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Abstract
The classic K-Cycle problem asks if a graph G, with vertex set V (G), has a simple cycle
containing all vertices of a given set K ⊆ V (G). In terms of colored graphs, it can be rephrased
as follows: Given a graph G, a set K ⊆ V (G) and an injective coloring c : K → {1, 2, . . . , |K|},
decide if G has a simple cycle containing each color in {1, 2, . . . , |K|} (once). Another problem
widely known since the introduction of color coding is Colorful Cycle. Given a graph G and
a coloring c : V (G) → {1, 2, . . . , k} for some k ∈ N, it asks if G has a simple cycle of length k
containing each color in {1, 2, . . . , k} (once). We study a generalization of these problems: Given
a graph G, a set K ⊆ V (G), a list-coloring L : K → 2{1,2,...,k∗} for some k∗ ∈ N and a parameter
k ∈ N, List K-Cycle asks if one can assign a color to each vertex in K so that G would have
a simple cycle (of arbitrary length) containing exactly k vertices from K with distinct colors.

We design a randomized algorithm for List K-Cycle running in time 2knO(1) on an n-vertex
graph, matching the best known running times of algorithms for both K-Cycle and Colorful
Cycle. Moreover, unless the Set Cover Conjecture is false, our algorithm is essentially optimal.
We also study a variant of List K-Cycle that generalizes the classic Hamiltonicity problem,
where one specifies the size of a solution. Our results integrate three related algebraic approaches,
introduced by Björklund, Husfeldt and Taslaman (SODA’12), Björklund, Kaski and Kowalik
(STACS’13), and Björklund (FOCS’10).
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1 Introduction

For a graph G, let V (G) and E(G) denote its vertex set and edge set respectively. The input
for the classic K-Cycle problem consists of an undirected graph G and a subset K ⊆ V (G)
of size k for some k ∈ N, and the objective is to decide whether G has a K-cycle, that is, a
simple cycle that contains all of the vertices in K. In terms of (partially) colored graphs,
it can be rephrased as follows. Given an undirected graph G, a set of vertices K ⊆ V (G)
of size k for some k ∈ N and an injective coloring c : K → {1, 2, . . . , k}, it asks whether G
has a simple cycle that contains each color in {1, 2, . . . , k} (once). Another problem widely
known since the introduction of the color coding method [1] is Colorful Cycle. Given an
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undirected graph G and a coloring c : V → {1, 2, . . . , k} for some k ∈ N, decide whether G
has a simple cycle of length k that contains each color in {1, 2, . . . , k} (once).

We study the parameterized complexity of a generalization of both K-Cycle and
Colorful Cycle, called List K-Cycle. In List K-Cycle, the input consists of an
undirected graph G, a set of vertices K ⊆ V (G), a list-coloring L : K → 2{1,2,...,k∗} for
some k∗ ∈ N and a parameter k ∈ N. We need to decide whether one can find a function
c : K → {1, . . . , k∗} so that c(v) ∈ L(v) for all v ∈ V (G) and G would have a simple cycle
containing exactly k vertices from K and these vertices have distinct colors. In case k = k∗, it
is simply requested that the cycle contains each color in {1, 2, . . . , k} (once). If |K| = k = k∗

and for all v ∈ K, |L(v)| = 1, we obtain K-Cycle, while if K = V , k = k∗ and for all v ∈ K,
|L(v)| = 1, we obtain Colorful Cycle. We also consider a variant of List K-Cycle,
called Exact List K-Cycle. Given an undirected graph G, a set of vertices K ⊆ V (G), a
list-coloring L : K → 2{1,2,...,k∗} for some k∗ ∈ N and parameters k, ` ∈ N, it asks whether
one can assign a color to each vertex in K so that G would have a simple cycle of length `
containing exactly k vertices from K and these vertices have distinct colors. Exact List
K-Cycle generalizes the classic `-Path and Hamiltonicity problems.

We study the problem List K-Cycle in the realm of parameterized complexity. In
parameterized complexity algorithms are measured in terms of input length and a parameter,
which is expected to be small. More precisely, a problem is fixed-parameter tractable (FPT)
with respect to a parameter k if an instance of size n can be solved in time O∗(f(k)) =
O(f(k) · poly(n)) for some function f . For more details we refer to monographs [14, 11]

Related Work. As noted by Björklund et al. [4], the K-Cycle problem has been a central
topic of graph theory since the 1960’s (see [20] for some references). The special cases
where k = 1 and k = 2 can be solved by breadth-first search and finding a flow of size 2
between two vertices, respectively. The special case where k = 3 has also long been known
to be solvable in linear time [15, 24]. By the work of Robertson and Seymour on Disjoint
Paths [28], for any constant k, K-Cycle is solvable in polynomial time. Kawarabayashi [20]
showed that K-Cycle is solvable in polynomial time also when k = O((log logn)1/10), where
n = |V (G)|. The best known randomized algorithm for K-Cycle was given by Björklund
et al. [4], and runs in time O∗(2k). Recently, Wahlström [31] gave an alternative algorithm
that solves K-Cycle in time O∗(2k) and showed that the problem admits a polynomial
compression. We note that for directed graphs, K-Cycle is NP-hard already when k = 2
[18], and that other variants of K-Cycle have also been considered in the literature. For
example, Kawarabayashi et al. [21] gave an algorithm for detecting a K-cycle whose length
has a given parity, and Kobayashi et al. [33] gave an algorithm for detecting an induced
K-cycle in a planar graph.

The Colorful Cycle problem was introduced in the breakthrough work on color coding
by Alon et al. [1]. In that paper, the authors proposed an O∗(2k)-time deterministic algorithm
for Colorful Cycle. Although the problem became widely known, faster algorithms have
not been obtained. Recently, Kowalik et al. [23] explained the source of difficulty: they
showed that unless the Set Cover Conjecture [10] is false, there does not exist a constant ε > 0
such that Colorful Cycle can be solved in time O∗((2− ε)k). The conjecture states that
there does not exist a constant ε > 0 such that Set Cover can be solved in time O∗((2−ε)n),
where n is the size of the universe. Finally, we note that the `-Path problem has been
extensively studied in the field of parameterized complexity, and there has been a race towards
obtaining the fastest algorithm that solves it [25, 8, 1, 13, 19, 9, 22, 32, 2, 3, 17, 16, 30, 35].
Currently, the fastest algorithm (randomized) for `-Path runs in time O∗(1.66`) [2, 3].
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Our Contribution. Our main result is a randomized algorithm solving List K-Cycle in
time O∗(2k), matching the best known running time in which one can solve K-Cycle [4]
as well as Colorful Cycle [1]. We note that our algorithm can also be used to find
a shortest cycle among solutions. Moreover, since List K-Cycle generalizes Colorful
Cycle, we conclude that unless the Set Cover Conjecture is false, our algorithm is essentially
optimal. To complement our main result, we also show that Exact List K-Cycle is
solvable in time O∗(2k1.66`−k). Our results integrate three related algebraic approaches:
the “unlabel inessential elements” used to solve K-Cycle [4], the “double-labeling” used to
solve a problem called Graph Motif [6], and the “partitioned single-labeling” used to solve
`-Path and Hamiltonicity [2, 3]. More precisely, our main result integrates the first two
approaches, while our Exact List K-Cycle algorithm integrates the latter two.

