Finding k£ Simple Shortest Paths and Cycles*

Udit Agarwal® and Vijaya Ramachandran?

1 Dept. of Computer Science, University of Texas, Austin, USA
udit@cs.utexas.edu

2 Dept. of Computer Science, University of Texas, Austin, USA
v1lr@Qcs.utexas.edu

—— Abstract

We present algorithms and techniques for several problems related to finding multiple simple
shortest paths and cycles in a graph. Our main result is a new algorithm for finding k simple
shortest paths for all pairs of vertices in a weighted directed graph G = (V, E). For k = 2 our
algorithm runs in O(mn +n?logn) time where m and n are the number of edges and vertices in
G. For k = 3 our algorithm runs in O(mn? 4+ n3logn) time, which is almost a factor of n faster
than the best previous algorithm.

Our approach is based on forming suitable path extensions to find simple shortest paths; this
method is different from the ‘detour finding’ technique used in most of the prior work on simple
shortest paths, replacement paths, and distance sensitivity oracles.

We present new algorithms for generating simple cycles and simple paths in G in non-
decreasing order of their weight. The algorithm for generating simple paths is much faster,
and uses another variant of path extensions.

1998 ACM Subject Classification G.2.2 [Graph Theory] Graph Algorithms

Keywords and phrases Graph Algorithms, Shortest Paths, k Simple Shortest Paths, Enumerat-
ing Simple Cycles, Enumerating Simple Paths

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.8

1 Introduction

We present new algorithms and fundamentally new techniques for several problems related
to finding multiple simple shortest paths and cycles in a graph.

Computing shortest paths in a weighted directed graph is a very well-studied problem.
Let G = (V, E) be a directed graph with non-negative edge weights, with |V| = n, |E| = m.
A shortest path for a single pair of vertices in G, or for a single source, can be computed
in O(m) time using Dijkstra’s algorithm, and the all pairs shortest paths (APSP) can be
computed in O(mn) time [4], where O hides polylog(n) factors.

A related problem is one of computing a sequence of k shortest paths, for k > 1. If the
paths need not be simple, the problem of generating k£ shortest paths is well understood,
and the most efficient algorithm is due to Eppstein [8], which has the following bounds —
O(m + nlogn + k) for a single pair of vertices and O(m + nlogn + kn) for single source.

In the k simple shortest paths (k-SiSP) problem, given a pair of vertices s, ¢, the output
is a sequence of k simple paths from s to t, where the i-th path in the collection is a shortest
simple path in the graph that is not identical to any of the ¢ — 1 paths preceding it in the

* This work was supported in part by NSF Grant CCF-1320675. The first author’s research was also
supported in part by a Calhoun Fellowship.

© Udit Agarwal and Vijaya Ramachandran;

oY licensed under Creative Commons License CC-BY
27th International Symposium on Algorithms and Computation (ISAAC 2016).
Editor: Seok-Hee Hong; Article No. 8; pp. 8:1-8:12

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ISAAC.2016.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2

Finding k£ Simple Shortest Paths and Cycles

output. (Note that these k simple shortest paths need not have the same weight.) It is noted
in [8] that the k-SiSP problem is more common than the version where a path can contain
cycles.

In this paper we consider the problem of generating multiple simple shortest paths (SiSP)
and cycles (SiSC) in a weighted directed graph under the following set-ups: the k simple
shortest paths for all pairs of vertices (k-APSiSP), k simple shortest paths in the overall
graph (k-All-SiSP), and the corresponding problem of finding simple shortest cycles in the
overall graph (k-All-SiSC). We obtain significantly faster algorithms for k-APSiSP for small
values of k, and fast algorithms, that also appear to be the first nontrivial algorithms, for
the remaining two problems for all £ > 1. Implicit in our method for k-All-SiSC are new
algorithms for finding k simple shortest cycles through a specified vertex (k-SiSC) and
through every vertex (k-ANSiSC) in weighted directed graphs.

The techniques we use in our algorithms are of special interest: We use two path extension
techniques, a new method for k-APSiSP, and another for k-All-SiSP that is related to a
method used in [5] for fully dynamic APSP, but which is still new for the context in which
we use it.

1.1 Related Work

For the case when the k shortest paths need not be simple, the all-pairs version (k-APSP)
was considered in the classical papers of Lawler [15, 16] and Minieka [17]. The most efficient
current algorithm for k-APSP runs the k-SSSP algorithm in [8] on each of the n vertices
in turn, leading to a bound of O(mn + n?logn + kn?). It was noted in Minieka [17] that
the all-pairs version of k shortest paths becomes significantly harder when simple paths are
required, i.e., that the problem we study here, k-APSiSP, appears to be significantly harder
than k-APSP.

Even for a single source-sink pair, the problem of generating k£ simple shortest paths
(k-SiSP) is considerably more challenging than the unrestricted version considered in [8].
Yen’s algorithm [24] finds the k simple shortest paths for a specific pair of vertices in
O(k - (mn+n?logn)). This time bound was improved slightly [9], using Pettie’s faster APSP
algorithm [18], to O(k(mn + n?loglogn)). On the other hand, it is shown in [23] that if the
second simple shortest path for a single source-sink pair (i.e., kK = 2 in k-SiSP) can be found
in O(n37%) time for some & > 0, then APSP can also be computed in O(n3~%) time for some
a > 0; the latter is a major open problem. Thus, for dense graphs, where m = ©(n?), we
cannot expect to improve the O(mn) bound, even for 2-SiSP, unless we solve a major and
long-standing open problem for APSP.

