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Abstract
Given a set of points in the plane, we want to establish a connection network between these
points that consists of several disjoint layers. Motivated by sensor networks, we want that each
layer is spanning and plane, and that no edge is very long (when compared to the minimum
length needed to obtain a spanning graph). We consider two different approaches: first we show
an almost optimal centralized approach to extract two trees. Then we show a constant factor
approximation for a distributed model in which each point can compute its adjacencies using
only local information. This second approach may create cycles, but maintains planarity.
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1 Introduction

Given a set S of n points in the plane and an integer k, we are interested in finding k
edge-disjoint non-crossing spanning trees H1, H2, . . . ,Hk on S such that the length BE(H1 ∪
H2 ∪ · · · ∪Hk) of the bottleneck edge (the longest edge which is used) is as short as possible.
Each tree Hi is referred to as a layer of G. We require each layer to be non-crossing, but
edges from different layers are allowed to cross each other. For k = 1, the minimum spanning
tree MST(S) solves the problem: its longest edge BE(MST(S)) is a lower bound on the
bottleneck edge of any spanning subgraph, and it is non-crossing. For larger k, we take
BE(MST(S)) as the yardstick and measure the solution quality in terms of BE(MST(S))
and k.

The particular variation that we consider comes motivated from the field of sensor
networks. Imagine one wants to construct a network so that afterwards communication
between sensors is possible. One of the most important requirements for such a network
is that we can send messages through it easily. Ideally, we want a method that – given
the source, destination, information on the current position (and possibly O(1) additional
information) – computes the next node to visit in order to reach our destination.

One of the most famous such methods is called face routing [7], which guarantees the
delivery under the above constraints provided that the underlying graph is plane. Indeed,
when considering local routing algorithms in the literature that are guaranteed to succeed,
most route deterministically on a plane spanning subgraph of the underlying graph where
the plane subgraph can be computed locally. Even though there exist routing strategies for
non-plane graphs, in most cases they route through a plane subgraph (for example, Bose
et al. [2] showed how to locally identify the edges of the Gabriel graph from the unit disk
graph). Extending these algorithms for non-plane graphs is a long-standing open problem.

It seems counter-intuitive that having additional edges cannot help in the delivery of
messages. In this paper, we provide a different way to avoid this obstacle. Rather than
limiting considerations to one plane graph, we aim to construct several disjoint plane spanning
graphs. If we split all the messages among the different layers (and route through each layer
with routing strategies that work on plane graphs) we can potentially spread the load among
a larger number of edges. Another important feature to consider when creating networks is
energy consumption. The required energy for sending a message increases with the distance
between the two points (usually with the third or fourth power) [4]. Since we want to avoid
high energy consumption at one particular node, it is desirable to apply the bottleneck
criterion and to minimize the longest edge [6].

Previous Work. This problem falls into the family of graph packing problems, where we
are given a graph G = (V,E) and a family F of subgraphs of G. The aim is to pack
pairwise disjoint subgraphs H1 = (V,E1), H2 = (V,E2), . . . into G. A related problem is
the decomposition of G. In this case, we also look for disjoint subgraphs but require that
∪iEi = E. For example, there are known characterizations of when we can decompose
the complete graph of n points into paths [9] and stars [8]. Dor and Tarsi [3] showed that
to determine whether we can decompose a graph G into subgraphs isomorphic to a given
graph H is NP-complete. Aichholzer et al. [1] showed that any set of n points contains
Ω(
√
n) disjoint plane spanning trees. This bound has been improved to bn/3c by Garcia [5].
In our case, the graph G consists of the complete graph on S, and F consists of all plane

spanning trees of G. We are interested in minimizing a geometric constraint (Euclidean
length of the longest edge among the selected graphs of F). To the best of our knowledge,
this is the first packing problem of such type.
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Results. We give two different approaches to solve the problem. In Section 2 we give a
construction for k = 2 trees. This construction is centralized in a classical model that assumes
that the position of all points are known and computed in a single place. Our construction
guarantees that all edges (except possibly one) have length at most 2BE(MST(S)). The
remaining edge has length at most 3BE(MST(S)). We complement this construction with a
matching worst-case lower bound.

Following the spirit of sensor networks, in Section 3 we use a different approach to
construct k disjoint plane graphs (not necessarily trees). The construction works for any
k ≤ n/12 in an almost local fashion. The only global information that is needed is β:
BE(MST(S)) or some upper bound. Each point of S can compute its adjacencies by only
looking at nearby points: those at distance O(kβ).

