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Abstract
The purpose of this article is two fold: (a) to formally introduce a stronger version of graph
deletion problems; and (b) to study this version in the context of bipartite graphs. Given a
family of graphs F , a typical instance of parameterized graph deletion problem consists of an
undirected graph G and a positive integer k and the objective is to check whether we can delete at
most k vertices (or k edges) such that the resulting graph belongs to F . Another version that has
been recently studied is the one where the input contains two integers k and ` and the objective
is to check whether we can delete at most k vertices and ` edges such that the resulting graph
belongs to F . In this paper, we propose and initiate the study of a more general version which
we call strong deletion. In this problem, given an undirected graph G and positive integers k and
`, the objective is to check whether there exists a vertex subset S of size at most k such that each
connected component of G−S can be transformed into a graph in F by deleting at most ` edges.
In this paper we study this stronger version of deletion problems for the class of bipartite graphs.
In particular, we study Strong Bipartite Deletion, where given an undirected graph G and
positive integers k and `, the objective is to check whether there exists a vertex subset S of size at
most k such that each connected component of G−S can be made bipartite by deleting at most
` edges. While fixed-parameter tractability when parameterizing by k or ` alone is unlikely, we
show that this problem is fixed-parameter tractable (FPT) when parameterized by both k and `.
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1 Introduction

Graph-modification by either deleting vertices or deleting edges or adding edges such that
the resulting graph satisfies certain properties or becomes a member of some well-understood
graph class is one of the basic problems in graph theory and graph algorithms. However, most
of these problems are NP–complete [18, 26] and thus they are subjected to intensive study in
algorithmic paradigms that are meant for coping with NP-completeness [9, 10, 21, 22]. These
paradigms among others include applying restrictions on inputs, approximation algorithms
and parameterized complexity. The goal of this paper is to introduce a ‘stronger’ notion of
graph deletion in the realm of parameterized complexity and illustrate the difficulties that
arise when considering the family of bipartite graphs and provide an approach to obtain
fixed-parameter tractability by overcoming these difficulties.

A typical instance of parameterized graph deletion is of the following form. Let F be a
family of graphs – such as edgeless graphs, forests, cluster graphs, chordal graphs, interval
graphs, bipartite graphs, split graphs or planar graphs. The deletion problem corresponding
to F is formally stated as follows.
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21:2 Strong Parameterized Deletion: Bipartite Graphs

Figure 1 An example showing the strength of the new parameter for editing problems.

F-Vertex (Edge) Deletion Parameters: k

Input: An undirected graph G and a non-negative integer k.
Question: Does there exist S ⊆ V (G) (or S ⊆ E(G)), such that |S| ≤ k and G− S is in
F?

In other words, given a graph G, can we delete at most k vertices or k edges such that the
resulting graph belongs to F? An algorithm for F-Vertex (Edge) Deletion that runs in
time f(k) · |V (G)|O(1) is called fixed-parameter tractable (FPT) algorithm and the problem
itself is said to be FPT.

The study of parameterized graph deletion problems together with their various restrictions
and generalizations has been an extremely active sub-area over the last few years. In fact, just
over the course of the last couple of years there have been results on parameterized algorithms
for Chordal Editing [6], Unit Vertex (Edge) Deletion [3], Interval Vertex (Edge)
Deletion [5, 4], Planar F Deletion [9, 17], Planar Vertex Deletion [14], Block
Graph Deletion [16] and Simultaneous Feedback Vertex Set [1]. Several known
parameterized algorithms for F-Edge Deletion or the version where the objective is to
delete k vertices and ` edges utilize the fact that given a yes-instance (G, k) or (G, k, `) to
the problem, there exists a vertex set S∗ of V (G) of size k∗ = k+ ` such that G−S∗ belongs
to F . Clearly, this is true for any hereditary family of graphs; that is, if G ∈ F then all its
induced subgraphs belong to F . Thus, if the corresponding F-Vertex Deletion is FPT
then we can apply this algorithm and find a vertex subset S∗ of size at most k such that
G − S∗ ∈ F . Having the set S∗ allows one to infer numerous structural properties of the
input which can then be utilized in non-trivial ways to solve the original F-Vertex (Edge)
Deletion problem. However, the existence of such a set is no longer guaranteed in the
proposed stronger version of this problem.

Let F be a polynomial-time recognizable family of graphs; that is, given a graph G, in
polynomial time we can decide whether G belongs to F . For a fixed integer `, let F + `e

denote the class of graphs that can be obtained by adding ` edges to a graph in F [2].
Furthermore, suppose that F-Edge Deletion is FPT with running time O(g(`) · nc). Here,
n = |V (G)| and c is a fixed constant. That is, for any fixed integer `, F+`e can be recognized
in time O(nc). The Strong F-Deletion problem is defined as follows.

Strong F-Deletion Parameters: k, `

Input: An undirected graph G and non-negative integers k and `.
Question: Does there exist S1 ⊆ V (G) such that |S1| ≤ k and every connected component
of G− S1 belongs to F + `e?

A close inspection easily shows that Strong F-Deletion is much stronger than F-
Deletion. For example, let F be the family of bipartite graphs and consider the graph
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G depicted in Figure 1. The graph G has n−1
3 vertex disjoint triangles and the vertex v is

adjacent to two vertices from each of the triangles. Clearly, after deleting v every connected
component can be made bipartite by deleting exactly one edge. Thus, in the traditional
sense this is a yes-instance of Bipartite Deletion with parameters (1, n−1

3 ); however this
is already a yes-instance of Strong Bipartite Deletion with parameters (1, 1). Thus,
these problems seem much harder than traditional editing problems as the parameters are
much smaller.