The k-SiSP problem is much simpler in the undirected case and is known to be solvable
in O(k(m + nlogn)) time [14]. For unweighted directed graphs, Roditty and Zwick [19] gave
an O(km+/n) randomized algorithm for directed k-SiSP. They also showed that k-SiSP can
be solved with O(k) executions of an algorithm for the 2-SiSP problem.

A problem related to 2-SiSP is the replacement paths problem. In the s-t version of
this problem, we need to output a shortest path from s to ¢ when an edge on the shortest
path p is removed; the output is a collection of |p| paths, each a shortest path from s to
t when an edge on p is removed. Clearly, given a solution to the s-t replacement paths
problem, the second shortest path from s to ¢ can be computed as the path of minimum
weight in this solution. This is essentially the method used in all prior algorithms for 2-SiSP
(and with modifications, for k-SiSP), and thus the current fastest algorithms for 2-SiSP and
replacement paths have the same time bound. For the all-pairs case that is of interest to
us, the output for the replacement paths problem would be O(n?) paths, where each path

U. Agarwal and V. Ramachandran

is shortest for a specific vertex pair, when a specific edge in its shortest path is removed.

In view of the large space needed for this output, in the all-pairs version of replacement
paths, the problem of interest is distance sensitivity oracles (DSO). Here, the output is a
compact representation from which any specific replacement path can be found with O(1)

time. The first such oracle was developed in Demetrescu et al. [7], and it has size O(n?logn).

The current best construction time for an oracle of this size is O(mnlogn + n? log® n) time
for a randomized algorithm, and a log factor slower for a deterministic algorithm, given in
Bernstein and Karger [3]. Given such an oracle, the output to 2-APSiSP can be computed
with O(n) queries for each source-sink pair, i.e., with O(n?®) queries to the DSO.

To the best of our knowledge, for k > 1 the problem of generating k simple shortest
cycles in the overall graph in non-decreasing order of their weights (k-All-SiSC) has not been
studied before, and neither has k-SiSC (k Simple Shortest Cycles through a given node) or
k-ANSiSC (k All Nodes Simple Shortest Cycles); for k = 1, 1-All-SiSC asks for a minimum
weight cycle and 1-ANSiSC is the ANSC problem [25], both of which can be found in O(mn)
time, and 1-SiSC can be solved in O(m + n) time. On the other hand, enumerating simple
(or elementary) cycles in no particular order — which is thus a special case of k-All-SiSC — has
been studied extensively [21, 22, 20, 11]. The first polynomial time algorithm was given by
Tarjan [20], and ran in O(kmn) time for k cycles. This result was improved to O(k - m + n)
by Johnson [11]. We do not expect to match this linear time result for k-All-SiSC since it
includes the minimum weight cycle problem for k = 1.

In this paper, we concentrate on results for truly sparse graphs with arbitrary non-negative
edge weights. Hence we do not consider results for small integers weights or for dense graphs;
several subcubic results for such inputs are known using fast matrix multiplication.

1.2 Qur Contributions

We present several algorithmic results on finding k simple paths and cycles in a directed
graph with non-negative edge weights.! A summary of our results is given in Table 1.

Computing k simple shortest paths for all pairs (k-APSiSP) in G. We present a new
approach to the k-APSiSP problem, which computes the sets P} (z, y) as defined below. Our
method introduces the key notion of a ‘nearly k SiSP set’, Qx(z,y), defined as follows.

» Definition 1.1. Let G = (V, E) be a directed graph with nonnegative edge weights. For

k > 2, and a vertex pair z,y, let k* = min{r, k}, where r is the number of simple paths from

x to y in G. Then,

(i) Pi(z,y) is the set of k* simple shortest paths from x to y in G

(i1) Qr(z,y) is the set of k nearly simple shortest paths from x to y, defined as follows. If
k* =k and the k — 1 simple shortest paths from x to y share the same first edge (z, a)
then Qg (z,y) contains these k—1 simple shortest paths, together with the simple shortest
path from z to y that does not start with edge (x,a), if such a path exists. Otherwise
(i.e, if either the former or latter condition does not hold), Qx(z,y) = P (z,y).

! Except for k-All-SiSP (see Section 3.1), we can also handle negative edge-weights as long as there are
no negative-weight cycles, by applying Johnson’s transformation [12] to obtain an equivalent input
with nonnegative edge weights. If the resulting edge-weights include weight 0, we will use the pair
(wt(p),len(p)) as the weight for path p, where len(p) is the number of edges in it; this causes the weight
of a proper subpath of p to be smaller than the weight of p.