We remark that the algebraic technique developed in [2, 3] became a standard tool to
develop parameterized algorithms (see, e.g., [11, 5, 27, 26]), yet the other two techniques
not well known. To the best of our knowledge, the specific technique of [4] has no known
additional applications, and the only additional applications of [6] are given in [7, 34].

2 Preliminaries

For q ∈ N, let [q] = {1, 2, . . . , q} and [q]0 = {0, 1, . . . , q}. For a function g : A → [q]0, let
count(g) = |{a ∈ A : g(a) 6= 0}|. For (i, j), (i′, j′) ∈ N × N, we say that (i, j) is smaller
than (i′, j′), if either (a) i < i′ or (b) i = i′ and j < j′. A fixed-point-free involution is a
permutation that is its own inverse and has no fixed points. For a function f : A→ B and
S ⊆ A, let f |S : S → B be the function such that for all s ∈ S, f |S(s) = f(s).

For a graph G, let V (G) and E(G) denote its vertex-set and edge-set, respectively. For
v ∈ V (G), let N(v) denote its neighbor-set. A walk in a graph G is a sequence of vertices
v1 . . . v` such that {vi, vi+1} ∈ E(G) for all i ∈ [`− 1]. For a graph G and e ∈ E(G), we use
G− e to denote the graph with vertex set V (G) and edge set E(G) \ {e}. For a graph G and
V ′ ⊆ V (G), we use E(V ′) to denote the set {{u, v} ∈ E(G) | u, v ∈ V ′}. For a walk W , we
use V (W ) and E(W ) to denote the set of vertices and edges, respectively, contained in W .

3 An Algorithm for List K-Cycle

In this section we show that albeit the “list” requirement, the time in which one can solve
List K-Cycle matches the best known time in which one can solve both K-Cycle and
Colorful Cycle . That is, we develop an algorithm solving List K-Cycle in time O∗(2k).

Our algorithm is based on the algebraic technique which underlies the algorithm for
K-Cycle by Björklund et al. [4], where one associates a polynomial over a finite field with
the structure that should be found. Yet, there are essential differences between our algorithm
and the one in [4]. To cancel potential solutions that “visit” vertices in V (G) \ K more
than once, Björklund et al. [4] rely on a pairing argument whose correctness is based on the
requirement that computations are performed over a field of characteristic 2 – our algorithm
also relies on this pairing argument. However, to ensure that each vertex in K is encountered
exactly once while attempting to construct a solution, Björklund et al. [4] explicitly store the
set of vertices from K that have been encountered so far. This approach cannot be taken by
our algorithm, since while constructing a solution, we would have stored each vertex in K
that has been encountered so far as well as its color. This could lead to an algorithm with
running time O∗(

(|K|
k

)(
k∗

k

)
). This solution does not even show that List K-Cycle is FPT

when parameterized by k (since |K| and k∗ could be significantly larger than k).
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An O∗(4k)-time algorithm for List K-Cycle can be obtained as follows. We mark each
color once it is visited to ensure that it is not visited again via the labeling-based approach
of Björklund et al. [2, 3] (since k∗ can be significantly larger than k) at the cost of a factor
of O∗(2k) in the running time. Here, we also use this labeling-based approach on top of the
algorithm for K-Cycle by Björklund et al. [4] to ensure that the vertices that marked colors
are not visited more than once (at the cost of a factor of O∗(2k) in the running time). The
remaining vertices in V (G) are treated in the same manner as the algorithm for K-Cycle
by Björklund et al. [4] does (at the cost of a polynomial factor). However, this is still not
sufficient, since our purpose is to match the best known running times in which one can solve
K-Cycle and Colorful Cycle. By using the double-labeling-based approach introduced
by Björklund et al. [6] to solve the Graph Motif problem, we are able to circumvent the
need to keep track of colors and vertices that mark these colors separately.

Initialization. Instead of solving List K-Cycle, we will solve the following problem: Given
an n-vertex undirected graph G, a subset K ⊆ V (G), a list-coloring L : K → 2{1,2,...,k∗} for
some k∗ ∈ N, a parameter k ∈ N and two vertices s, t ∈ V (G), List K-Path asks whether
one can assign a color to each vertex in K so that G would have a simple path between s
and t containing exactly k vertices from K and these vertices have distinct colors.

To solve List K-Cycle in time O∗(2k), it is sufficient to show that one can solve List
K-Path in time O∗(2k). Indeed, an instance (G,K,L, k∗, k) is a Yes-instance of List
K-Cycle if and only if there is an edge e = {s, t} ∈ E(G) such that (G− e,K,L, k∗, k, s, t)
is a Yes-instance of List K-Path.

Structures. We define some notations which are essential for our algorithm. Let the input
instance of List K-Path be (G,K,L, k∗, k, s, t). For q ∈ [n] \ {1} and u, v ∈ V (G), a
function f : [q] → V (G) is called a (q, u, v)-function if f satisfies the following properties:
(i) f(1) = s, f(q − 1) = u and f(q) = v, (ii) for all i ∈ [q − 1], {f(i), f(i+ 1)} ∈ E(G), and
(iii) for all i ∈ [q − 2] such that f(i) = f(i + 2) it holds that f(i + 1) /∈ K. Observe that
the function f defines a walk in G, and that if f is injective, it defines a simple path in
G. We will use (q, u, v)-functions to construct a simple path that is a solution. We need
to consider walks rather than simple paths as during the construction, we do not want
to keep information regarding vertices that have already been visited – later we will use
pairing arguments (in Lemma 6) to cancel such incorrect constructions. To make the pairing
argument work, we will need property (iii) of f , which is also the reason why we explicitly
mention u, one vertex before the last vertex we have visited, in the definition of f .

In addition to f , to know whether we are constructing a solution, we need to know which
colors in [k∗] have been visited. For this purpose, we need the following term. For k′ ∈ [k]0,
a (q, u, v, k′)-structure is a pair (f, g) such that (a) f is a (q, u, v)-function, (b) g : [q]→ [k∗]0
is a function such that count(g) = k′, and (c) for every i ∈ [q], if f(i) ∈ K then g(i) ∈ L(f(i))
and otherwise g(i) = 0. In other words, for each occurrence of a vertex in K which we have
visited, g specifies a color, and overall, it specifies exactly k′ occurrences of colors. To simplify
the presentation, given a (q, u, v, k′)-structure (f, g), we define col(g) = {i ∈ [q] : g(i) 6= 0}.
That is, col(g) is the set of indices associated with vertices in K (which receive colors). When
v = t and k′ = k, for any u ∈ V (G), a (q, u, v, k′)-structure is also called a q-structure.