A simple adversary argument shows that it is impossible to construct spanning networks
locally without knowing BE(MST(S)) (or an upper bound). The lower bound of Section 2
shows that a neighborhood of radius Ω(kBE(MST(S))) may be needed for the network, so
we conclude that our construction is asymptotically optimal in terms of the neighborhood.

For simplicity, throughout the paper we make the usual general position assumption that
no three points are colinear. Without this assumption, it might be impossible to obtain more
than a single plane layer (for example, when all points lie on a line).

2 Centralized Construction

In this section we look for a centralized algorithm to construct two layers. We start with
some properties on the minimum spanning tree of a set of points.

I Lemma 1. Let S be a set of points in the plane and let uv and vw be two edges of MST(S).
Then the triangle uvw does not contain any other point of S.

Proof. Observe that, as v is adjacent to both u and w in MST(S), uw is the longest edge of
the triangle uvw (otherwise one could locally shorten MST(S)).

Suppose for the sake of contradiction that there is a point p ∈ S in the interior of uvw.
We split uvw into two sub-triangles by the line ` through v perpendicular to the supporting
line of u and w. Let ∆u be the sub-triangle that has u as a vertex, and assume w.l.o.g. that
p lies in ∆u. Note that the edge uv is the hypotenuse of the right-angled triangle ∆u and
hence max{|pu|, |pv|} < |uv|.

Consider the paths in MST(S) from p to u and v, respectively. Since MST(S) is a tree,
one of the two paths must use the edge uv (as otherwise there would be a cycle). Suppose
first that this edge is used in the path to u. By removing the edge uv and adding the edge
pu to MST(S) we would obtain a connected (not necessarily plane) tree whose overall weight
is smaller, a contradiction. If the edge used is in the path to v, the addition of edge pv yields
a similar contradiction. J

I Lemma 2. Let S be a set of points in the plane. Let v ∈ S be a point of degree k ≥ 3 in
MST(S), with {v0, . . . , vk−1} being the neighbors of v in MST(S) in counterclockwise order
around v. Then for every triple (vi−1, vi, vi+1) (indices modulo k), the neighbors of vi in
MST(S) are inside the wedge Wi that is bounded by the rays vvi−1 and vvi+1 and contains
the edge vvi.

Proof. Let u ∈ S\{v} be a neighbor of vi in MST(S), and assume for the sake of contradiction
that u is not in Wi. Then the edge viu intersects the boundary of Wi and hence one of the
rays starting at v and going through vi−1 and vi+1, respectively. Assume without loss of
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9:4 Packing Short Plane Spanning Trees in Complete Geometric Graphs

generality that viu intersects the ray from v through vi+1. As MST(S) is plane, the edge viu

does not intersect the edge vvi+1. Hence, the triangle (v, vi, u) contains the point vi+1 in its
interior. As the path vviu is a subgraph of MST(S), this contradicts Lemma 1. J

We denote by MST2(S) the square of MST(S), the graph connecting all pairs of points
of S that are at distance at most 2 in MST(S). We call the edges of MST(S) short edges
and all remaining edges of MST2(S) long edges. For every long edge uw, the points u and w
have a unique common neighbor v in MST(S), which we call the witness of uw. We define
the wedge of uw to be the area that is bounded by the rays vu and vw and contains the
segment uw. Next we state a simple fact on crossings of the edges in MST2(S).

I Lemma 3. Let S be a set of points in the plane. Two edges e and f of MST2(S) cross if
and only if one of the following two conditions is fulfilled:
1. At least one of {e, f} is a long edge with witness v and wedge W , and the other edge has

v as an endpoint and lies inside W .
2. Both of {e, f} are long edges with the same witness v, and their wedges are intersecting

but none is contained in the other.

Proof. Clearly, if both e and f are short edges, i.e., edges of MST(S), then they do not
cross. Let f = uw be a long edge with witness v and wedge W . Every edge e = vz of
MST2(S), z ∈ S \ {u, v, w} that lies inside W either crosses f or has z inside the triangle
∆ = (u, v, w). The latter is a contradiction to Lemma 1. Obviously, f is neither crossed by
any edge incident to u or w, nor crossed by any edge incident to v but not lying inside W .