8:3

ISAAC 2016

8:4

Finding k£ Simple Shortest Paths and Cycles

Our algorithm for k-APSiSP first constructs Qg (x,y) for all pairs of vertices z,y, and
then uses these sets in an efficient algorithm, COMPUTE-APSISP, to compute the P (x,y)
for all 2,y. The latter algorithm runs in time O(k-n? +n?logn) for any k, while our method
for constructing the Qx(x,y) depends on k. For k = 2 we present an O(mn + n?logn) time
method to compute the Q2(x,y) sets; this gives a 2-APSiSP algorithm that matches Yen’s
bound of O(mn + n?logn) for 2-SiSP for a single pair of vertices. It is also faster (by a
polylogarithmic factor) than the best algorithm for DSO (distance sensitivity oracles) for the
all-pairs replacement paths problem [3]. In fact, we also show that the Q2(x,y) sets can be
computed in O(n?) time using a DSO, and hence 2-APSiSP can be computed in O(n?logn)
time plus the time to construct the DSO.

For k > 3 our algorithm to compute the Q. sets makes calls to an algorithm for (k — 1)-
APSiSP, so we combine the two components together in a single recursive method, APSISP,
that takes as input G and k, and outputs the P} sets for all vertex pairs. The time bound
for APSISP increases with k: it is faster than Yen’s method for & = 3 by a factor of n (and
hence is faster than the current fastest method by almost a factor of n), it matches Yen for
k =4, and its performance degrades for larger k.

If a faster algorithm can be designed to compute the @y, sets, then we can run COMPUTE-
APSISP on its output and hence compute k-APSiSP in additional O(k - n? + n?logn) time.
Thus, a major open problem left by our results is the design of a faster algorithm to compute
the @ sets for larger values of k.

New Approach: Computing simple shortest paths without finding detours. Our method
for computing k-APSiSP (using the Qg (z,y) sets) extends an existing simple path in the data
structure to create a new simple path by adding a single incoming edge. This approach differs
from all previous approaches to finding k simple paths and replacement paths. All known
previous algorithms for 2-SiSP compute replacement paths for every edge on the shortest
path (by computing suitable ‘detours’). In fact, Hershberger et al. [10] present a lower bound
for k-SiSP, exclusively for the class of algorithms that use detours, by pointing out that all
known algorithms for k-SiSP compute replacement paths, and all known replacement path
algorithms use detours. In contrast, our method may enumerate and inspect paths that are
not detours, including paths with cycles (e.g., Step 17 in algorithm CoMPUTE-APSISP in
Section 2.1). Thus our method is fundamentally new.

Generating k simple shortest cycles and paths (k-All-SiSC, k-SiSC, k-ANSiSC) and k-
AllI-SiSP. We consider the problem of generating the k simple shortest cycles in the graph
G in nonincreasing order of their weight (k-All-SiSC). In Section 3 we present an algorithm
for k-All-SiSC that runs in O(k -mn) time by generating each successive simple shortest
cycle in G in O(mn) time. The same algorithm can be used to enumerate all simple cycles
in G in nondecreasing order of their weights. Recall that the related problem of simply
enumerating simple cycles in a graph in no particular order was a very well-studied classical
problem [21, 22, 20, 11] until an algorithm that generates successive cycles in linear time was
obtained [11]. Our algorithm does not match the linear time bound per successive cycle, but
it is to be noted that 1-All-SiSC (i.e., the problem of generating a minimum weight cycle) is
a very fundamental and well-studied problem for which the current best bound is O(mn).

Our algorithm for k-All-SiSC creates a auxiliary graph on which suitable SiSP computation
can be performed to generate the desired output. We give fast algorithms for £-SiSC and
k-ANSISC using the same auxiliary graph.

Complementing our result for k-All-SiSC, we present in Section 3.1 an algorithm for
k-All-SiSP that generates each successive simple path in O(k) time if k& < n, and in O(n)

U. Agarwal and V. Ramachandran

time if k > n, after an initial start-up cost of O(m) to find the first path. This time bound
is considerably faster than that for k-All-SiSC. Our method, ALL-SISP, is again one of
extending existing paths by an edge (as is COMPUTE-APSISP); it is, however, a different
path extension method.

Path Extensions. We use two different path extension methods, one for k-APSiSP and the
other for k-All-SiSP. Path extensions have been used before in the hidden paths algorithm
for APSP [13] and more recently, for fully dynamic APSP [5]. These two path extension
methods differ from each other, as noted in [6]. Our path extension method for k-All-SiSP is
inspired by a method in [5] to compute ‘locally shortest paths’ for fully dynamic APSP. Our
path extension method for k-APSiSP appears to be new.

Here are the main theorems we establish for our algorithmic results. In all cases, the
input is a directed graph G = (V, E) with nonnegative edge weights, and |V| = n, |E| = m.

» Theorem 1.2. Given an integer k > 1, and the nearly simple shortest paths sets Qp(x,y)
(Definition 1.1) for all z,y € V, Algorithm COMPUTE-APSISP (Section 2.1) produces the k
simple shortest paths for every pair of vertices in O(k -n? +n?logn) time.

» Theorem 1.3.
(i) Algorithm 2-APSISP (Section 2.2.1) correctly computes 2-APSiSP in O(mn + n?logn)
time.
(ii) For k > 2, Algorithm APSISP (Section 2.2.2) correctly computes k-APSiSP in
T(m,n, k) time, where T(m,n,k) <n-T(m,n, k—1)+ O(mn+n?- (k+logn)).
(iii) T(m,n,3), the time bound for algorithm APSISP for k =3, is O(m -n? + n®-logn).