I Definition 1. A q-structure (f, g) is called good q-structure if (i) f is injective, and (ii) for
all i, j ∈ col(g), g(i) 6= g(j) (i.e, g|col(g) is injective).

I Observation 2. The input instance of List K-Path is a Yes-instance if and only if there
exists a good q-structure.
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Labels. We are now going to assign labels to some of the occurrences of vertices of a
(q, u, v, k′)-structure. Later we will use these labels to ensure that potential structures that
are not good get cancelled when computations are performed over a field of characteristic 2.
More precisely, we will swap distinct labels assigned to occurrences of vertices that obtained
the same color, an ability that will be used by one of our pairing arguments (see Lemma 6).

We use labels for each position in a walk which corresponds to a vertex from K. For a
(q, u, v, k′)-structure (f, g) and h : col(g)→ [k], we say that a triple (f, g, h) is a (q, u, v, k′)-
labeling. When (f, g) is a q-structure or a good q-structure, we say that (f, g, h) is a q-labeling
or good q-labeling, respectively. Finally, if h is bijective, we say that the entire triple (f, g, h)
is bijective. We give special consideration to bijective functions h since such functions ensure
that all good q-labelings survive and all the q-labelings which are not good cancel each other
in the polynomial we construct later.

Next, we define two sets of q-labelings. First, we let Bq
1 denote the set of all bijective

q-labelings. Now, we let Bq
2 ⊆ B

q
1 denotes the set of all bijective good q-labelings. Given a

good q-structure (f, g), we can arbitrarily order the elements in col(g), and let h assign to
each element in col(g) its location in this order. This results in a bijection h, and overall, in
a bijective q-labeling (f, g, h). Thus, by Observation 2, we get the following observation.

I Observation 3. The input instance of List K-Path is a Yes-instance if and only if there
exists q ∈ [n] \ {1} such that Bq

2 6= ∅.

Monomials. We will now associate a monomial with each (q, u, v, k′)-labeling. Towards
this, we introduce the following variables. First, for each e ∈ E(G), we introduce a variable
xe. Now, for each v ∈ K and color a ∈ L(v), we introduce a variable yv,a. Finally, for each
color a ∈ [k∗] and label i ∈ [k], we introduce a variable za,i. Let N be the total number of
variables created. Notice that N = nO(1). We are now ready to define monomial for each
(q, u, v, k′)-labeling.

I Definition 4. For a (q, u, v, k′)-labeling (f, g, h), the monomial of (f, g, h), denoted by
m(f, g, h), is defined as follows.

m(f, g, h) =

 ∏
i∈[q−1]

x{f(i),f(i+1)}

 ·
 ∏

i∈col(g)

yf(i),g(i) · zg(i),h(i)

.
On the one hand, observe that if (f, g, h) is a bijective good q-labeling, then it can be

uniquely recovered from its monomial. That is, we have the following observation.

I Observation 5. For any q ∈ [n] \ {1} and (f, g, h) ∈ Bq
2 , there does not exist (f ′, g′, h′) ∈

Bq
1 \ {(f, g, h)} such that m(f, g, h) = m(f ′, g′, h′).

When the input instance (G,K,L, k∗, k, s, t) is a No-instance of List K-Path , then we
can get a fixed-point free involution on Bq

1 with some properties:

I Lemma 6. Let (G,K,L, k∗, k, s, t) be a No-instance of List K-Path and Bq
1 is the set

of all bijective q-labeling for any q ∈ [n] \ {1}. Then there exists a fixed-point-free involution
φ : Bq

1 → Bq
1 such that for all (f, g, h) ∈ Bq

1 , m(f, g, h) = m(φ(f, g, h)).

Proof. Since (G,K,L, k∗, k, s, t) is a No-instance, by Observation 3, we have that Bq
2 = ∅.

Let (f, g, h) ∈ Bq
1 . We choose a pair (i, j) ∈ [q]× [q] and by carefully modifying f, g and h

between i and j we get a q-labeling that can be mapped to (f, g, h) by φ. We will consider
several cases and in each case, we assume that the conditions of the previous cases are

FSTTCS 2016
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false, define φ(f, g, h), and prove that φ(f, g, h) 6= (f, g, h), m(f, g, h) = m(φ(f, g, h)) and
φ(φ(f, g, h)) = (f, g, h). Since (f, g, h) /∈ Bq

2 , we know that either (a) there exist i, j ∈ col(g),
i < j, such that g(i) = g(j) or (b) there exist i, j ∈ [q], i < j such that f(i) = f(j).

Case 1: There exist i, j ∈ col(g), i < j, such that g(i) = g(j). Among all such pairs,
that we call bad pairs of type 1, let (i, j) be the smallest one. We define (f ′, g′, h′) = φ(f, g, h)
as follows. First, we simply let f ′ = f and g′ = g. Now, we let h′(i) = h(j) and h′(j) = h(i),
and for all r ∈ col(g) \ {i, j}, we let h′(r) = h(r). Since (f ′, g′) = (f, g) is a q-structure and
h′ is bijective, we have that (f, g, h′) ∈ Bq

1 . Since h is bijective, we have that h′ 6= h, and
therefore φ(f, g, h) 6= (f, g, h). Moreover, zg(i),h(i) = zg′(j),h′(j) and zg(j),h(j) = zg′(i),h′(i),
and therefore m(f, g, h) = m(φ(f, g, h)). Finally, because (f, g) = (f ′, g′), the sets of bad
pairs of type 1 of (f, g, h) and (f ′, g′, h′) are same. Also, by swapping the values assigned to
i and j in h′, we obtain h, and so we have that φ(φ(f, g, h)) = (f, g, h).

