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Abstract
In this paper, we show that there is a family of polynomials {Pn}, where Pn is a polynomial in
n variables of degree at most d = O(log2 n), such that

Pn can be computed by linear sized homogeneous depth-5 circuits.
Pn can be computed by poly(n) sized non-homogeneous depth-3 circuits.
Any homogeneous depth-4 circuit computing Pn must have size at least nΩ(

√
d).

This shows that the parameters for the depth reduction results of [1, 11, 20] are tight for
extremely restricted classes of arithmetic circuits, for instance homogeneous depth-5 circuits and
non-homogeneous depth-3 circuits, and over an appropriate range of parameters, qualitatively
improve a result of Kumar and Saraf [14], which showed that the parameters of depth reductions
are optimal for algebraic branching programs.
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1 Introduction

An arithmetic circuit over a field F and variables x = {x1, x2, . . . , xn} is a directed acyclic
graph with nodes labelled by + and × operations over F and leaves (nodes of in-degree 0)
labelled by elements of F and x. The circuit computes an n variate polynomial in F[x] in
the natural way. Arithmetic circuits are natural and intuitive models of computation in the
algebraic setting as they allow us to represent multivariate polynomials succinctly. For an
introduction to the area of arithmetic circuit complexity, we refer the interested reader to
the excellent survey of Shpilka and Yehudayoff [19].

Bounded depth arithmetic circuits

Most of the recent research in the area of arithmetic circuit complexity is centered around
the question of proving strong lower bounds for structured bounded depth arithmetic circuits,
in particular homogeneous depth-4 arithmetic circuits [5, 9, 14]. The focus on such circuits
is due to a result of Agrawal and Vinay [1] and subsequent strengthening by Koiran [11]
and Tavenas [20], which show that strong enough lower bounds for such structured bounded
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38:2 Finer Separations Between Shallow Arithmetic Circuits

depth circuits suffice for general arithmetic circuit lower bounds. For an outline of most of
the recent results related to lower bounds for homogeneous depth-4 arithmetic circuits, we
refer the reader to a survey of Saptharishi [17].

These set of structural results, collectively referred to as depth reductions, show that any
homogeneous polynomial in n variables of degree d = poly(n) which can be computed by an
arithmetic circuit of size poly(n) can also be computed by a homogeneous depth-4 arithmetic
circuit of size nO(

√
d). A natural question here is to try and understand if the parameters

in the above result are asymptotically tight. This direction has previously been explored,
and Kumar and Saraf [14] showed a lower bound of nΩ(

√
d) for a polynomial that has a

poly(n)-sized arithmetic circuit. This implies that, in general, the size bound of nO(
√
d) can

not be improved to no(
√
d) for poly(n)-sized arithmetic circuits. However, as far as we know,

it was not known if such improved depth reductions are conceivable for slightly restricted
classes of arithmetic circuits, for instance, arithmetic formulas or constant depth arithmetic
circuits. In this paper, we study this problem and show that at least for the case when
d = O(log2 n), one cannot hope to prove such improved depth reduction results, for even
extremely restricted classes of arithmetic circuits such as linear size homogeneous depth-5
arithmetic circuits, or polynomial sized non-homogeneous depth-3 arithmetic circuits.

We now state our results, and elaborate on how they compare to the known results.

1.1 Our results
We prove the following theorems.

I Theorem 1.1. Let F be any field. There is a family of polynomials {Pn} over F, where Pn
is of degree d = O(log2 n) on n variables such that Pn can be computed by a homogeneous
depth-5 circuit of size O(n) whereas any homogeneous depth-4 circuit computing Pn requires
size nΩ(

√
d).

I Theorem 1.2. Let F be any field of characteristic zero. There is a family of polynomials
{Pn} over F, where Pn is of degree d = O(log2 n) on n variables such that Pn can be computed
by a (non-homogeneous) depth-3 circuit of size poly(n) whereas any homogeneous depth-4
circuit computing Pn requires size nΩ(

√
d).