» Theorem 1.4 (k-All-SiSC)). After an initial start-up cost of O(mn+n?logn) time, we can
compute each successive simple shortest cycle in O(mn + n?loglogn) time. This computes
k-All-SiSC (Section 3).

» Theorem 1.5 ((k-All-SiSP)). After an initial start-up cost of O(m) time to generate the
first path, Algorithm ALL-SISP (Section 3.1) computes each succeeding simple shortest path
with the following bounds:

(i) amortized O(k +logn) time if k = O(n) and O(n + logk) time if k = Q(n);

(ii) worst-case O(k -logn) time if k = O(n), and O(n -logk) time if k = Q(n).

Space Bounds. Our k-APSISP algorithm uses O(k? - n?) space, which is a factor of k
larger than the bound on the size of the output. In contrast, the earlier path extension

algorithms for APSP [13] and for fully dynamic APSP [5] use 2(mn) space in the worst case.

All of our other algorithms use space O(kn?) or better.
Only proof sketches are given here; the full proofs of most results as well as details of the
algorithms for simple cycles are in the arXiv paper [1]. Table 1 lists our main results.

2 The k-APSiSP Algorithm

In this section, we present our algorithm to compute k-APSiSP on a directed graph G = (V, E)
with nonnegative edge-weight function wt. The algorithm has two main steps. In the first
step it computes the nearly k-SiSP sets Qy(z,y) for all pairs x,y. In the second step it
computes the exact k-SiSP sets P (x,y) for all =,y using the Qg (x,y) sets. This second step
is the same for any value of k, and we describe this step first in Section 2.1. We then present
efficient algorithms to compute the Qj sets for k = 2 and k£ > 2 in Section 2.2.

8:5

ISAAC 2016

8:6

Finding k£ Simple Shortest Paths and Cycles

Table 1 Our results for directed graphs. All algorithms are deterministic. (DSO stands for
Distance Sensitivity Oracles).

’ PROBLEM ‘ KNOwWN RESULTS ‘ New RESULTS ‘
2-APSiSP (Sec. 2.2.1) ‘ O(n® + mnlog®n) ‘ O(mn +n?logn) ‘

(using DSO [3])
3-APSiSP (Sec. 2.2.2) | O(mn?®) [24] O(mn? + n®logn)
k-SiSC (Sec. 2.3) - O(k - (mn + n?loglog n))
k-ANSiSC (Sec. 2.3) - O(mn + n®logn) if k=2
and O(k - (mn® + n®loglogn)) if k > 2
k-All-SiSC (Sec. 3) - O(kmn)
| k-AlL-SiSP (Sec. 3.1) | - | O(k) if k < n and O(n) if k > n per path |

’ ‘ ‘ amortized, after a startup cost of O(m) ‘

In all of our algorithms we will maintain the paths in each P} (x,y) and Qx(z,y) set in
an array in nondecreasing order of edge-weights.

2.1 The Compute-APSiSP Procedure

In this section we present an algorithm, COMPUTE-APSISP, to compute k-APSiSP. This
algorithm takes as input, the graph G, together with the nearly k-SiSP sets Qg (z,y), for
each pair of distinct vertices z,y, and outputs the £* simple shortest paths from = to y in the
set P} (z,y) for each pair of vertices z,y € V' (note that k*, which is defined in Definition 1.1,
can be different for different vertex pairs x,y). As noted above, the construction of the
Qk(z,y) sets will be described in the next section.

The right (left) subpath of a path 7 is defined as the path obtained by removing the first
(last) edge on 7. If 7 is a single edge (z,y) then this path is the vertex y (z).

» Lemma 2.1. Suppose there are k simple shortest paths from x to y, all having the same
first edge (x,a). Then Vi, 1 <i <k, the right subpath of the i-th simple shortest path from x
to y has weight equal to the weight of the i-th simple shortest path from a to y.

Proof. The result is trivial for £k = 1. If it holds for £ — 1 and not k, then the k-th lightest
path p from a to y must contain x, and then we would have a shorter path from x to y that
avoids edge (z,a). <

Algorithm CoMPUTE-APSISP computes the P (x,y) sets by extending an existing path
by an edge. In particular, if the k-SiSPs from x to y all use the same first edge (z,a), then it
computes the k-th SiSP by extending the k-th SiSP from a to y (otherwise, the sets P} (z,y)
are trivially computed from the sets Qx(x,y)). The algorithm first initializes the P} (x,y)
sets with the corresponding Qx(x,y) sets in Step 4. In Step 5, it checks whether the shortest
k — 1 paths in P/ (x,y) have the same first edge and if so, by definition of Qx(x,y), this
P}(z,y) may not have been correctly initialized, and may need to update its k-th shortest
path to obtain the correct output. In this case, the common first edge (z,a) is added to the
set Extensions(a,y) in Step 7. We explain this step below.

