bound cost(O(J ∗p )) by 3α times of cost(O(Jp)) (Lemma 6 (ii)).
I Lemma 6. Consider any class Cp. (i) At any time t, `(S∗p , t) ≤ `(Sp, t) + `(Sp, t− (2p−1−
1))+`(Sp, t+(2p−1−1)). (ii) cost(O(J ∗p )) ≤ 3α ·cost(O(Jp)); (iii) cost(O(Jp)) ≤ cost(O(J )).
I Theorem 7. For any job set J , cost(G(J )) ≤ (36dlog wmax

wmin
e)α · (8eα + 1) · cost(O(J )).
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4.2 Lower bound
We show a lower bound of competitive ratio for Grid problem with unit height and arbitrary
width by designing an adversary for the problem. This lower bound is immediately a lower
bound for the general case of Grid problem. Note that the lower bound in [23] may look
similar but it does not work in our case since that adversary only guarantees a high peak
load at a particular timeslot which is not sufficient for the total cost measurement.

Adversary Λ and job instance J . Given an online algorithm A, a constant α > 1 and a
large number x, adversary Λ outputs a set of jobs J with bαc+ 1 jobs. Let Ji be the ith
job of J . The adversary first computes a width for each job before running algorithm A. It
sets w(Jbαc) = x, w(Jbαc+1) = x− 1, and w(Ji) = 3w(Ji+1) + 1 for 1 ≤ i ≤ bαc − 1. Then
adversary Λ computes a release time and deadline for each job through a interaction with
algorithm A. For the first job J1, adversary Λ chooses any release time and deadline such
that d(J1)− r(J1) ≥ 3w(J1). For the ith job Ji ∈ J for 2 ≤ i ≤ bαc+ 1, adversary Λ sets
r(Ji) = st(A, Ji−1) + 1 and d(Ji) = et(A, Ji−1). This limits algorithm A to fewer choices of
start times for scheduling a new job. A job can only be scheduled in the execution interval of
the previous job by algorithm A. On the other hand, no two jobs have the same release time.
Algorithm A shall schedule the jobs accordingly from J1 to Jbαc+1 and one job at a time.

I Lemma 8. cost(O(J )) ≤ x · 3bαc.

I Theorem 9. For any deterministic online algorithm A for Grid problem with unit height and
arbitrary width, adversary Λ constructs an instance J such that cost(A(J ))

cost(O(J )) ≥
(

1
3 log wmax

wmin

)α
.

5 Online algorithm for uniform height jobs

We consider (i) jobs with uniform-height h and unit-width and (ii) jobs with uniform-height
h, arbitrary width and agreeable deadlines. To ease the discussion, we define the density of
J , denoted by den(J), to be h(J)∗w(J)

d(J)−r(J) . Roughly speaking, the density signifies the average
load required by the job over its feasible interval. We then define the “average” load at any
time t as avg(t) =

∑
J:t∈I(J) den(J).

Basically, at any time t, AVR runs the processor at a speed which is the sum of the
densities of jobs that are available at t. By Observation 1, we have the following corollary.

I Corollary 10. For any input JG and the corresponding input JD, cost(AVR(JD)) ≤
(2α)α

2 · cost(OG).

Main Ideas

The main idea is to make reference to the online algorithm AVR and consider two types
of intervals, I>h where the average load is higher than h and I≤h where the average load
is at most h. For the former, we show that we can base on the competitive ratio of AVR
directly; for the latter, our load could be much higher than that of AVR and in such case,
we compare directly to the optimal algorithm. Combining the two cases, we have Lemma 11,
which holds for any job set. We show how we can use this lemma to obtain algorithms for
the special cases. Notice that the number d avg(t)

h e is the minimum number of jobs needed to
make the load at t at least avg(t).

I Lemma 11. Suppose we have an algorithm A for any job set J such that (i) `(A, t) ≤
c · davg(t)e for all t ∈ I>h, and (ii) `(A, t) ≤ c′ for all t ∈ I≤h. Then we have cost(A(J )) ≤
( (4cα)α

2 + c′α) · cost(O(J )).
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Uniform-height and unit-width

We consider jobs with uniform-height and unit-width, i.e., w(J) = 1 and h(J) = h ∀J . Note
that such case is a subcase discussed in Section 3.1. Here we illustrate a different approach
using the ideas above and describe the algorithm UU for this case. The competitive ratio of
UU is better than that of Algorithm V in Section 3.1 when α < 3.22.