1.2 Comparison to earlier results
An nΩ(

√
d) lower bound for homogeneous depth-4 circuits was proved for an explicit polynomial

of degree d in n variables in VNP by Kayal, Limaye, Saha and Srinivasan [9] and for the
iterated matrix product (IMM) by Kumar and Saraf [14]. Improvements on this can happen
on three fronts – (1) by improving the bound from nΩ(

√
d) to nω(

√
d), or (2) by making the

lower bound work for a class more general than homogeneous depth-4 circuits, or (3) by
proving the lower bound for a polynomial “simpler” than IMM. This work is of the last
category where the polynomial is computed by linear sized homogeneous depth-5 circuits or
polynomial sized depth-3 circuits.

We elaborate more on this now.

Depth reduction to depth-4 as a springboard for stronger lower bounds

Let C be a class of arithmetic circuits. If we had a depth reduction result that showed that all
homogeneous polynomials of degree d in n variables that can be computed by an arithmetic
circuit C ∈ C of size s(n) can also be computed by a homogeneous depth-4 arithmetic circuit
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of size so(
√
d), then it follows from the results in [9, 14] that there is an explicit polynomial

in VP (or VNP) that cannot be computed by polynomial size arithmetic circuits in C. In
this sense, the efficient reductions to homogeneous depth-4 circuits is a springboard to prove
lower bounds for many potentially stronger classes of circuits.

The lower bound for IMM in [14] rules out this strategy when C is the class of algebraic
branching programs, since it shows polynomial families (namely IMM) that have linear
size ABPs but require homogeneous depth-4 circuits of size nΩ(

√
d). However the strategy

could still, in principle, work for other interesting classes of arithmetic circuits such as
arithmetic formulas, constant depth arithmetic circuits or, possibly the simplest of them all,
the class of homogeneous depth-5 arithmetic circuits. Another simple class of circuits for
which this strategy could be tried is the class of non-homogeneous depth-3 circuits, where
superpolynomial lower bounds are not known when the size of the underlying field is large.
Theorem 1.1 and Theorem 1.2 show that the above mentioned classes of arithmetic circuits
cannot be reduced to homogeneous depth-4 arithmetic circuits of size no(

√
d), albeit for an

appropriate range of parameters. So, even though quantitatively we do not prove improved
lower bounds, qualitatively, we show near optimal separations between complexity classes
which are much closer to each other that was earlier known. Unfortunately, we are only able
to show such separations when the degree d = O(log2 n).

Non-homogeneous depth-3 circuits

Theorem 1.2 shows a separation between non-homogeneous depth-3 circuits and homogeneous
depth-4 circuits, in a low degree regime. Intuitively, to prove such a separation, we need a
candidate family of hard polynomials which have polynomial sized non-homogeneous depth-3
circuits and are believed to require homogeneous depth-4 circuits of size nΩ(

√
d). At first glance,

it seems unclear what this polynomial should be. The elementary symmetric polynomial of
degree d is not a good candidate1 as it can indeed be computed by a homogeneous depth four
circuit of size 2O(

√
d) [7]. However, a generic affine projection of the elementary symmetric

polynomial, as studied by Shpilka [18], is a natural candidate and is almost complete for this
model.

In this paper, however, we do not directly work with this polynomial but it can be
easily inferred that the lower bound applies to a generic affine projection of the elementary
symmetric polynomial as well.

Depth hierarchy theorems for arithmetic circuits

Depth hierarchy theorems, which show an exponential, (and near optimal) separation between
depth h and depth h+ 1 circuits [6, 16] constitute some of the most celebrated results in
the theory of lower bounds for bounded depth boolean circuits. It is natural to ask if such
separations can be shown for arithmetic circuits. Unfortunately, superpolynomial lower
bounds are not known in general when the depth of the arithmetic circuits is more than
four 2. So, at this point, we can only hope to show such separations between homogeneous
depth-5 and homogeneous depth-4 arithmetic circuits. Due to the depth reduction results,
the best such separation one can hope to prove for an n variate degree d polynomial would
be nΩ(

√
d). We prove a matching lower bound, as long as the degree d is at most O(log2 n).