An alternate viewpoint is that when G has a vertex set S of size at most k such that
every connected component of G− S is in F + `e then S can be considered a modulator into
the graph class where every connected component of the graph belongs to F + `e. While
modulators to various polynomial-time recognizable graph classes have been studied in a
very systematic way [8, 9, 13], the same is not true of modulators to NP-complete graph
classes. Studying the Strong F-Deletion problem on the other hand allows us to do
precisely this. In fact, it is not even necessary that the class F is a conventional graph
class and instead can be the ‘composition’ of various graph classes. For instance F could
be defined as the set of all graphs where each connected component is either chordal or a
bipartite graph. The computation of such modulators is a problem with several algorithmic
applications. For instance, in a recent work, Ganian et al. [11] used a similar notion in order
to design algorithms for the classic Constraint Satisfaction Problem.

In this article we study the Strong F-Deletion, when F is the family of bipartite
graphs. Henceforth, F denotes the family of bipartite graphs. We call a graph G, ell-
pseudobipartite, if every connected component of G belongs to F + `e. The problem we study
is as follows.

Strong Bipartite Deletion Parameters: k, `

Input: An undirected graph G and non-negative integers k and `.
Question: Does there exist S ⊆ V (G) such that |S| ≤ k and every connected component
of G− S belongs to F + `e?

We refer to the set S as the solution for this instance. The primary reason behind the
selection of the family of bipartite graphs for our study is that the problems where we are
required to delete vertices and/or edges to obtain a bipartite graph are some of the most
basic and well studied problems in parameterized complexity and studying these problems
has led to the discovery of several new techniques and tools. These problems are called
Odd Cycle Transversal and Edge Bipartization in literature and the algorithms with
best dependence on the parameter have running time O(2.3146knO(1)) and O(1.977knO(1)),
respectively [19, 24]. We would like to add that the problem is unlikely to be FPT when
parameterized by k or ` alone, as it would imply polynomial time algorithms for Edge
Bipartization and Odd Cycle Transversal respectively. It is also important to mention
that strong deletion to the class of forests, Strong Forest Deletion, was studied in
related but different context in [23]. In that work, the authors used the concept of graph
minors and Courcelle’s theorem to show that the strong deletion problem is FPT. As is the
case with algorithms using Courcelle’s theorem, the dependence on the parameter is very
high.

Our Result and Methodology. Our main result is the following theorem.

I Theorem 1. Strong Bipartite Deletion is FPT.
The first big obstacle that needs to be overcome is the fact that the input graph can have a
minimum odd cycle transversal of unbounded size. The first part of our algorithm is devoted
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to overcoming this obstacle. We utilise the technique of iterative compression to reduce it
to a bounded number of equivalent instances each having an odd cycle transversal of size
poly(k, `). Then we use the recursive understanding technique introduced by Grohe et al. [12]
(also see [7]) to first find a small separator in the graph which separates the graph into two
parts, each of sufficiently large size and then recursively solve a ‘border’ version of the same
problem on one of the two sides. The subroutines that we use to compute the separators are
those of Chitnis et al.[7] who built upon the work of Kawarabayashi and Thorup [15]. The
border version of the problem is a generalization which also incorporates a special bounded
set of vertices, called terminals. During the course of our algorithm, we will attempt to solve
the border problem on various subgraphs of the input graph. The objective in the border
problem is to find a bounded set of vertices contained within a particular subgraph such that
any vertex in this subgraph not in the computed set is not required in any solution for the
given instance irrespective of the vertices chosen outside this subgraph.

Given the output of the border problem, the standard approach is to either delete the
remaining vertices or simply ‘bypass’ these vertices. In our case, no such simple reduction
seems likely. However, we show that by blowing up the size of the computed set by a function
of the parameter, we can use a ‘parity preserving’ bypassing operation to get rid of the
remaining vertices.

This leaves us with the base case of the recursion, that is when we are unable to find
a small separator. At this stage, we know that the graph has a bounded sized odd cycle
transversal and has a highly connected structure. Interestingly, even this seemingly significant
structural information regarding the input does not seem enough to imply a straightforward
algorithm. Instead, we compute an oct solution and design a branching rule that has as its
base case, the case when the oct is not separated by the solution. Here, we rephrase this
problem as a Mixed Multiway Cut-Uncut (MMCU) problem and invoke the result in
[25] to solve it. In the MMCU problem, the input is a multigraph G, integers k and `, a
set of terminals T ⊆ V (G), and equivalence relation R on the set T . The objective is to
output a solution X = (X,F ) such that X ⊆ (V (G) \ T ), F ⊆ E(G), |X| ≤ k, |F | ≤ ` and
for all u, v ∈ T , u and v belong to the same connected component of G− X if and only if
(u, v) ∈ R and ⊥ if no such solution exists. The structure of our presentation follows that of
Chitnis et al.[7] for the most part, except for the high connectivity phase.

Due to space constraints, many proofs of results are omitted or shortened, and will appear
in the full version of the paper.