We define the k-Left Extended Simple Path (k-LESiP) 7y, from z to y as the path
Tgay = (T, a) 0 Ty, where the path 7, , is the k-th shortest path in Qx(a,y), and o denotes
the concatenation operation. In our algorithm we will construct k-LESiPs for those pairs z, y
for which the k& — 1 simple shortest paths all start with the edge (z,a). The algorithm also

U. Agarwal and V. Ramachandran

maintains a set Fxtensions(a,y) for each pair of distinct vertices a, y; this set contains those
edges (z,a) incoming to a which are the first edge on all k£ —1 SiSPs from « to y. In addition
to adding the common first edge (z,a) in the (k — 1) SiSPs in P (x,y) to Extensions(a,y)
in Step 7, the algorithm creates the k-LESIiP with start edge (z,a) and end vertex y using
the k-th shortest path in the set P} (a,y), and adds it to heap H in Steps 8-10. Let U denote
the set of P} (x,y) sets which may need to be updated; these are the sets for which the if
condition in Step 5 holds.

In the main while loop in Steps 12-17, a min-weight path is extracted in each iteration.

We establish below that this min-weight path is added to the corresponding P} in Step 14
or 15 only if it is the k-th SiSP; in this case, its left extensions are created and added to the
heap H in Step 17, and we note that some of these paths could be cyclic.

» Lemma 2.2. Let G = (V, E) be a directed graph with nonnegative edge weight function wt,
and Vx,y € V, let the set Qr(x,y) contain the nearly k-SiSPs from x toy. Then, algorithm
COMPUTE-APSISP correctly computes the sets Py (x,y) Yo,y € V.

Proof. We first show that every path in P;(z,y) is simple. The initialization in Step 4 adds
only simple paths. After that, P} (z,y) is updated only if it is in &/. Assume so, and let
(x,a) € Extensions(a,y). As the algorithm only extends along the edges in the Extensions
sets, every path from z to y in H has (z,a) as first edge. Now if a cyclic path (say mzq,y)
is added to P} (z,y) from H, then it contains a subpath 744 ,, but this implies that either
Tway, OF & path from x to y with smaller weight but not using (z,a) as the first edge, is
present in Q(z,y). This means that the check in Step 15 will be false, and 744, will not be
added to P} (z,y).

To show that P (x,y) contains the k shortest simple paths from x to y at termination,
we observe that it was initialized with Qg (z,y), so we only need to ensure that the path
of largest weight in P; (z,y) is indeed n%, , the k*-th shortest simple path from x to y. We
argue this by showing that 7,,, the path obtained from =%, by removing its first edge (z,a),
must be in P (a,y) and must have been extended to z and added to H. <

It is straightforward to see that Algorithm CoMPUTE-APSISP runs in O(kn? + n?logn)
time and uses O(kn?) space.

2.2 Computing the Q) Sets
2.2.1 Computing Q. for k = 2

We now give an O(mn +n?logn) time algorithm to compute Q2 (z,y) for all pairs z,y. This
method uses the procedure FAST-EXCLUDE from Demetrescu et al. [7], which we now briefly
describe (full details of this algorithm can be found in [7]).

Given a rooted tree T, edges (u1,v1) and (uz2,v2) on T are independent|[7] if the subtree
of T rooted at v; and the subtree of T rooted at ws are disjoint. Given the weighted
directed graph G = (V, E), the SSSP tree T rooted at a source vertex s € V, and a set
S of independent edges in T, algorithm FAST-EXCLUDE in [7] computes, for each edge
e € S, a shortest path from s to every other vertex in G — {e}. This algorithm runs in time
O(m + nlogn).

We will compute the second path in each Q2(z,y) set, for a given x € V, by running
FAST-EXCLUDE with z as source, and with the set of outgoing edges from x in the shortest
path tree rooted at x, T,, as the set S. Clearly, this set S is independent, and hence
algorithm FAST-EXCLUDE will produce its specified output. Now consider any vertex y # =z,
and let (x,a) be the first edge on the shortest path from x to y in T,. By its specification,

8:7

ISAAC 2016

8:8

Finding k£ Simple Shortest Paths and Cycles

Algorithm 1 ComMpUTE-APSISP(G = (V, E), wt, k,{Qx(z,y),Vz,y})
1: Initialize:
2: H<«+ ¢ {H is a priority queue.}
3: for all z,y € V,z # y do

4: Pz, y) < Qr(z,y)

5: if the k — 1 shortest paths in P} (x,y) have the same first edge then

6: Let (z,a) be the common first edge in the (k — 1) shortest paths in P (x,y)
7: Add (z,a) to the set Extensions(a,y)

8: if |Qr(a,y)| = k then

9: 7 < the path of largest weight in Qx(a,y)

10: 7' < (z,a) om; add 7’ to H with weight wt(z, a) + wt(nw)

11: Main Loop:

12: while H # ¢ do

13: 7 < EXTRACT-MIN(H); let m = (xa,y) and 7’ a path of largest weight in P} (x,y)

14: if |P}(x,y)| = k — 1 then add 7 to P}(z,y) and set update flag

15: else if wt(r) < wt(n’) then replace n’ with 7 in P}(z,y) and set update flag

16: if update flag is set then

17: for all (z/,z) € Extensions(z,y) do add (z',z) o to H with weight wt(z’, z) +
wit(m)

Algorithm 2 2-APSISP(G = (V, E); wt)
1: for each z € V do
2: Compute a shortest path in each Qa(z,y), y € V — {z} (Dijkstra with source x)
3: Compute the second path in each Q2(x,y), y € V — {x}, using FAST-EXCLUDE with
source z and S = {(z,a) € T, }

4: CoMPUTE-APSISP(G, wt, 2, {Q2(z,y),Vx,y})

FAST-EXCLUDE will compute a shortest path from x to y that avoids edge (z, a) in its output,
which is the second path needed for Q2(2,y). This holds for every vertex y € V — {x}. Thus
we have:

» Lemma 2.3. The Qa(x,y) sets for pairs x,y can be computed in O(mn + n?logn) time.