In the arithmetic circuit literature, the question of depth hierarchy theorems has previously
been studied by Raz and Yehudayoff [15], where they show superpolynomial separation

1 Indeed, for low enough degrees, they are known to have fairly high shifted partials complexity [3].
2 For homogeneous depth-5 circuits, such lower bounds are known only over small finite fields.
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38:4 Finer Separations Between Shallow Arithmetic Circuits

separation between multilinear circuits of product depth d and product depth d + 1, for
d = O(1). In the non-multilinear world, to the best of our knowledge this is the first such
attempt. Even in the context of constant depth multilinear circuits, the separation in [15] is
between depth-4 and depth-6 circuits, and not between depth-4 and depth-5 circuits.

The complexity measure

The proof of Kayal et al. [9] and Kumar and Saraf [14] rely on the notion of projected shifted
partials of a polynomial as a measure of its complexity. This measure can be thought of as a
variant of shifted partials which tries to take advantage of the fact that the hard polynomial
is multilinear. The measure in this paper takes advantage of set-multilinearity instead of
just multilinearity, and such a variant was essentially used in [10], where they showed an
nO(logn) lower bound for iterated matrix multiplication and the determinant. Our proofs
rely on a slightly different interpretation of the measure, which makes the proofs much
more transparent. Intuitively, this measure tries to take advantage of the fact that the hard
polynomial (Nisan-Wigderson design polynomials or the IMM) is not just multilinear, but
in fact set-multilinear. In the regime where d� n, set multilinearity is a much more rigid
restriction on a polynomial when compared to multilinearity, and in some sense our gain
comes from this observation. Our hard polynomial for Theorem 1.1 is also a simple generic
balanced depth-5 circuit.

One might wonder if the results in this paper could have been shown by using the dimension
of the projected shifted partial derivatives as the complexity measure. In particular, can we
show that the projected shifted partials complexity of a generic depth-5 circuit is sufficiently
close to the largest possible value? This would suffice for Theorem 1.1. Although we do not
have enough evidence to conjecture one way or the other, intuitively this problem seems
tricky since so far the known analyses of the projected shifted partials of a polynomial seems
to rely on pairwise distance between the monomials of the hard polynomial, either in the
worst case (Nisan-Wigderson polynomial [9, 14]), or in the average case (IMM [14]). Clearly,
the monomials in a generic depth-5 circuit do not have good distance in the worst case,
and to the best of our understanding, the guarantees about distance in the average case
seem a bit weaker than what would suffice to simulate the proof in [14] for a generic depth-5
circuit. However, this problem of proving lower bounds on the dimension of projected shifted
partials of homogeneous depth-5 circuits is of independent interest, since even if the answer
is negative and homogeneous depth-5 circuits do not have large enough projected shifted
partials complexity, then we could use this as a measure to prove lower bounds for such
circuits. So far, such lower bounds are only known over small finite fields [12].

2 Preliminaries

2.1 Notations
Throughout the paper, we use bold-face letters such as x to denote a sets of variables.
Most of the times, the size of this set would be clear from context. We use xe to refer to
the monomial xe11 · · ·xenn .
We use the short-hand ∂xe(P ) to denote

∂e1

∂xe11

(
∂e2

∂xe22
(· · · (P ) · · ·)

)
.

For a set of polynomials P use ∂=kP to denote the set of all k-th order partial derivatives
of polynomials in P, and ∂≤kP similarly.
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Also, x=`P refer to the set of polynomials of the form xe · P where Deg(xe) = ` and
P ∈ P. Similarly x≤`P.
For an integer m > 0, we use [m] to denote the set {1, . . . ,m}.
For a set of vectors (or polynomials) V , their span over F will be denoted by Span(V )
and their dimension by Dim(V ).
For a subset y of variables and a polynomial P ∈ F[x,y], by Multy[P ], we denote the
polynomial P ′ ∈ F[x,y] which is obtained by projecting P only to its monomials which
are multilinear in y.
Similarly, for a set S of polynomials, Multy[S] denotes the set of polynomials obtained by
projecting every polynomial in S to the monomials which are multilinear in y.