2 Preliminaries

Notations and Definitions: For a graph G, we denote the set of vertices of the graph by
V (G) and the set of edges of the graph by E(G). We denote |V (G)| and |E(G)| by n and
m respectively, where the graph is clear from context. For a set S ⊆ V (G), the subgraph
of G induced by S is denoted by G[S] and it is defined as the subgraph of G with vertex
set S and edge set {(u, v) ∈ E(G) : u, v ∈ S} and the subgraph obtained after deleting S is
denoted as G− S. For F ⊆ E(G), by V (F ) we denote the set {v | ∃u such that (u, v) ∈ F}.
For a tuple X = (X,F ) such that X ⊆ V (G) and F ⊆ E(G), by G−X we denote the graph
G′ = (V (G) \X,E(G−X) \ F ). All vertices adjacent to a vertex v are called neighbours of
v and the set of all such vertices is called open neighbourhood of v, denoted by NG(v). For
a set of vertices S ⊆ V (G), we define NG(S) = (∪v∈SN(v)) \ S. We drop the subscript G
when the graph is clear from the context.

An oct of a graph G, is a set X ⊆ V (G) such that G − X is bipartite. Similarly, an
edge-oct of a graph G is set F ⊆ E(G) such that the graph G − F is bipartite. We call a
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graph `-pseudobipartite, if each of the connected components of G has an edge-oct of size at
most `. An `-pseudobipartite deletion set of a graph G is a set X ⊆ V (G) such that G−X is
`-pseudobipartite. It is easy to see that `-pseudobipartite graphs can be recognized in time
O(1.977knO(1)) using the algorithm for Edge Bipartization given in [24]. Now we state
the definitions of good node separations and flower separations from [7]. Then we state the
lemmas that talk about the running time to find such separations and the properties of the
graph if such separations do not exist.

I Definition 2 (C.1 in [7]). Let G be a connected graph and V∞ ⊆ V (G) be a set of
undeletable vertices. A triple (Z, V1, V2) of subsets of V (G) is called a (q, k)-good node
separation, if |Z| ≤ k, Z ∩ V∞ = ∅, V1 and V2 are vertex sets of two different connected
components of G− Z and |V1 \ V∞|, |V2 \ V∞| > q.

I Definition 3 (C.2 in [7]). Let G be a connected graph, V∞ ⊆ V (G) be a set of undeletable
vertices, and Tb ⊆ V (G) a set of border terminals in G. A pair (Z, (Vi)ri=1) is called a
(q, k)-flower separation in G (with regard to border terminals Tb), if the following holds:

1 ≤ |Z| ≤ k and Z ∩ V∞ = ∅; the set Z is the core of the flower separation (Z, (Vi)ri=1);
Vi are vertex sets of pairwise different connected components of G− Z, each set Vi is a
petal of the flower separation (Z, (Vi)ri=1);
V (G) \ (Z ∪

⋃r
i=1 Vi), called a stalk, contains more than q vertices of V (G) \ V∞;

for each petal Vi we have Vi ∩ Tb = ∅, |Vi \ V∞| ≤ q and NG(Vi) = Z;
|(
⋃r
i=1 Vi) \ V∞| > q.

I Lemma 4 (C.3 in [7]). Given a connected graph G with undeletable vertices V∞ ⊆ V (G)
and integers q and k, one may find in O(2O(min(q,k) log(q+k))n3 logn) time a (q, k)-good node
separation of G, or correctly conclude that no such separation exists.

I Lemma 5 (C.4 in [7]). Given a connected graph G with undeletable vertices V∞ ⊆ V (G)
and border terminals Tb ⊆ V (G) and integers q and k, one may find a (q, k)-flower separation
in G w.r.t. Tb in O(2O(min(q,k) log(q+k))n3 logn) time, or correctly conclude that no such
flower separation exists.

I Lemma 6 (C.5 in [7]). If a connected graph G with undeletable vertices V∞ ⊆ V (G) and
border terminals Tb ⊆ V (G) does not contain a (q, k)-good node separation or a (q, k)-flower
separation w.r.t. Tb then, for any Z ⊆ V (G)\V∞ of size at most k, the graph G−Z contains
at most (2q + 2)(2k − 1) + |Tb|+ 1 connected components containing a vertex of V (G) \ V∞,
out of which at most one has more than q vertices not in V∞.

3 Overview of the algorithm

To solve Strong Bipartite Deletion, we first reduce it to a slightly more general problem
where we also have a set U of undeletable vertices and we are not allowed to select vertices
in our potential solution from U . In particular the problem we will study is as follows.

Pseudobipartite Deletion Parameters: k, `

Input: A graph G, integers k and ` and a set U ⊆ V (G).
Question: Does there exist X ⊆ V (G) such that |X| ≤ k, X ∩ U = ∅ and G − X is
`-pseudobipartite?

Observe that when we set U = ∅ in Pseudobipartite Deletion, we get the Strong
Bipartite Deletion problem. In rest of the paper, we design an algorithm for Pseudobi-
partite Deletion using the method of iterative compression and recursive understanding
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technique introduced by Grohe et al. [12]. We start off by deleting the connected components
from the graph which are already `-pseudobipartite. Then using the technique of iterative
compression, in Lemma 8, we reduce an instance of Pseudobipartite Deletion to 2O(k)

many instances of the same problem such that the original instance is a Yes instance if and
only if at least one of the new instances is a Yes instance. In addition to this, we also show
that all the new instances have an oct of size bounded by a polynomial in k and `. This will
help later in the high connectivity phase of the algorithm by giving some structure to the
problem, as we will know that the graph has a reasonably small oct. Then we take care of
the case when the graph has more than one connected component. This can be easily done
by solving the problem optimally on each connected component. Then we define the border
problem, where we are additionally provided with some border terminals, say T .