This leads to the following algorithm for 2-APSiSP. Its time bound in Theorem 1.3, part (i)
follows from Lemma 2.3 and the time bound for COMPUTE-APSISP given in Section 2.1.

The space bound is O(n?) since the Qs sets contain O(n?) paths and the call to COMPUTE-
APSISP takes O(n?) space. In the full paper [1] we give a simple alternate algorithm that
computes the Qs sets in O(mn) time if a DSO is available. It is not clear if we can efficiently
compute 2-APSiSP directly from a DSO in O(mn) time, without using the Qy sets and
CoMPUTE-APSISP.

2.2.2 Computing Qy, for k£ > 3

Our algorithm will use the following types of sets. For each vertex z € V, let I, be the set of
incoming edges to z. Also, for a vertex x € V, and vertices a,y € V — {z}, let P;*(a,y) be
the set of k simple shortest paths from a to y in G — I, the graph obtained after removing
the incoming edges to x. Recall that we maintain all P* and @ sets as sorted arrays.
Algorithm APSISP(G, k) first computes the sets P”,(a,y), for all vertices a,y € V.
Then it computes each Qr(z,y) as the set of all paths in the set P;_;(z,y), together with a

U. Agarwal and V. Ramachandran

Algorithm 3 APSISP(G = (V, E), wt, k)

1: if £ = 2 then
2 compute @2 sets using algorithm in Section 2.2.1
3: else
4 for each z € V do
5: I, + set of incoming edges to x
6 Call APSISP(G — I;,wt, k — 1) to compute P, (u,v) Yu,v € V
7 for each y € V — {2} do
s Qula,y) — P2\ (2.y)
9: for all (x,a) € E do count, < number of paths in Qx(x,y) with (x,a) as the
first edge
10: Qr(z,y) + Qr(x,y) U{ a shortest path in U{(%a) outgoing from z} (z,a) o

P (a,y)[count, + 1]}
11: CoMPUTE-APSISP(G, wt, k, {Qx(x,y) Vr,y € V})

shortest path in U{(w,a) outgoing from x}{(x, a)op | pée P (a,y)} (which is not present
in Py (z,y)).

To compute the P;*, sets, APSISP(G, wt, k) recursively calls APSISP(G — I, wt, k — 1)
n times, for each vertex z € V. Once we have computed the P}”, sets, the Qi (x,y) sets
are readily computed as described in steps 8 - 10. After the computation of Qg (x,y) sets,
APSISP(G, wt, k) calls COMPUTE-APSISP (G, wt, k, {Qr(z,y) Vz,y € V}) to compute the
Py sets. This establishes part (i) of Theorem 1.3.

Proof of Theorem 1.3, part (iii). The for loop starting in Step 4 is executed n times, and
for £ = 3 the cost of each iteration is dominated by the call to Algorithm 2-APSISP in
Step 6, which takes O(mn + n?logn) time. This contributes O(mn? + n3logn) to the total
running time. The inner for loop starting in Step 7 is executed n times per iteration of the
outer for loop, and the cost of each iteration is O(k + d,). Summing over all z € V|, this
contributes O(kn? 4+ mn) to the total running time. Step 11 runs in O(n?logn) time as
shown in Section 2.1. Thus, the total running time is O(mn? + n®logn). |

The space bound for APSISP is O(k? - n?), as the P}, and Qy sets contain O(kn?)
paths, and each recursive call to APSISP(G — I, wt, k — 1) needs to maintain the P* ; and
Q, sets at each level of recursion. The call to COMPUTE-APSISP takes O(kn?) space as
noted earlier.

The performance of Algorithm APSISP degrades by a factor of n with each increase in
k. Thus, it matches Yen’s algorithm (applied to all-pairs) for k = 4, and for larger values of
k its performance is worse than Yen.

2.3 Generating k Simple Shortest Cycles

k-SiSC. This is the problem of generating the k simple shortest cycles through a specific
vertex z in G. We can reduce this problem to k-SiSP by forming G,
’, we place a directed edge of weight 0 from z; to z,,
and we replace each incoming edge to (outgoing edge from) z with an incoming edge to z;
(outgoing edge from z,) in G’,. Then the k-th simple shortest path from z, to z; in G, can
been seen to correspond to the k-th simple shortest cycle through z in G. This gives an
O(k - (mn + n*loglogn)) time algorithm for computing k-SiSC using [9]. We also observe

where we replace
vertex z by vertices z; and z, in G

8:9

ISAAC 2016

8:10

Finding k£ Simple Shortest Paths and Cycles

that we can solve k-SiSP from s to ¢ in G if we have an algorithm for k-SiSC: create G’ by
adding a new vertex z* and zero weight edges (z*, s), (¢, 2*), and then call k-SiSC for vertex
x*. Thus k-SiSP and k-SiSC are equivalent in complexity in weighted directed graphs.

k-ANSiSC. This is the problem of generating k simple shortest cycles that pass through
a given vertex x, for every vertex x € V. For k = 1 this problem can be solved in
O(mn + n?loglogn) time by computing APSP [25]. For k = 2, we can reduce this problem
to k-APSiSP by forming the graph G’ where for each vertex x, we replace vertex z in G
by vertices z; and z, in G’, we place a directed edge of weight 0 from z; to z,, and we
replace each edge (u,z) in G by an edge (u,,2;) in G’ (and hence we also replace each
edge (x,v) in G by an edge (z,,v;) in G'). For k > 2, k-ANSiSC can be computed in
O(k -n - (mn +n?loglogn)) time by computing k-SiSC for each vertex.