Algorithm UU . At any time t, choose d avg(t)
h e jobs according to the EDF rule and schedule

them to start at t. If there are fewer jobs available, schedule all available jobs.

I Theorem 12. Algorithm UU gives feasible schedules and it is ( (4α)α
2 + 1)-competitive.

Uniform-height, arbitrary width and agreeable deadlines

We then consider jobs with agreeable deadlines. We first note that simply scheduling d avg(t)
h e

number of jobs may not return a feasible schedule.
To schedule these jobs, we first observe that for a set of jobs with total densities at most h,

it is feasible to schedule them such that the load at any time is at most h. Roughly speaking,
we consider jobs in the order of release, and hence in EDF manner since the jobs have
agreeable deadlines. We keep the current ending time of all jobs that have been considered.
As a new job is released, if its release time is earlier than the current ending time, we set its
start time to the current ending time (and increase the current ending time by the width of
the new job); otherwise, we set its start time to be its release time.

Using this observation, we then partition the jobs into “queues” each of which has sum of
densities at most h. Each queue Qi is scheduled independently and the resulting schedule
is to “stack up” all these schedules. The queues are formed in a Next-Fit manner: (i) the
current queue Qq is kept “open” and a newly arrived job is added to the current queue if
including it makes the total densities stays at most 1; (ii) otherwise, the current queue is
“closed” and a new queue Qq+1 is created as open.

Algorithm AD. The algorithm consists of the following components: InsertQueue, Set-
StartTime and ScheduleQueue.
InsertQueue: We keep a counter q for the number of queues created. When a job J arrives,

if den(J) +
∑
J′∈Qq den(J ′) ≤ h, then job J is added to Qq; otherwise, job J is added to

a new queue Qq+1 and we set q ← q + 1.
SetStartTime: For the current queue, we keep a current ending time E, initially set to 0.

When a new job J is added to the queue, if r(J) ≤ E, we set st(J)← E; otherwise, we
set st(J)← r(J). We then update E to st(J) + w(J).

ScheduleQueue: At any time t, schedule all jobs in all queues with start time set at t.

I Lemma 13. (i) `(AD, t) ≤ 3 · h · davg(t)
h e for t ∈ I>h; (ii) `(AD, t) ≤ h for t ∈ I≤h.

By Lemmas 11 and 13, we have Theorem 14 by setting c = 3 and c′ = 1.

I Theorem 14. For jobs with uniform height, arbitrary width and agreeable deadlines, AD
is ( (12α)α

2 + 1)-competitive. For jobs with uniform height, arbitrary width and same release
time or same deadline, the competitive ratio can be improved to ( (8α)α

2 + 1) by using first-fit
instead of next-fit for InsertQueue.
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6 Exact Algorithms

We first present some key notions. An algorithm with parameters p1, p2, . . . is said to be a
fixed parameter algorithm if it runs in f(p1, p2, . . .) ·O(g(N)) time for any function f and any
polynomial function g, where N is the size of input. A problem is fixed-parameter tractable
(FPT) if it can be solved by a fixed parameter algorithm. In this section, we show that the
general case of the Grid problem is FPT with respect to a few parameters, and derive lower
bounds of it.

We design two fixed parameter algorithms that are based on dynamic programming.
Roughly speaking, we divide the timeline into k contiguous windows in a specific way, where
each window Wi represents a time interval [bi, bi+1) for 1 ≤ i ≤ k. The algorithm visits all
windows accordingly from left to right and maintains a candidate set of schedules for the
visited windows that no optimal solution is deleted from the set. The parameters of the
algorithms emerge if we interpret the input as an “interval graph”.