Bordered-Pseudobipartite Deletion (B-PBD) Parameters: k,`
Input: A Pseudobipartite Deletion instance I = (G, k, `, U) with G being connected
and a set T ⊆ V (G) such that |T | ≤ 2k; denoted by Ib = (G, k, `, U, T ).
Output: Output one of the following three. (a) Find a special vertex v such that for each
P ∈ P(Ib), there is a minimum solution sol∗P which contains v, or (b) for each P ∈ P(Ib),
output solP = XP which is a minimum solution to (Ib,P), or (c) output solP = ⊥ if none
of the earlier two cases apply.

Here, the set P(Ib) denotes the set of ‘interactions’ of the border terminals of instance Ib with
a solution and the objective is to find a solution that corresponds to each possible interaction
or to find a special vertex which is part of a solution for each possible interaction. It can be
easily seen that for a Pseudobipartite Deletion instance I = (G, k, `, U), solving the
B-PBD instance (G, k, `, U, ∅) either gives a solution to the instance I or outputs a vertex
which is part of a minimum solution for the instance I, so in any case we make progress.

As is the case in algorithms based on the recursive understanding approach, to solve the
border problem, we proceed to check whether a good separator T ′ exists in the graph. We
use the notions of good node separations and good flower separations defined by Chitnis et
al.[7] and look for good (q, k) node separation or (q, k) flower separation. The definitions are
given in the preliminaries section. The running times required to compute such separations
(if they exist) are argued by Lemmas 4 and 5. If we succeed in finding such a separation,
then the graph gets divided into two large parts using a small separator. The definitions of
node separations and flower separation help us argue that one of the parts (containing at
most half of the border terminals) is connected. We call the smaller graph H.

Now we update the set of terminals to include the separator, and solve the border problem
I ′b recursively on the smaller graph. That is, for every behavior P ∈ P(I ′b) of the new border
terminals, we get an optimum solution. Let Z denote the set

⋃
P∈P(I′

b
) solP where solP is the

solution for the smaller graph for behavior P of the border terminals. Then in Lemma 9,
we argue that there exists a solution for the instance Ib, which intersects with the smaller
graph only in Z. At this time, we apply certain operations on the graph, such that the
total number of the vertices in the graph G reduces by a sufficient amount. The approach
of simply bypassing all the vertices not required by a solution does not quite work, as it
could conceivably create spurious odd cycles which could lead to a Yes-instance turning
into a No-instance. Hence, we make use of a ‘parity preserving’ bypassing operation to
reduce the vertices of the graph, and show in Lemma 11 that this operation results in an
equivalent instance. By proving a bound on the size of the set P(Ib) as a function of k and `,
we guarantee that after the application of the recursive step (Step 2 in the algorithm) the
number of vertices in the graph undergoes a sufficient reduction.
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We then describe the algorithm for the problem in the case when there is no good-
separation to recurse upon. Here, we need to solve the Border-Pseudobipartite Deletion
instance (G, k, `, U, T ) in the case that Step 2 is not applicable on the graph. For this, for each
P ∈ P(I ′b), we solve the instance (GP , k, `, U ′), where the graph GP encoded the interaction,
P, of the border terminals T . We argue that in the absence of a good node separation or
a flower separation of size at most k in the graph G, Lemma 6 guarantees an appropriate
type of high connectivity in the graph G. In Lemma 12, we exploit this to get a similar
high connectivity property for the graph GP . Since the graph G has an oct of bounded size
because of Lemma 8, we can show a similar bound on oct of the graph GP also. At this
stage, we use the algorithm for finding oct given in [19] to find an oct of bounded size and
get an instance of the following problem.

OCT-PBD Parameters: k,`
Input: An instance (G, k, `, U) of Pseudobipartite Deletion along with an oct O of
G of size at most g(k, `) such that for any Z ⊆ (V (G) \U) of size at most k, in the graph
G−Z, at most one connected component containing a vertex of V (G) \U has more than
h(k, `) vertices not in U .
Output: A minimum sized `-pseudobipartite deletion set X of G of size at most k such
that X ∩ U = ∅. Output ⊥ if such a set does not exist.

Then we guess the intersection of the oct with the solution. This lets us assume that the
solution is disjoint from the oct. Formally, we branch into 2|O| instances of the following
problem which we call OCT-PBD(I). Here, the input is an instance (G, k, `, U,O) of OCT-
PBD and the objective is to compute a minimum sized `-pseudobipartite deletion set X of
G of size at most k such that X ∩ (O ∪ U) = ∅ or return ⊥ if such a set does not exist. To
solve an instance of OCT-PBD(I), we guess which vertices of the oct are going to be in the
same connected component after deleting the solution. This gives us g(k, `)g(k,`) instances of
following variant of OCT-PBD(I), which we call OCT-PBD(II). Here, the input is an instance
(G, k, `, U,O) of OCT-PBD(I) and an equivalence relation § on O with the guarantee that
there exists a minimum sized `-pseudobipartite deletion set X ⊆ V (G) \ (U ∪O) of G such
that for all u, v ∈ O, u and v belong to the same connected component of G−X if and only
if (u, v) ∈ §. The objective is to compute a minimum sized `-pseudobipartite deletion set X
of G of size at most k such that X ∩ (O ∪ U) = ∅. We output ⊥ if such a set does not exist.