3 Enumerating Simple Shortest Cycles and Paths

In this section, we first give a method to generate each successive simple shortest cycle in
G = (V, E) (k-All-SiSC) and then in Section 3.1 we give a faster method to generate simple
paths in nondecreasing order of weight (k-All-SiSP).

Enumerating Simple Shortest Cycles (k-All-SiSC). Our algorithm for k-All-SiSC creates
an auxiliary graph G’ = (V/, E’) as in the construction for k-ANSiSC in Section 2.3. Our
algorithm also maintains a set C of candidate simple shortest cycles. Initially, our algorithm
computes a shortest cycle for each vertex j € V' by running Dijkstra’s algorithm with source
vertex j, on the subgraph G; of G’ induced on V] = {x;, %, | z > j}, to find a shortest path
p from j, to j; . We store these shortest cycles in C.

For each k > 1, we generate the k-th simple shortest cycle in G by choosing a minimum
weight cycle in C. Let this cycle corresponds to some vertex r and is the k,-th SiSP from
vertex 7, to vertex r; in G... We then replace this cycle in C by computing the (k. 4+ 1)-th
SiSP from vertex r, to r; in G..

The initialization takes O(mn + n?logn) time for the n calls to Dijkstra’s algorithm.
Thereafter, we generate each new cycle in O(mn + n?loglogn) time using the k-SiSP
algorithm [9], by maintaining the relevant information from the computation of earlier cycles.

3.1 Generating Simple Shortest Paths (k-All-SiSP)

Our algorithm for k-All-SiSP is inspired by the method in [5] for fully dynamic APSP. With
each path m we will associate two sets of paths L(w) and R(w) as described below. Similar
sets are used in [5] for ‘locally shortest paths’ but here they have a different use.

Let P be a collection of simple paths. For a simple path 7., from z to y in P, its left
extension set L(m,) is the set of simple paths ' € P such that n’ = (2, z) o 7y, for some
«’ € V. Similarly, the right extension set R(mg,) is the set of simple paths 7" = 74, o (y,y’)
such that 7"/ € P. For a trivial path 7 = (v), L(w) is the set of incoming edges to v, and
R(7) is the set of outgoing edges from v.

Algorithm ALL-SISP initializes a priority queue H with the edges in G, and it initializes
the extension sets for the vertices in G. In each iteration of the main loop, the algorithm
extracts the minimum weight path 7 in H as the next simple path in the output sequence.
It then generates suitable extensions of 7 to be added to H as follows. Let the first edge
on 7 be (x,a) and the last edge (b,y). Then, ALL-SISP left extends 7 along those edges
(2, z) such that there is a path 7., in L(I(7)); it also requires that x’ # y, since extending

U. Agarwal and V. Ramachandran 8:11

Algorithm 4 ALL-SISP(G = (V, E); wt)
1: Initialization:
2: H+«+ ¢ {H is a priority queue.}
3: for all (z,y) € E do
4: Add (z,y) to priority queue H with wi(x,y) as key; add (x,y) to L({y)) and R((z))
5. Main loop:
6: while H # ¢ do
7 7 < EXTRACT-MIN(H); add 7 to the output sequence of simple paths
8: Let myp = £(m) and mqy = 7(7) (so (z,a) and (b, y) are the first and last edges on)
9: for all 7,1, € L(mwy) with 2’ # y do
10: Form 7,y < (2/,2) o w and add 7y, to H with wt(m,,) as key
11: Add Tyry tO L(Tl'xy) and to R(mp)
12: for all ., € R(m,,) with ' # = do perform steps complementary to Steps 10-11

to o’ would create a cycle in the path. It forms similar extensions to the right in the for loop
starting at Step 12.

To establish Theorem 1.5, we first need to show that every path added to H is simple.
All edges added in Step 4 are clearly simple paths. Consider a path ¢ added to H in Step 10.
We show that both ¢(o) and r(o) must already be in H, and hence must be simple paths.
So, the only way that o could contain a cycle is if its first and last vertices are the same. But
this is explicitly forbidden in the condition in Step 9. A similar argument applies to Step 12.

To show that no simple path in G is omitted in the sequence of simple shortest paths
generated, we observe that if 7 is a simple path of smallest weight not generated by Algorithm
ALL-SISP, then ¢(7) and r(7) must have been generated. We can then show that 7 will be
added to H in the iteration of Step 6 when the heavier of ¢(7) and r(7) is extracted.