Case 2: There exist two indices i, j ∈ col(g), i < j, such that f(i) = f(j). Among
all such pairs, that we call bad pairs of type 2, let (i, j) be the smallest one. Since i ∈ col(g),
f(i) ∈ K. We define (f ′, g′, h′) = φ(f, g, h) as follows. First, we simply let f ′ = f . Now, we
let g′(i) = g(j) and g′(j) = g(i), and for all r ∈ [q] \ {i, j}, we let g′(r) = g(r). Finally, we
let h′(i) = h(j), h′(j) = h(i), and for all r ∈ col(g) \ {i, j}, we let h′(r) = h(r). Again, it is
clear that φ(f, g, h) ∈ Bq

1 . Because Case 1 is false, we have that g(i) 6= g(j), and therefore
φ(f, g, h) 6= (f, g, h). Moreover, since f(i) = f(j), it holds that yf(i),g(i) = yf ′(j),g′(j) and
yf(j),g(j) = yf ′(i),g′(i), and it also holds that zg(i),h(i) = zg′(j),h′(j) and zg(j),h(j) = zg′(i),h′(i).
Therefore, m(f, g, h) = m(φ(f, g, h)). By our definition of g′, we have that there are no bad
pairs of type 1. Moreover, our definitions of f ′ and g′ ensures that the sets of bad pairs of
type 2 of (f, g, h) and (f ′, g′, h′) are the same. Also, by swapping the values assigned to i and
j by g′ as well as h′, we get g and h respectively, and so we have that φ(φ(f, g, h)) = (f, g, h).

Case 3: Cases 1 and 2 are false. Let I = [q]. If there exists a pair (i′, j′) ∈ I × I, i′ < j′,
such that f(i′) = f(j′), then we choose such a pair with the following inductive priorities
in the order: (1) i′ is minimized and (2) j′ is maximized. If f(i′)f(i′ + 1) . . . f(j′) is not
a palindrome, then we set (i, j) = (i′, j′). Otherwise, we set I := I \ [j′] and continue the
process of choosing a pair as above from I × I. Observe that since Cases 1 and 2 are false
and yet the input instance is a No-instance, at least one pair (i′, j′) will be chosen.

First we show that we succeed in finding a pair (i, j). Towards this we first show that
for any pair (i′, j′) considered by the above process but not considered as the pair (i, j),
we have that f(i′), f(i′ + 1), . . . , f(j′) /∈ K. Suppose there is a vertex w ∈ K appearing in
the sequence f(i′)f(i′ + 1) . . . f(j′). We know that f(i′)f(i′ + 1) . . . f(j′) is a palindrome
and Case 2 is not applicable. This implies that w appears only once and it is in the middle
of the palindrome f(i′)f(i′ + 1) . . . f(j′). But then this will contradict property (iii) of the
(q, u, t)-function f (since (f, g) is a q-structure, f is a (q, u, t)-function for some u ∈ V (G)).
Let (i1, j1), . . . , (i`, j`) be the pairs considered in the above process in the given order.
Suppose (i`, j`) 6= (i, j) (that is, the process terminated before we set (i, j)). Then, f |I is
injective, where I = [q] \ (

⋃
r∈[`]{ir, ir + 1, . . . , jr}). Also we know that for i, j ∈ col(g), i < j,

g(i) 6= g(j), because Case 1 is not applicable. Then this implies that (f |I , g) is a good
q′-structure for some q′ < q, which is a contradiction because (G,K,L, k∗, k, s, t) is a No-
instance. Thus we have shown that the above process succeeds in finding (i, j) such that
f(i) · · · f(j) is not a palindrome.

We define (f ′, g′, h′) = φ(f, g, h) as follows. For every index r ∈ [q] such that r < i or
r > j, we let f ′(r) = f(r), g′(r) = g(r) and h′(r) = h(r). Next, we are going to redirect the
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subwalk from i to j to be from j to i, adjusting the values assigned by f, g and h accordingly.
Formally, for each index i ≤ r ≤ i+ b(j− i)/2c, define s(r) = j− (r− i) and s(j− (r− i)) = r.
Now, for each index i ≤ r ≤ j, let f ′(r) = f(s(r)), g′(r) = g(s(r)) and h′(t) = h(s(t)).

Because f(i)f(i+1) · · · f(j) is not a palindrome, we have that φ(f, g, h) 6= (f, g, h). Notice
that f and f ′ corresponds to two walks in the graph G. Observe that because f(i) = f(j),
redirecting the subwalk between i and j does not change the edges which the walk contains
(only the order in which we visit them changes), and since upon changing the location of an
occurrence of a vertex, we update all of the three functions f, g and h accordingly, we have
thatm(f, g, h) = m(φ(f, g, h)). We show that f ′ is a (q, u′, t)-function for some u′. Properties
(i) and (ii) of (q, u′, t)-function trivially hold. The only occurrences of vertices whose adjacent
occurrences of vertices might change are f ′(i) and f ′(j), and because f ′(i) /∈ K (since Case
2 not applicable), it is still true that for all r ∈ [q − 2] such that f ′(r) = f ′(r + 2) it holds
that f ′(r + 1) /∈ K. Hence (f ′, g′, h′) = φ(f, g, h) ∈ Bq

1 .
Finally we prove that φ(f ′, g′, h′) = (f, g, h). Notice that for (f ′, g′, h′), Cases 1 and 2

are not applicable. Looking at (f ′, g′, h′) and applying the process above in Case 3 will
result in the same pair (i, j), since the updates that are performed with respect to I only
concern indices before i (which were not change), and the only occurrences of vertices whose
location has changed lie between i and j, and therefore they do not affect the minimality
of i and maximality of j relevant to the choice of (i, j). Thus, since by redirecting the
subwalk between i and j yet again we obtain the original walk, and hence we conclude that
φ(φ(f, g, h)) = (f, g, h). J

Now, for all q ∈ [n], we define a polynomial that is evaluated over the finite field Fp,
where p = 2dlog(3(n+2k))e.

I Definition 7. P q =
∑

(f,g,h)∈Bq
1

m(f, g, h).

I Lemma 8. (G,K,L, k∗, k, s, t) is a Yes-instance of List K-Path if and only if there is
q ∈ [n] \ {1} such that P q is not identically 0.

Proof. Suppose (G,K,L, k∗, k, s, t) is a Yes-instance and n = |V (G)|. Then Observation 3,
there is a q ∈ [n] \ {1} such that Bq

2 6= ∅. Then by Observation 5 P q contains a unique
monomial corresponding to (f, g, h) where (f, g, h) ∈ Bq

2 . This implies that P q 6≡ 0.
Suppose (G,K,L, k∗, k, s, t) is a No-instance, then by Lemma 6 and the fact that Fp has

characteristic 2, we can conclude that for all q ∈ [n] \ {1}, P q ≡ 0. J

Thus, it remains to determine whether at least one polynomial P q is not identically 0.

Evaluation. Given I ⊆ [k], a (q, u, v, k′, I)-labeling (f, g, h) is a (q, u, v, k′)-labeling whose
set of assigned labels belongs to I (i.e., the image of h is a subset of I). Now, we define
polynomials whose evaluations, which will be done below, can be considered as “intermediate”
steps towards evaluating P q. To this end, we let S(q, u, v, k′, I) denote the set of all
(q, u, v, k′, I)-labelings.