It remains to prove that every long edge e = xz of MST2(S), x, z ∈ S \ {u, v, w} that
crosses f fulfills Condition 2. Note that for e to cross f , either e has an endpoint inside ∆
or e is also crossing one edge out of {uv, vw} ∈ MST(S). The former is a contradiction to
Lemma 1. If e is a short edge (i.e., an edge of MST(S)), then the latter is a contradiction to
the planarity of MST(S). Hence, e is a long edge (with wedge W ′) and is also crossing one
edge g out of {uv, vw} ∈ MST(S). This also implies that the wedges W and W ′ intersect
in their interiors but none of W , W ′ is contained in the other. Finally, if e has witness
y 6= v, then either g has an end point in the triangle xyz or g crosses one edge out of
{xy, yz} ∈ MST(S). Again, the former is a contradiction to Lemma 1 and the latter is a
contradiction to the planarity of MST(S). Hence the witness of e must be v. J

With the above observations we can proceed to show a construction that almost works
for two layers. To this end we consider the minimum spanning tree MST(S) to be rooted
at a leaf r. For any v ∈ S, we define its level `(v) as its distance to r in MST(S). That is,
`(v) = 0 if and only if v = r. Likewise, `(v) = 1 if and only if v is adjacent to r etc.

For any v ∈ S \ {r}, we define its parent p(v) as the first vertex traversed in the
unique shortest path from v to r in MST(S). Similarly, we define its grandparent g(v) as
g(v) = p(p(v)) if `(v) ≥ 2 and as g(v) = r otherwise (i.e., g(v) = p(v) = r if `(v) = 1). Each
vertex q for which v = p(q) is called a child of v.

I Construction 4. Let S be a set of points in the plane and let MST(S) be rooted at one of
its leaves, r ∈ S. We construct two graphs R = G(S,ER) and B = G(S,EB) as follows: For
any vertex vo ∈ S whose level is odd, we add the edge vop(vo) to ER and the edge vog(vo)
to EB . For any vertex ve ∈ S \ {r} whose level is even, we add the edge veg(ve) to ER and
the edge vep(ve) to EB .

For simplicity we say that the edges of R = G(S,ER) are colored red and the edges of
B = G(S,EB) are colored blue. An edge in both graphs is called red-blue.



O. Aichholzer et al. 9:5

I Theorem 5. Let MST(S) be rooted at r. The two graphs R = G(S,ER) and B = G(S,EB)
from Construction 4 fulfill the following properties:
1. Both R and B are plane spanning trees.
2. max{BE(R),BE(B)} ≤ 2BE(MST(S)).
3. ER ∩ EB = {rs}, with r = p(s), i.e., |ER ∩ EB | = 1.

Proof. Recall from Construction 4 that r is a leaf of MST(S). Hence r has a unique neighbor
s in MST(S) and we have r = p(s) = g(s) and `(s) = 1. Let So⊂S\{s} be all vo∈S whose
level `(vo) is odd. Likewise, let Se⊂S\{r} be all ve∈S whose level `(ve) is even. By the
construction, the set of red edges is ER =

⋃
vo∈So

{vop(vo)} ∪
⋃

ve∈Se
{veg(ve)} ∪ {rs} and

the set of blue edges is EB =
⋃

vo∈So
{vog(vo)} ∪

⋃
ve∈Se

{vep(ve)} ∪ {rs}. Thus, the edge
rs is the single shared edge between the sets ER and EB , as stated in Property 3.

As ER and EB are subsets of the edge set of MST2(S), the vertices of every edge in ER

and EB have link distance at most 2 in MST(S), and the bound on max{BE(R),BE(B)}
stated in Property 2 follows.

Further, both R and B are spanning trees, i.e., connected and cycle free graphs, as
each vertex except r is connected either to its parent or grandparent in MST(S). To prove
Property 1, it remains to show that both trees are plane.

Assume for the sake of contradiction that an edge f is crossed by an edge e of the same
color. Recall that all edges of ER and EB are edges of MST2(S) whose endpoints have different
levels. By Lemma 3, at least one of {e, f} has to be a long edge. Without loss of generality
let f = uw be a long edge and let v be the witness of f with `(u) = `(v) − 1 = `(w) − 2.
First note that v cannot be an endpoint of e due to its level. That is, uv is not crossing f
(common endpoint) and all other edges incident to v in ER and EB are either blue if f is
red, or red if f is blue. Further, v cannot be the witness of e due to its level. All edges ER

and EB with witness v have u as one of its endpoints (as for all other edges with witness v
in MST2(S), both endpoints have the same level). With u as a shared vertex, the edges e
and f cannot cross. As e is neither incident to v nor has v as a witness, e crossing f is a
contradiction to Lemma 3. This proves Property 1 and concludes the proof. J

The properties of our construction imply a first result stated in the following corollary.