To solve an instance (G, k, `, U,O, §) of OCT-PBD(II), we look at the number of
equivalence classes in §. If it is more than one, then either we solve the problem via brute
force on some connected component (of size at most h(k, `)) or we give a branching step where
we solve at most h(k, `)+1 instances OCT-PBD(II), where the size of the solution decreases
by at least one. In the other case, there is only one equivalence class in S, which means
that all the vertices of oct are going to be part of a single connected component resulting
by deleting a solution, we also guess how the oct vertices themselves will be bipartitioned
eventually upon deleting the k vertices in the solution and an arbitrary but fixed set of at
most ` edges which make the connected component containing these vertices bipartite. So
for each instance of OCT-PBD(II), we get 2|O| instances of the problem OCT-PBD(III) as
defined below.
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OCT-PBD(III) Parameters: k,`
Input: An instance (G, k, `, U,O, §) of OCT-PBD(II) such that for all u, v ∈ O, (u, v) ∈ §
and a bipartition (O1 ]O2) of O with the guarantee that there exists a minimum sized
`-pseudobipartite deletion set X ′ ⊆ V (G) \ (U ∪O) of G such that all vertices of O belong
to the same connected component of G − X ′ having vertex set C and there exists an
edge-oct F of G[C] of size at most ` and a bipartition (C1 ]C2) of C such that G[C1]−F
and G[C2]− F are independent sets and O1 ⊆ C1 and O2 ⊆ C2.
Output: A minimum sized `-pseudobipartite deletion set X of G of size at most k such
that X ∩ (O ∪ U) = ∅. Output ⊥ if such a set does not exist.

In Lemma 13, we argue that this branching is correct. Finally, to solve an instance I of
OCT-PBD(III), we reduce it to an instance of MMCU∗ – a special instance of MMCU
with some undeletable vertices.

MMCU∗ Parameters: k,`
Input: A graph G, integers k and `, T ⊆ V (G), an equivalence relation R on T having at
most two equivalence classes, and set of undeletable vertices U ⊆ V (G).
Output: Output a minimal solution X = (X,F ) to MMCU instance (G,T,R, k, `) such
that X ∩ U = ∅ and ⊥ if no such solution exists.

Finally, to solve MMCU∗ we show that it can be reduced to (|U |+2)|U | instances of MMCU,
which is solved using the algorithm in [25].

4 An algorithm for Pseudobipartite Deletion

In this section, we describe the FPT algorithm for Pseudobipartite Deletion. In the first
step of the algorithm, we get rid of connected components of the graph which are already
`-pseudobipartite.
I Step 1. Let (G, k, `, U) be an instance of Pseudobipartite Deletion. Let C :=
{C | G[C] is a connected component of G}. For each C ∈ C, find if the graph G[C] is `-
pseudobipartite. Let C′ = {C | C ∈ C and G[C] is `-pseudobipartite} and let C ′ =

⋃
C∈C′ C.

Pass the Pseudobipartite Deletion instance (G− C ′, k, `, U \ C ′) to the next step.
Now we use the method of iterative compression to reduce an instance of Pseudobi-

partite Deletion to at most n− k instances of PBD Compression (PBD-C) problem,
where we are given an instance (G, k, `, U) of Pseudobipartite Deletion along with an
`-pseudobipartite deletion set of G of size at most k + 1 and we are asked whether one exists
of size at most k. We prove the following lemma which helps us in bounding the size of an
oct.

I Lemma 7. Let (G, k, `, U, S) be an instance of PBD-C such that none of the connected
components of G are `-pseudobipartite. If G has an `-pseudobipartite deletion set Z disjoint
from S of size at most k, then it has an oct of size at most g′(k, `) := 2k + k`2 + 1.

The proof of the lemma follows from the argument that G−Z can have at most k+k`+ 1
connected components which are not bipartite. Now we prove the lemma which reduces a
compression instance to many instances of Pseudobipartite Deletion with a guarantee
on the size of an oct for all of them.

I Lemma 8. There is an algorithm, which given an instance (G, k, `, U, S) of PBD-C, runs
in time 2O(k`2)nO(1) and returns at most 2k+1 instances {I1, I2, . . . , Iq} of Pseudobipartite
Deletion, where Ii = (Gi, ki, `, U) and q ≤ 2k+1 such that the following holds.
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(G, k, `, U, S) is a Yes instance of PBD-C if and only if there is an 1 ≤ i ≤ q such that
(Gi, ki, `, U) is a Yes instance of Pseudobipartite Deletion.
For each 1 ≤ i ≤ q, ki ≤ k and Gi has an oct of size at most 2k + k`2 + 1.

Henceforth, we will assume that the given Pseudobipartite Deletion instance is
returned by the algorithm of Lemma 8 and hence has an oct of bounded size.

Borders and Recursive Understanding. After applying Lemma 8, we still need to solve
2k+1 Pseudobipartite Deletion instances. We give an algorithm to solve instances which
are given by Lemma 8. We first do some preprocessing to assume that the instances of
Pseudobipartite Deletion which we are going to solve are connected. Now we are ready
to define the border problem and describe the recursive phase of the algorithm.