I Definition 9. P q(u, v, k′, I) =
∑

(f,g,h)∈S(q,u,v,k′,I)

m(f, g, h).

By the inclusion-exclusion principle and because Fp, the field over which we evaluate
polynomials, has characteristic 2, we have the following observation.

I Observation 10. P q =
∑

I⊆[k]

∑
u∗∈N(t)

P q(u∗, t, k, I).
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It is easier to compute polynomials of the form P q(u∗, t, k, I) rather than the polynomial
P q since then we do not need to ensure that labels are not repeated, but only need to
ensure that certain labels are not used at all. We next show that a polynomial of the form
P q(u∗, t, k, I) can be computed in polynomial time by using a procedure based on dynamic
programming.

I Lemma 11 (?1). Let I ⊆ [k], u∗ ∈ N(t) and let {x1, . . . , xN} be the set of variables in
P q(u∗, t, k, I). Let a1, a2, . . . , aN ∈ Fp denote the chosen values for the N variables. Then,
the polynomial P q(u∗, t, k, I) can be evaluated at (a1, a2, . . . , aN ) in time NO(1).

Combining Observation 10 with Lemma 11, and since there are 2k subsets I of [k], we
have, the following result.

I Lemma 12. Given an assignment of values from Fp to the variables of P q, the polynomial
P q can be evaluated in time 2kNO(1) and in space NO(1).

The Algorithm. To calculate the number of evaluations we should perform, we rely on the
following well-known result, proved in [12, 29, 36].

I Lemma 13. Let p(x1, x2, . . . , xm) be a nonzero polynomial of n variables and total degree
at most d over the finite field F. Then, for a1, a2, . . . , an ∈ F selected independently and
uniformly at random: Pr(p(a1, a2, . . . , an) 6= 0) ≥ 1− d/|F|.

We are now ready to conclude this section with our main result.

I Theorem 14. There is a polynomial space randomized algorithm for List K-Cycle
running in time O∗(2k) with one sided constant error probability.

Proof. As explained earlier, we actually solve List K-Path. Our algorithm is defined as
follows. Let (G,K,L, k∗, k, s, t) be the input instance and n = |V (G)|. It examines every
length q ∈ [n]. Now, consider a specific length q. First, uniformly at random, it chooses N
values from Fp to be assigned to the variables of P q (recall that N is the number of variables
which is bounded by nO(1)). Then, it evaluates P q accordingly using the computation
presented in Lemma 12. Finally, if the result in not zero, it accepts. Eventually, if for every
length q the result is zero, it rejects.

By Lemma 8, if the input instance of List K-Path is a No -instance, for every length q
the result of evaluating P q is zero, and therefore the algorithm will reject. Now, suppose
that the input instance of List K-Path is a Yes-instance. By Lemma 8, there exists q ∈ [n]
such that P q is not identically zero. Observe that P q is a polynomial of total degree at most
n+ 2k. Thus, by Lemma 13, the result of evaluating P q is not zero with probability at least
2/3. Therefore, the algorithm accepts with probability at least 2/3. Clearly, the probability
of success can be increased via multiple runs, or, in a more direct manner, by choosing a
larger field (choosing a field of size p = 2dlog(c′(n+2k))e for some constant c′ will result in a
success probability of at least 1− 1/c′). J

4 An Algorithm for Exact List K-Cycle

In this section we show that Exact List K-Cycle can be solved in time O∗(2k1.66`−k). On
the one hand, Exact List K-Cycle generalizes Colorful Cycle – indeed, Colorful

1 Due to space constraints, proofs of results marked with ? are omitted.
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Cycle is the special case of Exact List K-Cycle where K = V (G), k = k∗ = ` and for all
v ∈ K it holds that |L(v)| = 1. Therefore, unless the Set Cover Conjecture is false, we cannot
obtain an algorithm that runs in time O∗((2− ε)k) even if k = `. On the other hand, Exact
List K-Cycle generalizes `-Path and Hamiltonicity (which is a special case of `-Path
where ` = |V (G)|), and there are randomized algorithms for `-Path and Hamiltonicity
running in times O∗(1.66`) and O∗(1.66|V (G)|), respectively [3, 2]. We present a multivariate
algorithm for Exact List K-Cycle that can be viewed as a compromise between the
dependency on k and the dependency on `. Our approach employes the double-labeling-based
approach of Björklund et al. [6], used to solve the Graph Motif problem, on top of the
technique underlying the `-Path algorithm of Björklund et al. [3].

Due to similarities between this algorithm and the one given in the previous section, we
present it in a more concise manner. Again, by the explanation given in Section 3, it is
sufficient to solve the following problem, called Exact List K-Path, in time O∗(2k1.66`−k).
Given an n-vertex undirected graph G, a set of vertices K ⊆ V (G), a list-coloring L : K →
2{1,2,...,k∗} for some k∗ ∈ N, parameters k, ` ∈ N and two vertices s, t ∈ V (G), and this
problem asks whether one can assign a color to each vertex in K so that G would have a
simple path of length ` between s and t containing exactly k vertices from K and these
vertices have distinct colors.

In most of this section, we will assume that we are given a partition (V1, V2) of V (G) \K,
which will be computed later. Accordingly, we define the Partitioned Exact List K-
Path (K-PEL Path) problem as the Exact List K-Path problem where one is also given
parameters `1, `2 ∈ [`], and the solution is also required to contain exactly `1 vertices from
V1 and `2 edges from E(V2).

Structures and Labels. Given q ∈ [`] \ {1}, q1 ∈ [`1]0, q2 ∈ [`2]0, vertices u, v ∈ V (G) and
k′ ∈ [k], a function f : [q] → V (G) is called a (q, q1, q2, u, v, k

′)-function if the following
properties hold:
(i) f(1) = s, f(q − 1) = u and f(q) = v,
(ii) for all i ∈ [q − 1], {f(i), f(i+ 1)} ∈ E(G),
(iii) for all i ∈ [q − 2] such that f(i) = f(i+ 2) ∈ V2 it holds that f(i+ 1) ∈ V2,
(iv) q1 = |V1(f)|, where V1(f) = {i ∈ [q] : f(i) ∈ V1},
(v) q2 = |E2(f)|, where E2(f) = {(i, i+ 1) : i ∈ [q − 1], {f(i), f(i+ 1)} ⊆ V2},
(vi) k′ = |{i ∈ [q] : f(i) ∈ K}|.