I Corollary 6. For any set S of n points in the plane, there exist two plane spanning trees
R = G(S,ER) and B = G(S,EB) such that |ER ∩ EB | = 1 and max{BE(R),BE(B)} ≤
2BE(MST(S)).

Construction 4 is almost valid in the sense that only one edge was shared between both
trees. In the following we enhance this construction so as to avoid the shared edge.

Let N− ⊂ (S \ {r}) be the set of neighbors v− ∈ N− of s in MST(S) such that the
ordered triangle rsv− is oriented clockwise. Let N+ ⊂ (S \ {r}) be the set of neighbors
v+ ∈ N+ of s in MST(S) such that the ordered triangle rsv+ is oriented counter-clockwise.
Let T− be the subtree of MST(S) that is connected to s via the vertices in N− and let
T+ be the subtree of MST(S) that is connected to s via the vertices in N+. Let S− ⊂ S

consist of r and the set of vertices from T− and let S+ ⊂ S consist of r and the set of
vertices from T+. Observe that S− ∩ S+ = {r, s}. Let E−R ⊂ ER (E−B ⊂ EB) be the
subset of edges that have at least one endpoint in S− \ {r, s} and let E+

R ⊂ ER (E+
B ⊂ EB)

be the subset of edges that have at least one endpoint in S+ \ {r, s}. Note that by this
definition ER = E−R ∪ E

+
R ∪ {rs} and EB = E−B ∪ E

+
B ∪ {rs}. With this we define the

subgraphs R− = G(S−, E−R ), R+ = G(S+, E+
R ), B− = G(S−, E−B ), and B+ = G(S+, E+

B).
The following property follows from Lemma 3.

ISAAC 2016



9:6 Packing Short Plane Spanning Trees in Complete Geometric Graphs

I Lemma 7. For any set S of n points in the plane, let R = G(S,ER) and B = G(S,EB)
be the graphs from Construction 4. Then no edge in E−R crosses an edge in E+

B and no edge
in E+

R crosses any edge in E−B .

Proof. Consider any edge e ∈ E−R that is not incident to r. By Lemma 3, such an edge e
can be crossed only by an edge incident to at least one vertex of S− \ {r, s}. Hence, e does
not cross any edge of E+

B .
Assume for the sake of contradiction that there exists an edge f ∈ E+

B that crosses an
edge e ∈ E−R that is incident to r. By construction, e = rz is a long edge of MST2(S) with
witness s and wedge W . By Lemma 3, f has to be incident to s, since s cannot be the
witness of any blue edges by construction. If f is a short edge, then f is not in W by our
definition of S− and S+, which is a contradiction to Lemma 3. Hence, let f = sc be a long
edge of MST2(S) with witness b. Following Lemma 3, the witness b must be s, which is in
contradiction to the fact that s cannot be a witness of any blue edge. This concludes the
proof that no edge in E−R is crossed by an edge in E+

B . Symmetric arguments prove that no
edge in E+

R is crossed by an edge in E−B . J

With this observation we can now prove that the two spanning trees from Construction 4
actually exist in 4 different color combination variants.

I Lemma 8. Let S be a set of n points in the plane. Let R = G(S,ER) and B = G(S,EB)
be the graphs from Construction 4 and let R− = G(S−, E−R ), R+ = G(S+, E+

R ), B− =
G(S−, E−B ), and B+ = G(S+, E+

B) be subgraphs as defined above. Then R and B can be
recolored to be (1) R = G(S,ER) and B = G(S,EB) (the “original coloring”), (2) R =
G(S,EB) and B = G(S,ER) (the “inverted coloring”), (3) R = G(S,E−B ∪E

+
R ∪ {rs}) and

B = G(S,E−R∪E
+
B∪{rs}) (the “− side inverted coloring”), and (4) R = G(S,E−R∪E

+
B∪{rs})

and B = G(S,E−B ∪ E
+
R ∪ {rs}) (the “+ side inverted coloring”), such that the properties

from Theorem 5 hold for all versions.