Interval graph. A graph G = (V,E) is an interval graph if it captures the intersection
relation for some set of intervals on the real line. Formally, for each v ∈ V , we can associate v
to an interval Iv such that (u, v) is in E if and only if Iu∩Iv 6= ∅. It has been shown in [13, 14]
that an interval graph has a “consecutive clique arrangement”, i.e., its maximal cliques can be
linearly ordered in a way that for every vertex v in the graph, the maximal cliques containing
v occur consecutively in the linear order. For any instance of the Grid problem, we can
transform it into an interval graph G = (V,E): For each job J with interval I(J), we create
a vertex v(J) ∈ V and an edge is added between v(J) and v(J ′) if and only if I(J) intersects
I(J ′). We can then obtain a set of maximal cliques in linear order, C1, C2, · · · , Ck, by
sweeping a vertical line from left to right, where k denotes the number of maximal cliques
thus obtained. Our parameter, the maximum number of overlapped feasible intervals, is the
maximum size of these maximal cliques.

Boundaries and windows. Based on the maximal cliques described above, we define some
“windows” W1, W2, · · · , Wk with “boundaries” b1, b2, · · · , bk+1 as follows. We first give
the definition of boundaries for the first algorithm. This definition will be generalized
in Section 6.1 for the second algorithm. For 1 ≤ i ≤ k, the i-th boundary bi is defined
as the earliest release time of jobs in clique Ci but not in cliques before Ci, precisely,
bi = min{t | t = r(J) and J ∈ Ci \ (∪i−1

s=1Cs)}. The rightmost boundary bk+1 is defined as
the latest deadline among all jobs. With the boundaries, we partition the timeslots into
contiguous intervals called windows. Figure 1 is an example of a set of jobs, its corresponding
interval graph and maximal cliques.

6.1 Fixed parameter algorithms
Framework of the algorithms

We propose two exact algorithms, both run in k stages one for each of the k windows. We
maintain a table Tleft storing all “valid configurations” of jobs in all windows that have been
considered so far. A row in the table consists of the configurations of all jobs. In addition, for
each window Wi, we compute a table Trighti to store all possible configurations of start and
end time of jobs available in Wi. The configurations in Trighti is then “concatenated” to some
configurations in Tleft that are “compatible” with each other. These merged configurations
will be filtered to remove non-optimal ones. The remaining configurations become the new
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Figure 1 (Left) A set of jobs, where the horizontal line segments are the feasible time intervals of
jobs and the vertical lines are boundaries of windows. (Right) An interval graph of the corresponding
job set. (Bottom) A set of all the maximal cliques in the interval graph.

Tleft for the next window. We denote by Wleft the union of the windows corresponding to
Tleft. We drop the subscript i in Trighti when the context is clear.

Configurations, validity, compatibility, concatenation. A configuration of job J in win-
dow Wi is an execution segment [sti(J), eti(J)). It is valid if [sti(J), eti(J)) ⊆ [r(J), d(J)).
The cost of a windowWi with respect to some configurations is

∑
t∈Wi

(
∑
J:t∈[sti(J),eti(J)) h(J))α.

Two configurations of the same job J are compatible if the union of the two configurations
is a valid and contiguous execution segment with length exactly w(J). To concatenate two
configurations from two different windows, we make a union of the two configurations, and
the corresponding cost is to add the costs of the two windows.

An algorithm with three parameters

Algorithm E. We first transform the input job set J to an interval graph, and obtain the
maximal cliques Ci for 1 ≤ i ≤ k and the corresponding windows Wi. We start with Tleft
containing the only configuration, which sets all the jobs to be not yet executed. Then we visit
the windows from left to right with three procedures: ListConfigurations, ConcatenateTables
and FilterTable.
ListConfigurations: For window Wi and jobs in Ci, we construct Tright storing all config-

urations of J ∈ Ci with their cost in a brute force manner. We also delete the invalid
configurations.

ConcatenateTables: We then concatenate compatible configurations in Tleft and Tright. The
resulting table is the new Tleft. We also delete the invalid configurations in the new Tleft.

FilterTable: After concatenation, we filter non-optimal configurations. We leave the config-
uration with the lowest cost among the configurations with the same execution segment.

After processing all the windows, the configuration with the lowest cost in the final Tleft
is returned as the solution. Note that a configuration is deleted only when it is invalid or
its cost is higher than another configuration with the same execution segment for each job.
Thus the algorithm outputs an optimal solution.