Observe that V1(f) and E2(f) are sets of indices. In addition to f , to know whether
we are constructing a solution, we need to know which colors in [k∗] have been used. For
this purpose, we need the following term. For a (q, q1, q2, u, v, k

′)-function f and a function
g : [q]→ [k∗]0, the pair (f, g) is called (q, q1, q2, u, v, k

′)-structure if the following condition
holds: for any i ∈ [q], if f(i) ∈ K then g(i) ∈ L(f(i)) and otherwise g(i) = 0. In other words,
for each occurrence of a vertex in K which we have visited, g specifies a color, and overall,
since f is a (q, q1, q2, u, v, k

′)-function, g specifies exactly k′ occurrences of colors. To simplify
the presentation, for a (q, q1, q2, u, v, k

′)-structure (f, g), we define col(g) = {i ∈ [q] : g(i) 6= 0}.
That is, col(g) is the set of indices associated with vertices in K (which receive colors). For
any vertex u ∈ V (G), a (`, `1, `2, u, t, k)-structure is also called a final structure (f-structure).
When both f and g|col(g) are also injective, we say that it is an excellent final structure
(ef-structure). By the definition of ef-structures, we have the following observation.

I Observation 15. The input instance of K-PEL Path is a Yes-instance if and only if
there exists an ef-structure.
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As before, the main idea is to use labels for specific elements in (q, q1, q2, u, v, k
′)-structures.

Here we use labels on col(g) ∪ V1(f) ∪ E2(f). For a (q, q1, q2, u, v, k
′)-structure (f, g) and

a function h : col(g) ∪ V1(f) ∪ E2(f) → [k + `1 + `2], we say that the triple (f, g, h) is
a (q, q1, q2, u, v, k

′)-labeling. When (f, g) is an f-structure or an ef-structure, we say that
(f, g, h) is an f-labeling or an ef-labeling, respectively. Moreover, if g is bijective, we say
that the triple (f, g, h) is bijective. Next, we define two sets of f-labelings. First, we let B1
denote the set of all bijective f-labelings. Now, we let B2 ⊆ B1 denote the set of all bijective
ef-labelings.

Observe that for any ef -structure (f, g) (which corresponds to a solution), | col(g) ∪
V1(f) ∪ E2(f)| = k + `1 + `2, and therefore the sizes of the domain and codomain of the
function h are equal. Thus, given an ef-structure (f, g), we can arbitrarily order the elements
in col(g)∪V1(f)∪E2(f), and let h assign to each element in col(g)∪V1(f)∪E2(f) its location
in this order. This results in a bijective function h, and overall, in a bijective ef-labeling
(f, g, h). Thus, by Observation 15, we have the following observation.

I Observation 16. The input instance of K-PEL Path is a Yes-instance if and only if
B2 6= ∅.

Monomials. Now we explain how to assign monomial for each (q, q1, q2, u, v, k
′)-labeling

and show that the polynomial which is sum of monomials corresponding to f -labeling will
give us the answer for K-PEL Path through Polynomial Identity Testing(PIT). First we
introduce the following variables. For each edge e ∈ E(G), introduce a variable xe. Now,
for each vertex v ∈ V1 and label i ∈ [k + `1 + `2], introduce a variable yv,i, and for each
edge e ∈ E(V2) and label i ∈ [k + `1 + `2], introduce a variable ye,i. For each vertex v ∈ K
and color a ∈ L(v), introduce the variable zv,a. Finally, for each color a ∈ [k∗] and label
i ∈ [k + `1 + `2], introduce the variable za,i. Let N be the total number of variables created.

Now, we associate a monomial with each (q, q1, q2, u, v, k
′)-labeling.

I Definition 17. Given a (q, q1, q2, u, v, w, k
′)-labeling (f, g, h), the monomial of (f, g, h),

denoted by m(f, g, h), is defined as follows.

m(f, g, h) =

 ∏
i∈[q−1]

x{f(i),f(i+1)}

 ∏
i∈V1(f)

yf(i),h(i)

 ∏
(i,i+1)∈E2(f)

y{f(i),f(i+1)},h((i,i+1))



·

 ∏
i∈col(g)

zf(i),g(i) · zg(i),h(i)

.
If (f, g, h) is a bijective ef-labeling, then it can be uniquely recovered from its monomial.

That is, we have the following observation.

I Observation 18. For all (f, g, h) ∈ B2, there does not exist (f ′, g′, h′) ∈ B1 \ {(f, g, h)}
such that m(f, g, h) = m(f ′, g′, h′).

For bijective f-labelings that are not ef-labelings, we have the following lemma.

I Lemma 19. Let (G,K,L, k∗, k, s, t, `, V1, V2, `1, `2) be a No-instance of K-PEL Path and
B1 is the set of all bijective f-labeling. Then there is a fixed-point-free involution φ : B1 → B1
such that for all (f, g, h) ∈ B1, m(f, g, h) = m(φ(f, g, h)).
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Proof. Since (G,K,L, k∗, k, s, t, `, V1, V2, `1, `2) is aNo-instance of K-PEL Path , by Ob-
servation 16, B2 = ∅. Let (f, g, h) ∈ B1. We will consider several cases, and in each case, we
assume that previous cases are false, define φ(f, g, h), and prove that φ(f, g, h) 6= (f, g, h),
m(f, g, h) = m(φ(f, g, h)) and φ(φ(f, g, h)) = (f, g, h). Since B2 = ∅ and (f, g, h) ∈ B1, we
have that (f, g) is a f -structure but not an ef-structure. This implies that either f is not
injective or g|col(g) is not injective. This implies that there exist i, j ∈ [`], i < j such that
either (a) f(i) = f(j) or (b) i, j ∈ col(g) and g(i) = g(j).

Case 1: There exists i, j ∈ [`], i < j such that f(i) = f(j) ∈ V1. Among all such pairs,
called bad pairs of type 1, let (i, j) be the smallest one. We define (f ′, g′, h′) = φ(f, g, h)
as follows. First, let f ′ = f and g′ = g. Now, let h′(i) = h(j) and h′(j) = h(i), and for
all r ∈ (col(g) ∪ V1(f) ∪ E2(f)) \ {i, j}, let h′(r) = h(r). Since h is bijective, we have that
h′ 6= h, and therefore φ(f, g, h) = (f ′, g′, h′) 6= (f, g, h). Moreover, yf(i),h(i) = yf ′(j),h′(j) and
yf(j),h(j) = yf ′(i),h′(i), and therefore m(f, g, h) = m(φ(f, g, h)). Notice that the smallest bad
pair of type 1 in (f ′, g′, h′) is (i, j). So by swapping the values assigned to i and j in h′, we
obtain h, and hence we have that φ(φ(f, g, h)) = (f, g, h).