Proof. The statement is trivially true for recolorings (1) and (2). It is easy to observe that
this really is corresponding to a simple recoloring. Hence, Properties 2 and 3 of Theorem 5
are also obviously true. By Lemma 7, both R and B are plane for the recolorings (3) and (4)
and thus fulfill Property 1 of Theorem 5 as well. J

With these tools we now show how to construct two disjoint spanning trees. For technical
reasons we use two different constructions based on the existence of a vertex in the minimum
spanning tree where no two consecutive adjacent edges span an angle larger than π.

I Theorem 9. Consider a set S of n points in the plane for which the minimum spanning
tree MST(S) has a vertex v where between any two consecutive adjacent edges the angle is
smaller than π. Then there exist two plane spanning trees R = G(S,ER) and B = G(S,EB)
such that ER ∩ EB = ∅ and max{BE(R),BE(B)} ≤ 2BE(MST(S)).

Proof (sketch). When removing v from the tree, we obtain up to five connected compon-
ents (assuming general position). For each of these, we individually re-add v and apply
Construction 4 with v as the root using one of the variants of Lemma 8. This leaves some
components of the tree disconnected, but this is resolved by adding additional edges from v

to its neighbors and between adjacent neighbors of v. Full details of the construction and a
proof can be found in the full version of this paper. J

The remaining case considers that for every vertex in MST(S) there exist two consecutive
adjacent edges that span an angle larger than π. In such an MST(S), every vertex has degree
at most three, since the angle between adjacent edges is at least π/3.
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(b)

v2

v3
v1

v0

(a)

v2

v3
v1

v0

Figure 1 Illustration of one of the cases for the proof of Theorem 10. Grey subtrees indicate
potential continuations of the MST and dashed edges indicate edges from MST2(S). In (b) colored
arrows indicate how the subtrees connect to P . Note that half of these arrows are from Construction 4.

I Theorem 10. Consider a set S of n ≥ 4 points in the plane for which every vertex in
the minimum spanning tree MST(S) has two consecutive adjacent edges spanning an angle
larger than π. Then there exist two plane spanning trees R = G(S,ER) and B = G(S,EB)
such that ER ∩ EB = ∅ and max{BE(R),BE(B)} ≤ 3BE(MST(S)) (where at most one edge
of ER ∪ EB is larger than 2BE(MST(S))).

Proof (sketch). This case is dealt with using similar ideas as for Theorem 9. The main
difference is that we now use a cluster P = {v0, v1, v2, v3} of 4 points that are connected
in MST(S) to serve as roots for up to three subtrees. The exact choice of P depends on
the exact embedding of the tree, which leads to several potential embeddings of P and the
subtrees of MST(S) attached to P . For this proof sketch we focus on one specific case shown
in Figure 1, where v3 is a leaf and v2, v1, v0 form a path that, starting from v3, takes a left
and right turn. For ease of description we root the entire MST at v3, creating parent and
child relations between nodes. The subtrees we consider are T0, T1, T2 defined as follows:

T0, consisting of v1, v0, and the subtrees rooted at the children of v0, rooted at v1.
T1, consisting of v1, v0 and the subtrees rooted at children of v1, rooted at v0.
T2, consisting of v2, v1 and the subtrees rooted at children of v2, rooted at v1.

Each of these trees is colored using one of the variants of Lemma 8, but we remove all
edges going to the roots of the respective subtrees, leaving its children disconnected from P .
We then re-attach them as follows. The roots of disconnected subtrees of T0 are connected
to v1, those from T1 are attached to v0 and those from T2 to v1. By construction, the red
and blue trees then form spanning trees with a maximum edge length of 3BE(MST(S)) as
all edges except v0v3 are part of MST2(S), and v0v3 is part of MST3(S). For planarity,
non-crossing of edges that are not v0v3 follows relatively easily from Lemma 3 and Theorem 5.
To see that v0v3 cannot be crossed, one can observe that by Lemma 1 the convex hull of P
must be empty and from Lemma 2 and 3 it follows that no edge can cross the convex hull
through v3v1 to v1 or v2. Full details of the construction and correctness arguments can be
found in the full version of this paper. J

I Corollary 11. For any set S of n ≥ 4 points in the plane, there exist two plane spanning
trees R = G(S,ER) and B = G(S,EB) such that ER ∩ EB = ∅ and max{BE(R),BE(B)} ≤
3BE(MST(S)).