2.2 The hard polynomial
The hard function for the lower bounds will be a generic balanced ΠΣΠΣ circuit with
appropriate parameters. We define the polynomial Pm,d as

Pm,d =

√
d∏

i=1

m∑
j=1

√
d∏

i′=1

m∑
j′=1

xiji′j′ .

The polynomial Pm,d depends on m2d variables. It would be useful to have Liji′ =
∑
j′ xiji′j′

so that Pm,d =
∏
i

∑
j

∏
i′ Liji′ .

Observe that the polynomial Pm,d is a set multilinear polynomial for the partition of
variables into {xi∗i′∗ : i, i′ ∈ [

√
d]}, where xi∗i′∗ = {xiji′j′ : j, j′ ∈ [m]}. There are d such

sets and each is of size m2.
The range of parameters we will be working with in this paper when d = δ log2 n for

a small enough constant δ. For such small d, it follows from observations in [4] that the
polynomial Pm,d is computable by a polynomial sized non-homogeneous depth-3 circuit.
More formally, the proof relies on the following lemma which is implicit in [4].

I Lemma 2.1 ([4]). Let C be a homogeneous ΣΠ[a]ΣΠ[b]Σ circuit of size s over C, the field
of complex numbers, which computes an n-variate polynomial P . Then there is an equivalent
ΣΠΣ circuit C ′ of size s′ = poly(2a, 2b, n, s) which computes P .

Using this observation, we have the following lemma which shows that there is a small
depth-3 circuit for Pm,d.

I Lemma 2.2. Let P be an n variate polynomial of degree d = O(log2 n) which is computed
by a homogeneous ΣΠ[

√
d]ΣΠ[

√
d]Σ circuit C of size s. Then, P is computable by a ΣΠΣ

circuit of size poly(n). J

Thus, to prove Theorem 1.1 and Theorem 1.2, it suffices to show an nΩ(
√
d) lower bound

on the size of homogeneous ΣΠΣΠ arithmetic circuits computing Pm,d.

2.3 Some useful approximations
I Lemma 2.3 ([5]). Let n, a, b satisfy a+ b = o(n). Then,

(n+ a)!
(n− b)! = na+b · exp(O((a+ b)2/n)).

In particular, if a+ b = o(
√
n), then the right hand side is (1 + o(1)) · na+b.

I Lemma 2.4. For all x, y > 0,

exy ≥ (1 + x)y ≥ e
xy
x+1 .

FSTTCS 2016
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3 Proof of Theorem 1.1

The first step in previous lower bounds for homogeneous depth-4 circuits is using a random
restriction to set each variable independently to zero with a certain probability. We shall
first analyze the random restriction process on a homogeneous depth-4 circuit and also on
the polynomial Pm,d.

3.1 The effect of a random restriction
Our restrictions Rp will be defined by setting every variable to zero with a probability 1− p
and keeping it alive with a probability p.

I Lemma 3.1. Let ε > 0 be any fixed constant and let p = 1
nε . Let C be a ΣΠΣΠ circuit of

size n ε
2
2
√
d. Then with a probability at least 1− o(1) over π ← Rp, every product gate at the

lowest level of C (closest to the leaves) that depends on more than ε
√
d distinct variables is

set to zero in π(C).

Proof. Consider any product gate of support at least ε
√
d present at the bottom level of C.

The probability that this gate is not set to zero in π(C) is at most 1
nε2
√
d
. So, by a union

bound over all the product gates in C, the probability that some gate of support at least
ε
√
d survives in π(C) is at most n ε

2
2
√
d · 1

nε2
√
d
which is o(1). J

We now analyse the effect of random restrictions on our candidate hard function.

I Lemma 3.2. Let ε be a small enough constant and let p = 1
nε , and let Pm,d be the

polynomial as defined in subsection 2.2. Then, with probability at least 1− o(1) over π ← Rp,
the polynomial π(Pm,d) is of the form

π(Pm,d) =

√
d∏

i=1

m∑
j=1

√
d∏

i′=1
L′iji′

where each L′iji′ is a non-zero linear form.