Let I = (G, k, `, U) be a Pseudobipartite Deletion instance. The input to the border
problem consists of an instance I = (G, k, `, U) of Pseudobipartite Deletion along with
a set T of at most 2k vertices of G disjoint from U . The output to the border problem either
consists of several solutions, one for each relevant ‘behaviour’ defined on the set of terminals,
or it consists of a single special vertex, which is part of some minimum solution for every
behaviour. In what follows, we will formalize this statement.

Let I = (G, k, `, U) be an instance of Pseudobipartite Deletion and T ⊆ V (G). We
let P(Ib) denote the set of all tuples P = (XT ,R,B, L), such thatXT ⊆ T , R is an equivalence
relation on T \XT , B is a bipartition of T \XT and L = {(R1, `1), (R2, `2, ) . . . (Rq, `q)} is a
set of pairs which associates an integer `i ≤ ` with each equivalence class Ri in R. For a
tuple P = (XT ,R,B, L) with the equivalence classes of R being R1, . . . , Rq, the bipartition
induced on the class Ri by B is denoted by (Ri1 , Ri2).

For each P ∈ P(Ib), we define a super-graph GP of G with the following additional
vertices and edges.

For each equivalence class Ri of R, we add sets of vertices R′i1 and R′i2 such that
|R′i1 | = |R′i2 | = ` + 1. Then we add all the edges between vertices u and v such that
u ∈ Ri1 ∪R′i1 and v ∈ Ri2 ∪R′i2 . If (Ri, `i) ∈ L, then we pick an arbitrary vertex ui ∈ Ri
and add `i-many edge disjoint triangles which only intersect in ui. That is, we add 2`i
new vertices ui,a1 , . . . , ui,a`i

, ui,b1 , . . . , ui,b`i
and edges {(ui, ui,aj ), (ui, ui,bj ), (ui,aj , ui,bj )} for each

1 ≤ j ≤ `i.
For each vertex u ∈ XT , we add `+ 1-many edge disjoint triangles which only intersect
in u. That is, we add 2(`+ 1) new vertices ua1 , . . . , uar , ub1, . . . , ubr where r = 2`+ 2 and
edges {(u, uaj ), (u, ubj), (uaj , ubj)} for each 1 ≤ j ≤ r.

This completes the description of the graph GP . It can be seen that |V (GP) \ V (G)| ≤
2k(4`+ 1) and |E(GP) \ E(G)| ≤ 4k(2k + 3)(`+ 1). The intuition behind the newly added
vertices and edges is the following. Consider an instance of Pseudobipartite Deletion
and suppose that G is a subgraph of the input instance with the terminal set T separating
this subgraph from the rest of the input graph. The tuple P = (XT ,R,B, L) essentially
captures the interaction of the terminal set with the solution and the rest of the graph. That
is, XT denotes the intersection of the solution with T . The partition R denotes the way the
remaining vertices of T are partitioned as connected components after deleting a solution.
The bipartition B denotes the bipartition of T induced by an arbitrary bipartition of the
graph obtained from the input graph by deleting the k vertices in the solution and then
a minimum edge-oct in the rest of the graph. Finally, for each R ∈ R, if (R, x) ∈ L, it
means that after deleting the k vertices in a solution, there is a set of at most x edges in
the connected component containing R such that they are part of a minimum edge-oct of
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this component and they lie outside G. The newly added vertices essentially simulate this
interaction of the terminals with the vertices in the solution.

We denote by UP the union of the set U with the vertices in V (GP) \ V (G). Also, for
P = (XT ,R,B, L), for each Ri ∈ R, we denote by HGP(Ri) the set of vertices in V (GP)\V (G)
which are adjacent to a vertex of Ri. We drop the reference to G if it is clear from the
context.

We say that a set X ⊆ V (G)\U is a solution to (Ib,P) where P = (XT ,R,B, L) ∈ P(Ib) if
X is a solution to the Pseudobipartite Deletion instance (GP , k, `, U ′P) where U ′P = UP∪
(T \XT ). Recall that when we say that a set S is a solution to a Pseudobipartite Deletion
instance (G, k, `, U), we mean that |S| ≤ k, S ∩ U = ∅ and G− S is `-pseudobipartite.

It can be easily seen that for a Pseudobipartite Deletion instance I = (G, k, `.U),
solving the B-PBD instance (G, k, `.U, ∅) either gives a solution to the instance I or outputs
a vertex which is part of a minimum solution for the instance I, so in any case we make
progress. In what follows we will show that given a correct output for an instance of B-PBD,
there is an FPT algorithm which either computes an equivalent instance whose size is bounded
by a function of k and ` or it outputs a special vertex as described in the problem definition.

I Lemma 9. Let Ib = (G, k, `, U, T ) be an instance of B-PBD. Let T ′ ⊆ V (G)\U and let C
be the vertex set of a connected component of G−T ′ such that N(C) = T ′. Let H = G[C∪T ′]
and let Q = T ′ ∪ (C ∩ T ) and suppose that |Q| ≤ 2k. Let I ′b denote the B-PBD instance
(H, k, `, (U ∩ V (H)), Q). Let Z denote the set

⋃
P∈P(I′

b
) solP . Then, for each P ∈ P(Ib), if

there is a solution for (Ib,P), then there is one whose intersection with C is in Z. Moreover,
if there exists a vertex v such that v ∈ solP′ for all P ′ ∈ P(I ′b), then for all P ∈ P(Ib), there
exists a minimum solution to (Ib,P) which contains v.

Before we state our next lemma, we need to recall the notion of parity-torso (see for
example [20]).