We now show that the above construction is worst-case optimal.

I Theorem 12. For any n > 3 and k > 1 there exists a set of n points such that for any k
disjoint spanning trees, at least one has a bottleneck edge larger than (k + 1)BE(MST(S)).

Proof. A counterexample simply consists of n points equally distributed on a line segment.
(The points can be slightly perturbed to obtain general position.) In this problem instance

ISAAC 2016
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v0

vbn
3 c

vb 2n
3 c cc

(a) (b)

v0

vb 2n
3 c

vbn
3 c

Figure 2 Extracting one layer: (a) The three sectors defined by v0, vb n
3 c, and vb 2n

3 c. (b)
Connecting the points to the representative of their sector. The red edges connect the representatives.

there are kn−(k(k+1)/2) edges whose distance is strictly less than (k+1)BE(MST(S)) = k+1.
However, we need kn− k edges for k disjoint trees and thus it is impossible to construct that
many trees with sufficiently short edges. J

3 Distributed Approach

The previous construction relies heavily on the minimum spanning tree of S. It is well known
that this tree cannot be constructed locally, thus we are implicitly assuming that the network
is constructed by a single processor that knows the location of all other vertices. In ad-hoc
networks, it is often desirable that each vertex can compute its adjacencies using only local
information.

In the following, we provide an alternative construction. Although the length of the edges
is increased by a constant factor, it has the benefit that it can be constructed locally and
that it can be extended to compute k layers. The only global property that is needed is a
value β that should be at least BE(MST(S)). We also note that these plane disjoint graphs
are not necessarily trees, as large cycles cannot be detected locally.

Before we describe our approach, we report the result of García [5] that states that every
point set of at least 3k points contains k layers. Since the details of this construction are
important for our construction and the manuscript is not yet available, we add a proof sketch.

I Theorem 13 ([5]). Every point set that consists of at least 3k points contains k layers.

Proof. First, recall that for every set of n points, there is a center point c such that every
line through c splits the point set into two parts that each contain at least n/3 points. For
ease of explanation, we assume that every line through c contains at most one point. Number
the points v0, v1, . . . , vn−1 in clockwise circular order around c. We split the plane into three
angular regions by the three rays originating from c and passing through v0, vbn

3 c, and vb 2n
3 c

,
see Figure 2. Since every line through the center contains at least n/3 points on each side,
the three angular regions are convex. We declare v0 to be the representative of the angular
region between the rays through v0 and vbn

3 c and connect the vertices v1, ..., vbn
3 c in this

region to v0. Similarly, we assign vbn
3 c to be the representative of angle between the rays

center through vbn
3 c and vb 2n

3 c
and connect vertices vbn

3 c+1, ..., vb 2n
3 c

to vbn
3 c. Finally, we

connect vertices vb 2n
3 c+1, ..., vn−1 to vb 2n

3 c
. This results in a non-crossing spanning tree.

For the second tree, we use v1, vbn
3 c+1, and vb 2n

3 c+1, and so on. J

While this construction provides a simple method of constructing the k layers, it does
not give any guarantee on the length of the longest edge in this construction. To give such a
guarantee, we combine it with a bucketing approach: we partition the point set using a grid
(whose size will depend on k and β), solve the problem in each box with sufficiently many
points independently, and then combine the subproblems to obtain a global solution (see
Figure 3).
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(a) (b)

Figure 3 The distributed approach: a grid is placed over the point set and different representatives
construct different graphs ((a) and (b)). The red and black edges form the tree in each dense cell,
blue edges connect the dense cells, and orange edges connect the vertices in sparse cells.

We place a grid with cells of height and width 6kβ and classify the points according to
which grid cell contains them (if a point lies exactly on the separating lines, pick an arbitrary
adjacent cell). We say that a grid cell is a dense box if it contains at least 3k points of S.
Similarly, it is a sparse box if it contains points of S but is not dense. We observe that dense
and sparse boxes satisfy the following properties.

I Lemma 14. Given two non-adjacent boxes B and B′, the points in B and B′ cannot be
connected by edges of length at most β using only points from sparse boxes.