Proof. From our choice of parameters, observe that n = m2d, and since d = O(log2 n),
m > n1/4. Now, for any fixed linear form Liji′ , the probability that π(Liji′) equals zero is
equal to (1 − p)m = (1 − 1/nε)m which is less than (1 − 1/nε)n2ε = 1

ω(n) . Therefore, the
probability that there exists a linear form Liji′ such that π(Liji′) ≡ 0 is o(1), and the lemma
follows. J

At this point, we will deterministically set all but one alive variable in each L′iji′ in the
above lemma to zero, and obtain the following corollary upto a relabelling of variables.

I Corollary 3.3. Let ε be a fixed constant and p = 1
nε , and let Pm,d be the polynomial as

defined in subsection 2.2. Then, with probability at least 1− o(1) over π ← Rp, there is a 0, 1
projection of π(Pm,d) which is of the form

P ′m,d =

√
d∏

i=1

m∑
j=1

√
d∏

i′=1
xiji′ ,

where each xiji′ is a distinct variable.
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Observe that Theorem 3.1 continues to hold under this additional deterministic restriction,
as the bottom support of a depth-4 circuit does not increase under 0, 1 projections. Clearly
P ′m,d is computable by a homogeneous depth-4 circuit of bottom fan-in

√
d.

In order to complete the proof, it suffices to show that any homogeneous depth-4 circuit
of bottom support bounded by

√
d/10 that computes P ′m,d must have size nΩ(

√
d). In fact,

Kumar and Saraf [13] have shown that any homogeneous depth-4 circuit of bottom fan-in
at most

√
d/10 computing P ′m,d must require size nΩ(

√
d) using the measure of dimension

of shifted partial derivatives. Thus we need to find a way to lift this lower bound to the
class of homogeneous depth-4 circuit of bottom support bounded by

√
d/10. To do this, we

modify the measure of dimension of shifted partials in order to address small bottom support
instead of small bottom fan-in.

3.2 The complexity measure
The measure is again the dimension of an appropriate linear space of polynomials.

I Definition 3.4 (The complexity measure). Let x = x1t· · ·txd be a partition of the variables
into d sets. For any polynomial P ∈ F[x], define P ′ ∈ F[x1,x2, . . . ,xd, y1, y2, . . . , yd] be the
the polynomial derived from P by replacing every occurence of the variable xij ∈ xi by
yi · xij . Then, the complexity measure

Γk,`(P ) := DimF
{(

x=` ·Multy[∂=k(P ′)]
)}
.

We remark that all the derivatives and shifts in the definition of Γk,` are taken with
respect to the variables in x. However, the multilinearization is done with respect to the y
variables. As mentioned earlier, this measure was used in [10] where it was called dimension
of shifted projected partial derivatives.

As is clear from the definition, the measure is subadditive, i.e for every pair of polynomials
P and Q and for every pair of field constants α and β, the inequality Γk,`(αP + βQ) ≤
Γk,`(P ) + Γk,`(Q) holds for every choice of k and `.

Throughout this paper, we will be using very simple connections between the measure
Γk,` and the well known notion of shifted partial derivatives of polynomials (first defined
in [8]), defined as

I Definition 3.5 (Shifted partial derivatives). Define P ∈ F[x1,x2, . . . ,xd] be a polynomial.
Then, the dimension of shifted partial derivatives is defined as

DimF
{(

x=` · ∂=k(P )
)}
.

Observe that if a polynomial P is set-multilinear with respect to the partition of the
variables in x into x1,x2, . . . ,xd, then multilinearization with respect to the y variables does
not kill any of the monomials in the partial derivatives. In particular, for a set multilinear
polynomial P , and for every choice of k, `, the quantitity Γk,`(P ) is exactly equal to the
dimension of shifted partial derivatives of the polynomial P where we take derivatives of
order k and shifts are of degree `. This observation will be useful for us in the proof and is
summarised below.