Case 2: There exists i, j ∈ [`], i < j such that f(i) = f(j) ∈ K. Among all
such pairs, that we call bad pairs of type 2, let (i, j) be the smallest one. We define
(f ′, g′, h′) = φ(f, g, h) as follows. First, let f ′ = f . Now, let g′(i) = g(j) and g′(j) = g(i),
and for all r ∈ [q] \ {i, j}, let g′(r) = g(r). Finally, let h′(i) = h(j), h′(j) = h(i), and for
all r ∈ (col(g) ∪ V1(f) ∪ E2(f)) \ {i, j}, we let h′(r) = h(r). Since h is bijective, h 6= h′

and φ(f, g, h) 6= (f, g, h). Moreover, since f(i) = f(j), it holds that zf(i),g(i) = zf ′(j),g′(j)
and zf(j),g(j) = zf ′(i),g′(i). It also holds that zg(i),h(i) = zg′(j),h′(j) and zg(j),h(j) = zg′(i),h′(i).
Therefore, m(f, g, h) = m(φ(f, g, h)). Since there is no bad pair of type 1 in (f, g, h), there
is no bad pairs of type 1 in (f ′, g′, h′). Notice that the is the smallest bad pair of type 2 in
(f ′, g′, h′) is (i, j). By swapping the values assigned to i and j by g′ and h′ we get g and h,
and hence we have that φ(φ(f, g, h)) = (f, g, h).

Case 3: There exists i, j ∈ [`], i < j such that f(i) = f(j) ∈ V2. Among all such
pairs, that we call bad pairs of type 3, let (i, j) be the smallest one. We have two sub-cases
based f(i) . . . f(j) is a palindrome or not.

Case 3(a): f(i) . . . f(j) is a palindrome. Since f(i) . . . f(j) is a walk in a simple graph
G and f(i) . . . f(j) is a palindrome, the length of the sequence f(i) . . . f(j) is odd and j− i is
even. Let r = i+ j−i

2 . Notice that r is the middle index in the sequence i, i+ 1, . . . j. Since
Cases 1 and 2 are not applicable, we have that for all r′ ∈ {i, . . . , j} \ {r} f(r′) ∈ V2. Now
consider the sequence f(r − 1)f(r)f(r + 1). We know that f(r − 1) = f(r + 1) ∈ V2. Thus
by property (iii) of (q, q1, q2, u, v, k

′)-function, we have that f(r) ∈ V2. Hence, we have that
f(i), . . . , f(j) ∈ V2.

Now, we define (f ′, g′, h′) = φ(f, g, h) as follows. First, let f ′ = f and g′ = g. Now,
let h′((i, i + 1)) = h((j − 1, j)), h′((j − 1, j)) = h((i, i + 1)) and for all r′ ∈ (col(g) ∪
V1(f) ∪ E2(f)) \ {(i, i + 1), (j − 1, j)}, let h′(r) = h(r). Since h is bijective, we have
that h′ 6= h, and therefore φ(f, g, h) 6= (f, g, h). Since {f(i), f(i + 1)} = {f(j − 1), f(j)},
we have that y{f(i),f(i+1)},h((i,i+1)) = y{f ′(j−1),f ′(j)},h′((j−1,j)) and y{f(j−1),f(j)},h((j−1,j)) =
y{f ′(i),f ′(i+1)},h′((i,i+1)), and therefore m(f, g, h) = m(φ(f, g, h)). Finally, because f = f ′, it
still holds that there are no bad pairs of types 1 and 2 in (f ′, g′, h′), and the sets of bad pairs
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of type 3 of (f, g, h) and (f ′, g′, h′) are same. Since by swapping the values assigned to i and
j by h′, we obtain h, and hence we have that φ(φ(f, g, h)) = (f, g, h).

Case 3(b): f(i) . . . f(j) is not a palindrome. We define (f ′, g′, h′) = φ(f, g, h) as follows.
For any r ∈ [q] such that r < i or r > j, we let f ′(r) = f(r), g′(r) = g(r). For any
r ∈ col(g) ∪ V1(f), r < i or r > j, h′(r) = h(r). (In this context, recall that the domain of
h is a set of indices.) For all (i′, i′ + 1), i′ < i or i′ ≥ j such that (i′, i′ + 1) ∈ E2(f) , let
h′((i′, i′ + 1)) = h((i′, i′ + 1)). Next, we are going to redirect the subwalk from i to j to be
from j to i, adjusting f, g and h accordingly. Formally, for each index i ≤ r ≤ i+b j−i

2 c, define
s(r) = j − (r − i) and s(j − (r − i)) = r. Now, for each index i ≤ r ≤ j, let f ′(r) = f(s(r)),
g′(r) = g(s(r)) and, if r ∈ col(g) ∪ V1(f), h′(r) = h(s(r)), and if (r, r + 1) ∈ E2(f) and
r + 1 ≤ j h′((r, r + 1)) = h(s(r), s(r + 1)). Since f(i) . . . f(j) is not a palindrome, we have
that f 6= f ′ and hence, φ(f, g, h) 6= (f, g, h). Notice that f and f ′ defines two walks in
the graph G. Observe that because f(i) = f(j), redirecting the subwalk between i and
j does not change the edges which the walk contains (but only the order between them
changes), and since upon changing the location of an occurrence of a vertex, we update f, g
and h accordingly to get f ′, g′ and h′, we have that m(f, g, h) = m(f ′, g′, h′) = m(φ(f, g, h)).
Finally, (f ′, g′, h′) does not have bad pairs of types 1 and 2, and it has the same bad pairs
of type 3 as (f, g, h). Also, since by redirecting the subwalk between i and j yet again we
obtain the original walk, and so we conclude that φ(φ(f, g, h)) = (f, g, h).

We also need to show that (f ′, g′, h′) ∈ B1. Towards that it is enough to show that f ′ is
a (`, `1, `2, u, t, k)-function for some u ∈ V (G). Since f is such a function, all the properties
except the property (iii) of (`, `1, `2, u, t, k)-function hold trivially. Now we show that in fact
property (iii) also true for f ′. That is for all i′ ∈ [q − 2], f ′(i′) = f ′(i′ + 2) ∈ V2 implies that
f ′(i′ + 1) ∈ V2. Since f satisfies property (iii), it holds that for all i′ /∈ {i − 1, i, j − 1, j},
if f ′(i′) = f ′(i′ + 2) ∈ V2 implies that f ′(i′ + 1) ∈ V2. Now consider the case of i − 1 and
f ′(i− 1), f ′(i), f ′(i+ 1). Since f ′(i) ∈ V2, statement mentioned in property (iii) holds for
i − 1. Now consider the case i and f ′(i), f ′(i + 1), f ′(i + 2). Notice that f ′(i) = f(i) and
f ′(i + 2) = f(j − 2). Since (i, j) is a smallest pair with f(i) = f(j) ∈ V2, we have that
f(i) 6= f(j − 2) and hence f ′(i) 6= f ′(i + 2). Hence statement mentioned in property (iii)
holds for i. Now consider the case of j − 1 and f ′(j − 1), f ′(j), f ′(j + 1). Since f ′(j) ∈ V2,
statement mentioned in property (iii) holds for j − 1. Now consider the case of j and
f ′(j), f ′(j + 1), f ′(j + 2). Since f ′(j) = f(j), f ′(j + 1) = f(j + 1), f ′(j + 2) = f(j + 2) and
property (iii) holds for f , we have that property (iii) holds for j. Hence (f ′, g′, h′) ∈ B1.