Proof. Suppose the contrary and let B and B′ be two dense boxes s.t. there is a path that
uses edges of length at most β between a point in B to a point in B′ visiting only points
in sparse boxes. This path crosses the sides of a certain number of boxes in a given order;
let σ be the sequence of these sides, with adjacent duplicates removed. Observe first that
horizontal and vertical sides alternate in σ, as otherwise the path would have to use at least
6k− 1 points to traverse a sparse box, but there are only at most 3k− 1. Since B and B′ are
non-adjacent, w.l.o.g., there is a vertical side s that has two adjacent horizontal sides in σ
with different y-coordinates. Hence, between the two horizontal sides, the corresponding part
of the path has length at least 6kβ, and may use only the points in the two boxes adjacent
to s. But since any sparse box contains at most 3k − 1 points and the distance between two
consecutive points along the path is at most β, that part of the path can have length at most
(6k − 1)β, a contradiction. J

I Corollary 15. Dense boxes are connected by the 8-neighbor topology.

I Lemma 16. Any set S of at least 4 · (3k − 1) + 1 points with β ≥ BE(MST(S)) contains
at least one dense box.

Proof. Assume S consists of only sparse boxes. This implies that the points are distributed
over at least five boxes, and thus, there is a pair of boxes that is non-adjacent. Using
Lemma 14, this means that these boxes cannot be connected using edges of length at most
BE(MST(S)), a contradiction. J

I Lemma 17. In any set S of at least 4 · (3k − 1) + 1 points with β ≥ BE(MST(S)), all
sparse boxes are adjacent to a dense box.

Proof. This follows from Lemma 14, since any sparse box that is not adjacent to a dense box
cannot be connected to any dense box using edges of length at most β ≥ BE(MST(S)). J

ISAAC 2016



9:10 Packing Short Plane Spanning Trees in Complete Geometric Graphs

Figure 4 The Voronoi cells of the centers of the dense boxes.

Next, we assign all points to dense boxes. In order to do this, let cB be the center of a
dense box B. Note that cB is not necessarily the center point of the points in this box. We
consider the Voronoi diagram of the centers of all dense boxes and assign a point p to B if p
lies in the Voronoi cell of cB. Let SB be the set of points of S that are associated with a
dense box B. We note that each dense box B gets assigned at least all points in its own box,
since in the case of adjacent dense boxes, the boundary of the Voronoi cell coincides with the
shared boundary of these boxes (see Figure 4).

Furthermore, we can compute the points assigned to each box locally. By Lemma 17
all sparse boxes are adjacent to a dense box, and hence for any point p in a sparse box B
its distance to its nearest center is at most 3`/

√
2, where ` = 6kβ. It follows that only the

centers of cells of neighbors and neighbors of neighbors need to be considered.

I Lemma 18. For any two dense boxes B and B′, we have that the convex hulls of SB and
SB′ are disjoint.

Proof. We observe that the convex hull of SB is contained in the Voronoi cell of cB . Hence,
since the Voronoi cells of different dense boxes are disjoint, the convex hulls of the points
assigned to them are also disjoint. J

For each dense box B, we apply Theorem 13 on the points inside the dense box to compute
k disjoint layers of SB. Next, we connect all sparse points in SB to the representative of
the sector that contains them in each layer. Since all points in the same sector connect to
the same representative and the sectors of the same layer do not overlap, we obtain a plane
graph for each layer within the convex hull of each SB .

Hence, we obtain k pairwise disjoint layers such that in each layer the points associated to
each dense box are connected. Moreover, since the created edges stay within the convex hull
of each subproblem and by Lemma 18 those hulls are disjoint, each layer is plane. Thus, to
assure that each layer is connected, we must connect the construction between dense boxes.

We connect adjacent dense boxes in a tree-like manner using the following rules:
Always connect a dense box to the dense box below it.
Always connect a dense box to the dense box to the left of it.
If neither the box below nor the one to the left of it is dense, connect the box to the
dense box diagonally below and to the left of it.
If neither the box above nor the one to the left of it is dense, connect the box to the
dense box diagonally above and to the left of it.

To connect two dense boxes, we find and connect two representatives p and q (one from
each dense box) such that p lies in the sector of q and q lies in the sector of p; see Figure 5 (a).

I Lemma 19. For any layer and any two adjacent dense boxes B and B′, there are two
representatives p and q in B and B′, respectively, s.t. p lies in the sector of q and q lies in
the sector of p.
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p

q
c c′

`2

`1

`3
r′1`′1

W1

W2

W3 W ′
1

(a) (b)

Figure 5 Connecting two dense boxes by means of p and q. The half-circles in (a) indicate which
sector each representative covers. The red edges connect the dense boxes internally and the blue
edge connects the two dense cells. (b) illustrates the sectors involved in connecting two neighboring
dense boxes.