I Definition 10. Let G be a graph and S ⊆ V (G). We denote by PT (G,S) the graph
obtained from G − S as follows. For every pair of vertices u, v in V (G) \ S, if there is an
odd length u-v path in G whose internal vertices all lie in S then we add an edge (u, v) and
if there is an even length u-v path in G whose internal vertices all lie in S then we add a
subdivided edge (path of length 2) between u and v.

We are now ready to state our next crucial lemma which essentially gives a way to get
rid of vertices which we know will never be required in our solution.

I Lemma 11. Let Ib = (G, k, `, U, T ) be an instance of B-PBD. Let T ′ ⊆ V (G)\U and let C
be the vertex set of a connected component of G−T ′ such that N(C) = T ′. Let H = G[C∪T ′]
and let Q = T ′ ∪ (C ∩ T ) and suppose that |Q| ≤ 2k. Let I ′b denote the B-PBD instance
(H, k, `, (U ∩ V (H), Q). Suppose that for every v ∈ V (H), there is a P ∈ P(I ′b) such that
v /∈ solP . Let Z denote the set

⋃
P∈P(I′

b
) solP . Then,

|Z| = 2O(k log(k+`)) and
there are functions τ, α and an algorithm that, given Ib and Z, runs in time (τ(k, `)nO(1))
and computes a set W ⊆ V (H) such that W ⊇ Q and has size at most α(k, `) such that
the instance Ib is equivalent to the instance I1

b = (G′, k, `, U, T ) where the graph G′ is
defined as PT (G,V (H) \W ). Here, α(k, `) and τ(k, `) are both 2O(k log(k+`)).

Now we describe the recursive step of the algorithm.
I Step 2. Assume we are given a B-PBD instance Ib = (G, k, `, U, T ) and let q := α(k, `) +(
α(k,`)

2
)

+ 1. Invoke first the algorithm of Lemma 4 in a search for (q, k)-good node separation
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(with V∞ = U). If it returns a good node separation (Z, V1, V2), let j ∈ {1, 2} be such that
|Vj ∩T | ≤ k and denote T ′ = N(Vj) ⊆ Z, C = Vj . Otherwise, if it returns that no such good
node separation exists in G, invoke the algorithm of Lemma 5 in a search for (q, k)-flower
separation w.r.t. Tb (with V∞ = U again). If it returns that no such flower separation exists
in G, pass the instance Ib to the next step (high connectivity phase). Otherwise, if it returns
a flower separation (Z, (Vi)ri=1), denote C =

⋃r
i=1 Vi and T ′ = N(C) ⊆ Z. Let H = G[C∪T ′].

In the case we have obtained T ′ and C (either from Lemma 4 or Lemma 5), invoke the
algorithm recursively for the B-PBD instance I ′b defined as in the statement of Lemma 9 for
sets T ′ and set C, obtaining an output solP for each P ∈ P(I ′b). If there exists v ∈ V (H) such
that v ∈ solP for every P ∈ P(I ′b), we return v as the special vertex. Otherwise, compute
the set Z =

⋃
P∈P(I′

b
) solP . Use the algorithm of Lemma 11 on I ′b and Z to compute the set

W . Generate the graph G′ = PT (G,V (H) \W ). Let I1
b = (G′, k, `, (U ∩ V (H)),Q), where

Q = T ′ ∪ (C ∩ T ).
Restart this step on instance I1

b . If it returns a special vertex v, then return v as a special
vertex for the instance Ib. Otherwise, obtain a family of solutions (sol′P)P∈P and return this
family as output to the instance Ib.

The correctness of Step 2 follows from Lemmas 9 and 11. Now we do a running time
analysis for Step 2. Since q = O(2O(k log(k+`))), finding a good (q, k)-node separation or
flower separation takes time O(2O(min(q,k) log(q+k))n3 logn) = O(2O(k2 log(k+`))n3 logn). Let
|V (H)| = n′, and hence by definitions of good node separation and flower separation we have
that q + 1 ≤ n′ ≤ n− q − 1. The first recursive call is applied to an instance on n′ vertices.
While taking the torso operation, we have that |W | = α(k, `) = 2O(k log(k+`)) and finding the
set W takes τ(k, `)nO(1) = 2O(k log(k+`))nO(1) time.

Let H ′ = G− V (H). We know that T ′ separates H ′ from rest of the graph and T ′ ⊆W .
So, for any u, v ∈ V (G) such that u ∈ V (H ′), we do not have any path from u to v having
its internal vertices entirely in V (H) \W . So if a new vertex z is added because of an
even length path from u to v, we have that u, v ∈ V (H). As G− (V (H) \W ) has at most
n− n′ + α(k, `) vertices and none of the vertices in H ′ contribute to the torso operation, we
have that |V (G′)| ≤ n−n′+α(k, `) +

(
α(k,`)

2
)
< |V (G)|. The base case for the recursive calls

is the high connectivity phase, which we will argue takes time 2O((k+`)3(log k+`))nO(1).
Solving the resulting recurrence gives T (n) = 2O((k+`)3(log k+`))nO(1) in the worst case,

which is the running time for Step 2. We remark that we never actually introduce any new
undeletable vertices in the graph in this step.