Let n to be the number of jobs, wmax to be the maximum width of jobs, m to be the
maximum size of cliques, and Wmax to be the maximum length of windows. Through a detail
analysis, the running time of the three procedures depend mainly on wmax, m and Wmax. So
we have:
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I Theorem 15. Algorithm E computes an optimal solution in f(wmax,m,Wmax) ·O(n2) time
for some function f , i.e., the problem is FPT with respect to wmax, m, and Wmax.

An algorithm with two parameters

Algorithm E+. This algorithm is similar to algorithm E except the definitions of boundaries
and ListConfigurations. Given a set of jobs J , the algorithm uses the set of boundaries
{r(J) | J ∈ J } ∪ {d(J) | J ∈ J } to construct the windows and obtain the corresponding
cliques. For ListConfigurations, the number of timeslots we are considering for each window
is at most a constant times the total width of all jobs in the window, i.e., when the window
length is relatively larger than the total width of all jobs in the window, we consider much
fewer than the window length. Let n to be the number of jobs, wmax to be the maximum
width of jobs, and m to be the maximum size of cliques. We observed that the running time
of the three procedures depend only on wmax and m. So we have:

I Theorem 16. Algorithm E+ computes an optimal solution in f(wmax,m) ·O(n2) time for
some function f . Hence, the Grid problem is FPT with respect to wmax and m.

6.2 Exact algorithm without parameter
For the case with unit width and arbitrary height of Grid problem, we can use Algorithm E to
design an exact algorithm that its time complexity is only measured in the size of the input.
In the case with unit width and arbitrary height, one may observe that the functionalities of
the components of Algorithm E are not affected by the length of the windows. Without loss
of generality, we assume that the number of timeslots τ is even. And we enforce all windows
to have length 2. By this setting, the new algorithm runs in O((τ/2) · 42n ·n) time where n is
the number of jobs. Note that the input size N of the problem is 3n log τ + n log hmax where
hmax is the maximum height over all jobs. Since log τ = O(N), the running time becomes
2O(N). Thus we have the following theorem.

I Theorem 17. There is an exact algorithm running in 2O(N) time for the Grid problem
with unit width and arbitrary height where N is the length of the input.

Jansen et al. [16] derived several lower bounds for scheduling and packing problems
which can be used to develop lower bounds for our problem. Their lower bounds assume
Exponential Time Hypothesis (ETH) holds, which conjectures that there is a positive real
ε such that 3-Sat cannot be decided in time 2εnNO(1) where n is the number of variables
in the formula and N is the length of the input. A lower bound for other problems can be
shown by making use of strong reductions, i.e. reductions that increase the parameter at
most linearly. Through a sequence of strong reductions, they obtain two lower bounds for
Partition, 2o(n)NO(1) and 2o(

√
N) where n is the cardinality of the given set and N is the

length of the input. We design a strong reduction from Partition to the decision version of
Grid problem with unit width and arbitrary height. For each integer s in an integer set S,
we convert it to a job J with r(J) = 0, d(J) = 2, w(J) = 1 and h(J) = 2s. We claim that S
is a partition if and only if the set of jobs can be scheduled with cost at most 2(

∑
s∈S s)α.

By setting the length of the input or the number of jobs as the parameter, we have:

I Theorem 18. There is a lower bound of 2o(
√
N) and a lower bound of 2o(n)NO(1) on the

running time for the Grid problem unless ETH fails, where n is the number of jobs and N is
the length of the input.
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7 Conclusion

We develop the first online algorithm with polylogarithm-competitive ratio and the first
FPT algorithms for non-preemptive smart grid scheduling problem for the general case. Our
algorithm in Section 4 relies on a classification into powers of 2. In the full paper, we show
that one can classify into powers of 1 + λ, for λ > 0, and the competitive ratio only changes
by a constant factor. We also discuss in the full paper why we base on the preemptive instead
of non-preemptive DVS problem.

There are many future directions: different cost functions to capture varying electricity
cost over time or measuring the maximum cost instead of the total [27]; jobs with varying
power requests during its execution (it is a constant value in this paper); other objectives
like response time. A preliminary result is that we can extend our online algorithm to the
case where a job may have varying power requests during its execution, in other words, a
job can be viewed as having rectilinear shape instead of being rectangular. In such case,
the competitive ratio is increased by a factor which measures the maximum height to the
minimum height ratio of a job (see the full paper for more details).
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