Proof. Consider two boxes B and B′ with center points (of their respective point sets) c
and c′. Now let W1 and W ′1 with representatives r1 and r′1 denote the sectors containing c′
and c, respectively; see Figure 5. The other sectors W2 and W3 of B with representatives r2
and r3 are ordered clockwise. We use `i to denote the ray from c containing ri. If r1 ∈W ′1
and r′1 ∈W1 we are done. So assume that r′1 6∈W1, the case when r1 6∈W ′1 (or when both
r1 6∈W ′1 and r′1 6∈W1) is symmetric. It follows that r′1 is in sector W2 if the line segment c′r′1
intersects `2 or sector W3 if the segment intersects `2 and `3. Assume that r′1 is in sector W2
(again the argument is symmetric when r′1 is in sector W3). Now r2 can be positioned on `2
between c and the intersection point with c′r′1 or behind this intersection point when viewed
from c. In the former case r′1 is in W2 and r2 is in W ′1 and we are done. In the latter case
the segments cr2 and c′r′1 cross. Since c, r2 ∈ B and c′, r′1 ∈ B′ this crossing would imply
that B and B′ are not disjoint, a contradiction. J

Now that we have completed the description of the construction, we show that each layer
of the resulting graph is plane and connected, and that the length of the longest edge is
bounded.

I Lemma 20. Each layer is plane.

Proof. Since dense boxes are internally plane and the addition of edges to the sparse points
do not violate planarity, it suffices to show that the edges between dense boxes cannot cross
any previously inserted edges and that these edges cannot intersect other edges used to
connect dense boxes.

We first show that the edge used to connect boxes B and B′ is contained in the union of
the Voronoi cells of these two boxes. If B and B′ are horizontally or vertically adjacent, the
connecting edge stays in the union of the two dense boxes, which is contained in their Voronoi
cells. If B and B′ are diagonally adjacent, we connect them only if their shared horizontal
and vertical neighbors are not dense. This implies that at least the two triangles defined
by the sides of B and B′ that are adjacent to their contact point are part of the union of
the Voronoi cells of these boxes. Hence, the edge used to connect B and B′ cannot intersect
the Voronoi cell of any other box. Since all points of a dense box in a sector connect to the
same representative and these edges lie entirely inside the sector, the edge connecting two
adjacent boxes can intersect only at one of the two representatives, but does not cross them.
Therefore, an edge connecting two adjacent dense boxes by connecting the corresponding
representatives cannot cross any previously inserted edge.

Next, we show that edges connecting two dense boxes cannot cross. Since any edge
connecting two dense boxes stays within the union of the Voronoi cells of B and B′, the
only way for two edges to intersect is if they connect to the same box B and intersect in
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the Voronoi cell of B. If the connecting edges lie in the same sector of B, they connect to
the same representative and thus they cannot cross. If they lie in different sectors of B, the
edges lie entirely inside their respective sectors. Since these sectors are disjoint, this implies
that the edges cannot intersect. J

I Lemma 21. Each layer is connected.

Proof. Since the sectors of the representatives of the dense boxes cover the plane, each point
in a sparse box is connected to a representative of the dense box it is assigned to. Hence,
showing that the dense boxes are connected, completes the proof.

By Corollary 15, the dense boxes are connected using the 8-neighbor topology. This
implies that there is a path between any pair of dense boxes where every step is one to a
horizontally, vertically, or diagonally adjacent box. Since we always connect horizontally
or vertically adjacent boxes and we connect diagonally adjacent boxes when they share no
horizontal and vertical dense neighbor, the layer is connected after adding edges as described
in the proof of Lemma 19. J

I Lemma 22. The distance between a representative in a dense box B and any point
connecting to it is at most 12

√
2kβ.

Proof. Since the representatives of B are connected only to points from dense and sparse
boxes adjacent B, the distance between a representative and a point connected to it is at
most the length of the diagonal of the 2× 2 grid with B as one of its boxes. Since a box has
width 6kβ, this diagonal has length 2

√
2 · 6kβ = 12

√
2kβ. J

I Theorem 23. For all point sets with at least 4(3k − 1) + 1 points, we can extract k plane
layers with the longest edge having length at most 12

√
2kBE(MST(S)).
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