The amortized bound in Theorem 1.5 is obtained by implementing H as a Fibonacci
heap and the worst-case bound is obtained by using a binary heap.

4 Discussion

Our k-All-SiSP algorithm is nearly optimal if the paths need to be output. It is also not
difficult to see that our bounds for 2-APSiSP and k-All-SiSC (for constant k) are the best
possible to within a polylog factor for sparse graphs unless the long-standing O(mn) bounds
for APSP and minimum weight cycles are improved. In recent work [2] we give several
fine-grained reductions that demonstrate that the minimum weight cycle problem holds a
central position for a class of problems that currently have O(mn) time bound on sparse
graphs, both directed and undirected.

For undirected graphs, our k-All-SiSP result gives an algorithm with the same bound.
Also, our k-APSiSP algorithm works for undirected graphs, and this gives a faster algorithm
for k¥ = 2 and matches the previous best bound (using [14]) for ¥ = 3. However, our
algorithms for the three variants of finding simple shortest cycles do not work for undirected
graphs. This is addressed in our recent work in [2].

The main open question for k-APSiSP is to come up with faster algorithms to compute
the Qx(x,y) sets for larger values of k. This is the key to a faster k-APSiSP algorithm using
our approach, for k > 2.

ISAAC 2016

8:12

Finding k£ Simple Shortest Paths and Cycles

—— References

1

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

Udit Agarwal and Vijaya Ramachandran. Finding &k simple shortest paths and cycles. arXiv
preprint arXiv:1512.02157, 2015.

Udit Agarwal and Vijaya Ramachandran. Fine-grained reductions and algorithms for short-
est cycles, 2016. Manuscript.

Aaron Bernstein and David Karger. A nearly optimal oracle for avoiding failed vertices
and edges. In Proc. STOC, pages 101-110, 2009.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. The MIT Press, 3rd edition, 2009.

Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all pairs shortest
paths. J. ACM, 51:968-992, 2004.

Camil Demetrescu and Giuseppe F. Italiano. Experimental analysis of dynamic all pairs
shortest path algorithms. ACM Trans. Alg. (TALG), 2:578-601, 2006.

Camil Demetrescu, Mikkel Thorup, Rezaul Alam Chowdhury, and Vijaya Ramachandran.
Oracles for distances avoiding a failed node or link. STAM J. Comput., 37:1299-1318, 2008.
David Eppstein. Finding the k shortest paths. STAM J. Comput., 28:652-673, 1998.

Zvi Gotthilf and Moshe Lewenstein. Improved algorithms for the k simple shortest paths
and the replacement paths problems. Inf. Proc. Lett., 109(7):352-355, 2009.

John Hershberger, Subhash Suri, and Amit Bhosle. On the difficulty of some shortest path
problems. ACM Trans. Alg. (TALG), 3(1):5, 2007.

Donald B. Johnson. Finding all the elementary circuits of a directed graph. SIAM J.
Comput., 4(1):77-84, 1975.

Donald B. Johnson. Efficient algorithms for shortest paths in sparse networks. JACM,
24(1):1-13, 1977.

David R. Karger, Daphne Koller, and Steven J. Phillips. Finding the hidden path: Time
bounds for all-pairs shortest paths. SIAM J. Comput., 22(6):1199-1217, 1993.

Naoki Katoh, Toshihide Ibaraki, and Hisashi Mine. An efficient algorithm for k shortest
simple paths. Networks, 12(4):411-427, 1982.

Eugene L. Lawler. A procedure for computing the k best solutions to discrete optimization
problems and its application to the shortest path problem. Management Science, 18(7):401—
405, 1972.

Eugene L. Lawler. Comment on a computing the k shortest paths in a graph. CACM,
20(8):603-605, 1977.

E. Minieka. On computing sets of shortest paths in a graph. CACM, 17(6):351-353, 1974.
Seth Pettie. A new approach to all-pairs shortest paths on real-weighted graphs. Theoretical
Computer Science, 312(1):47-74, 2004.

Liam Roditty and Uri Zwick. Replacement paths and k simple shortest paths in unweighted
directed graphs. ACM Trans. Alg. (TALG), 8(4):33, 2012.

Robert Tarjan. Enumeration of the elementary circuits of a directed graph. SIAM J.
Comput., 2(3):211-216, 2005.

J.C. Tiernan. An efficient search algorithm to find the elementary circuits of a graph.
CACM, 13:722-726, 1970.

H. Weinblatt. A new search algorithm to find the elementary circuits of a graph. JACM,
19:43-56, 1972.

Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path,
matrix and triangle problems. In Proc. IEEE FOCS, pages 645-654. IEEE, 2010.

Jin Y. Yen. Finding the k shortest loopless paths in a network. Management Science,
17(11):712-716, 1971.

Raphael Yuster. A shortest cycle for each vertex of a graph. Inf. Proc. Lett., 111(21):1057—
1061, 2011.

	Introduction
	Related Work
	Our Contributions

	The k-APSiSP Algorithm
	The Compute-APSiSP Procedure
	Computing the Q-k Sets
	Computing Q-k for k=2
	Computing Q-k for k>=3

	Generating k Simple Shortest Cycles

	Enumerating Simple Shortest Cycles and Paths
	Generating Simple Shortest Paths (k-All-SiSP)

	Discussion