High Connectivity phase. Assume we have a B-PBD instance Ib = (G, k, `, U, T ) where
Step 2 is not applicable. Let us fix P = (XT ,R,B, L) ∈ P(Ib) and let U ′ := U ∪ ((T \XT ) ∪
Rnew), where Rnew = V (GP) \ V (G). We iterate through all possible values of P and try
to find a minimum solution to (GP , k, `, U ′). Since |P(Ib)| = 2O(k log(k+`)), this results in a
factor of 2O(k log(k+`)) in the running time. Thus, from now onwards we focus on one such P .
Furthermore, here we only solve the instances where |U ′| ≤ O(k`), which is sufficient for our
purpose as we will argue later. We first prove the following lemma.

I Lemma 12. Let Ib = (G, k, `, U, T ) be an instance of B-PBD where Step 2 is not applicable.
Let U ′ := U ∪ ((T \XT ) ∪Rnew), where Rnew = V (GP) \ V (G). Then for every P ∈ P(Ib),
the graph GP satisfies the following.

for any Z ⊆ (V (GP) \U ′) of size at most k, the graph GP −Z contains at most f(k, `) =
(2q+2)(2k−1)+2k+1 connected components containing a vertex of V (G)\U ′, out of which
at most one has more than h(k, `) vertices not in U ′ where h(k, `) := q(4k(2k+3)(`+1)+1),
and
GP has an oct of size at most g(k, `) := 2k + k`2 + 1 + |U ′|.
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So, now we can generate an instance of Pseudobipartite Deletion where an oct is
also given and we have a bound on the number of vertices from V (G) \ U in all connected
components after deleting a solution except one. We recall the formal problem definition
from section 3.

OCT-PBD Parameters: k,`
Input: An instance (G, k, `, U) of Pseudobipartite Deletion along with an oct O of
G of size at most g(k, `) such that for any Z ⊆ (V (G) \U) of size at most k, in the graph
G−Z, at most one connected component containing a vertex of V (G) \U has more than
h(k, `) vertices not in U .
Output: A minimum sized `-pseudobipartite deletion set X of G of size at most k such
that X ∩ U = ∅. Output ⊥ if such a set does not exist.

I Step 3. Find an oct O of GP of size g(k, `) using algorithm in [19]. Return an instance
(G, k, `, U,O) of OCT-PBD.

The correctness of Step 3 is immediate from Lemma 12. After doing some simple guessing
as explained in the overview section we arrive at an instance of OCT-PBD(II). Now to solve
OCT-PBD(II). We return No if k < 0. We first look at the case when the equivalence
relation § has more than one equivalence class. In this case, we know that there exists a
solution X after deleting which, at least one of the equivalence classes of § is in a connected
component containing at most h(k, `) vertices not from U .

We proceed by guessing this equivalence class Si in §. Then we arbitrarily pick a vertex v
in Si and look at a connected subgraph H of G containing v which has h(k, `)+1 vertices not
from U . We know that at least one of the vertices in V (H) has to be part of the solution X,
because after deleting X, the connected component containing v has at most h(k, `) vertices
not from U . Then we pick a vertex of V (H) and branch on it. Since each branching call
decreases solution size we are looking for by at least one, the depth of the recursion tree is
bounded by k.

If such a subgraph H does not exist, we have that the connected component containing
v has at most h(k, `) vertices not in U , and then we solve the problem on that connected
component using brute force, which takes time h(k, `)knO(1).

Now we deal with the case when § has only one equivalence class. That is, we know that
there exists a solution X ⊆ V (G) \ (U ∪ O) such that G −X is `-pseudobipartite and for
all (u, v) ∈ O, u and v belong to the same connected component of G−X. In other words,
there exists a solution X of minimum size such that all the vertices of O lie in the same
connected component of G−X. To solve this problem, we first prove the following.

I Lemma 13. Let (G, k, `, U,O, §) be an OCT-PBD(II) instance such that for all u, v ∈ O,
(u, v) ∈ §. Then there exists a bipartition (O1 ]O2) and X ′ ⊆ V (G) \ (U ∪O) such that X ′
is a minimum sized `-pseudobipartite deletion set of G, all vertices of O belong to the same
connected component of G−X ′ having vertex set C and there exists an edge-oct F of G[C]
of size at most ` and a bipartition (C1 ] C2) of C such that G[C1]− F and G[C2]− F = ∅
are independent sets and O1 ⊆ C1 and O2 ⊆ C2.

This lemma helps us reduce an instance of OCT-PBD(II) into 2|O| instances of OCT-
PBD(III). We can solve an instance of OCT-PBD(III) by appropriately casting it as an
instance of MMCU∗ problem.

A careful analysis shows that the total running time for high connectivity phase is
2O((k+`)3 log(k+`))nO(1). This finishes the description of the algorithm. Theorem 1 follows
from this algorithm and the fact that the set of undeletable vertices is initially empty, and the
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only time we actually add undeletable vertices to a graph is while solving the high connectivity
phase, in which case, we add at most 2k(4`+ 1) = O(k`) vertices to the undeletable set.

5 Conclusions

We have introduced and studied a stronger version of the classical F-Deletion problem
where F is the class of bipartite graphs and the new objective is to find a set of k vertices
and ` edges such that upon deletion of these k vertices, each component of the resulting
graph is in the class F + `e. We believe that a systematic study of this problem for various
well-understood classes F , for instance Interval Graphs, Chordal Graphs and so on, will prove
to be a fruitful research direction driving the development of new tools and techniques for
graph modification problems. We also think that the idea of combining iterative compression
with recursive understanding is quite general in its approach and can be useful in getting
similar results for other strong editing problems.
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