Case 4: i, j ∈ col(g) and g(i) = g(j). Among all such pairs, that we call bad pairs
of type 4, let (i, j) be the smallest one. We define (f ′, g′, h′) = φ(f, g, h) as follows. First,
let f ′ = f and g′ = g. Now, let h′(i) = h(j) and h′(j) = h(i), and for all r ∈ (col(g) ∪
V1(f) ∪ E2(f)) \ {i, j}, we let h′(r) = h(r). Since h is bijective, we have that h′ 6= h, and
therefore φ(f, g, h) 6= (f, g, h). Moreover, zg(i),h(i) = zg′(j),h′(j) and zg(j),h(j) = zg′(i),h′(i),
and therefore m(f, g, h) = m(φ(f, g, h)). Finally, because (f, g) = (f ′, g′), there are still no
bad pairs of types 1, 2 and 3, and the sets of bad pairs of type 4 of (f, g, h) and (f ′, g′, h′)
are same. Also, by swapping the values assigned to i and j in h′, we obtain h, and so we
have that φ(φ(f, g, h)) = (f, g, h). J

Now, we define a polynomial Q =
∑

(f,g,h)∈B1

m(f, g, h) which will be evaluated over the

finite field Fp, where p = 2dlog(3(`+`1+`2+2k))e. Since Fp has characteristic 2, by Observa-
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tions 16 and 18, and Lemma 19, we get the following lemma (its proof is identical to the
proof of Lemma 8).

I Lemma 20. The input instance of K-PEL Path is a Yes-instance if and only if P 6≡ 0.

Evaluation For I ⊆ [k+`1 +`2], a (q, q1, q2, u, v, k
′, I)-labeling (f, g, h) is a (q, q1, q2, u, v, k

′)-
labeling such that the image of h is a subset of I. Let S(q, q1, q2, u, v, k

′, I) denote the set of all
(q, q1, q2, u, v, k

′, I)-labelings. Let P (q, q1, q2, u, v, k
′, I) =

∑
(f,g,h)∈S(q,q1,q2,u,v,k′,I)

m(f, g, h).

By the inclusion-exclusion principle and because Fp, the field over which we evaluate
polynomials, has characteristic 2, we have the following observation.

I Observation 21. Q =
∑

I⊆[`1+`2+k]

∑
u∗∈N(t)

P (`, `1, `2, u
∗, t, k, I).

We next show that a polynomial of the form P (`, `1, `2, u
∗, t, k, I) can be evaluated at

any point in time polynomial in N using dynamic programming, where N is an upper bound
on number of variables.

I Lemma 22 (?). Let I ⊆ [k], u∗ ∈ N(t). Let x1, . . . , xN be the variables in P (`, `1, `2, u
∗, t,

k, I). Let a1, a2, . . . , aN ∈ Fp denote the chosen values for the variables. Then, the polynomial
P (`, `1, `2, u

∗, t, k, I) can be evaluated at (a1, a2, . . . , aN ) in time NO(1) using space NO(1).

Combining Observation 21 with Lemma 22, and since there are 2`1+`2+k subsets I of
[`1 + `2 + k], we have the following result.

I Lemma 23. Given an assignment of values from Fp to the variables of P , the polynomial
P can be evaluated in time 2`1+`2+kNO(1) using space polynomial in N .

The Algorithm. By Lemmata 13, 20 and 23, we get the following lemma (its proof is
identical to Theorem 14).

I Lemma 24. There is a polynomial space randomized algorithm for K-PEL Path running
in time O∗(2`1+`2+k) with one sided constant error probability.

I Lemma 25 ([3]). Let W be a simple path of length ` in a graph G. Then, for a partition
(V1, V2) of V (G) chosen uniformly at random, let p(`, `1, `2) be the probability that |V (W ) ∩
V1| = `1 and |E(W ) ∩ E(V2)| = `2. Then for any `, we can find `′1, `

′
2 ∈ N such that

`′1 + `′2 ≤ ` and 2`′1+`′2
p(`,`′1,`′2) ≤ 1.6569`|V (G)|c for some constant c.

We use Lemma 25 to prove the main theorem of the section.

I Theorem 26. There is a polynomial space randomized algorithm for Exact List K-Cycle
running in time O∗(2k1.6569`−k) with one sided constant error probability.

Proof. Let (G,K,L, k∗, k, `) be the input instance and n = |V (G)|. We describe an algorithm
A for Exact List K-Cycle . Let `′, `′2 be the integers guaranteed by the Lemma 25 and
let p(`, `′1, `′2) be the probability mentioned in Lemma 25. Now for each `1 ≤ `′1 and `2 ≤ `′2,
we randomly choose a partition (V1, V2) of V (G) \ K and run algorithm B mentioned in
Lemma 24 for K-PEL Path. Algorithm A repeats algorithm B 1

p(`,`′1,`′2) many times. If at
least once algorithm B outputs Yes, then A outputs Yes and otherwise outputs No.

Clearly if (G,K,L, k∗, k, `) is a No instance, then our algorithm will output No . Now
suppose (G,K,L, k∗, k, `) is a Yes instance. Then there is a simple path W of length `

FSTTCS 2016



22:14 Parameterized Algorithms for List K-Cycle

with required property. We know that for a partition (V ′1 , V ′2) of V (G) chosen uniformly at
random, the probability that |V (W ) ∩ V1| = `′1 and |E(W ) ∩ E(V2)| = `′2 is p(`, `′1, `′2). This
implies that there exist `1 ≤ `′1 and `2 ≤ `′2 such that for a partition (V1, V2) of V (G) \K
chosen uniformly at random, the probability that |V (W )∩V1| = `1 and |E(W )∩E(V2)| = `2
is p(`, `′1, `′2). For that choice of `1 and `2 the probability that algorithm B outputs Yes is
p(`, `′1, `′2). Since algorithm B runs 1

p(`,`′1,`′2) many times with parameters `1 and `2, algorithm
A outputs Yes with constant probability.

The running time of algorithm A is upper bounded by 2`′1+`′2+knc′

p(`,`′1,`′2) for some constant c′.

By Lemma 25, we have that 2`′1+`′2
p(`,`′1,`′2) ≤ 1.6569`nc, where c is some constant. This implies

that the running time of algorithm A is upper bounded by O∗(2k1.6569`−k). Since algorithm
B uses only polynomial space, A is a polynomial space algorithm. This completes the proof
of the theorem. J
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