I Observation 3.6. Let P be a set multilinear polynomial of degree d. Then for every choice
of parameters k and `,

Γk,`(P ) = Dim
(
x=` · ∂=k(P )

)
.

FSTTCS 2016
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Since Pm,d is set multilinear with respect to the partition

x =
⊔

i,i′≤
√
d

xi∗i′∗

we use this partition for in the definition of Γk,`. To complete the proof, we use this measure
to show that P ′m,d cannot be computed by small homogeneous depth-4 circuit of bottom
support bounded by

√
d/10.

3.3 Upper bound for a small bottom-support depth-4 circuit
I Lemma 3.7. Let C be a homogeneous ΣΠΣΠ circuit with bottom support at most s which
computes a degree d polynomial in F[x1,x2, . . . ,xd]. Then, for every k and `,

Γk,`(C) ≤ Size(C) · 22d ·
(
d

k

)
·
(
n+ `+ ks

n

)
.

Proof. Since the measure Γk,` is subadditive, we will prove an upper bound on Γk,` for one
product term in C. So, let T = Q1 ·Q2 · · ·Qt, where each Qi has support at most s. Without
loss of generality, we can assume that t ≤ d since the circuit C is homogeneous to start with.

Recall that in the first step, we replace every variable xij by yi · xij . This transforms
T = Q1 · · ·Qt into T = Q′1 · Q′2 · · ·Q′t. Every monomial xα in the x variables will be
transformed to a monomial yα′ · xα by this transformation. The key points are that yα′ is
only over d variables, and if xα is non-multilinear then so is yα′ .

Let us now consider the derivative of T with respect to a monomial xα of order k.

∂xα(T ′) ∈ Span
{
∂xα(Q′A) ·Q′

A
: A ⊆ [t], |A| ≤ k

}
,

where Q′A is a shorthand for
∏
i∈AQ

′
i.

Multy [∂xα(T ′)] ∈ Span
{

Multy

[
∂xα(Q′A) ·Q′

A

]
: A ⊆ [t], |A| ≤ k

}
.

Since we are interested in the multilinear component, it suffices to only focus on multilinear
(in y) monomials in both ∂xα(Q′A) and Q′

A
. Since Q′A is a product of at most k polynomials,

each of support-size bounded by s, the only monomials xβ that can contribute a multilinear
y-part can have degree at most ks. Therefore,

Multy [∂xα(Q′A)] ∈ Span
{

yβ · xγ : Deg(xγ) ≤ ks , yβ multilinear
}

MultyQ
′
A

=
∑
β′

yβ
′
·Q′

A,β′

=⇒ Multy

[
∂xα(Q′A) ·Q′

A

]
∈ Span

{
yβyβ

′
· xγ ·Q′

A,β′
: Deg(xγ) ≤ ks , yβyβ

′
multilinear

}
.

Taking the union over all shifts and all derivatives, we get

x=` ·Multy[∂=k(T ′)] ⊆ Span
{

yβyβ
′
· xγ ·Q′

A,β′
: A ⊆ [t] , |A| ≤ k ,

degree (xγ) ≤ `+ ks , yβyβ
′
is multilinear

}
.

For any k, `, it follows that

Γk,`(T ′) ≤ 22d ·
(
d

k

)
·
(
n+ `+ ks

n

)
.

Using subadditivity, we obtain the lemma. J
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3.4 Lower bound for the measure on P ′
m,d

The final technical ingredient of our proof will be a lower bound on the dimension of shifted
partials of the polynomial P ′m,d. The bound follows from the calculations in [13], but we
provide the calculation here for completeness.

I Lemma 3.8. Recall the polynomial

P ′m,d =

√
d∏

i=1

m∑
j=1

√
d∏

i′=1
xiji′

where each xiji′ is a distinct variable. For k =
√
d and any `, we have

Dim
(
x=` · ∂=k(P )

)
≥ 1

4 ·
(
n+ `

`

) 1
2 ·(d−

√
d)
·
(
n+ `− 1

n

)
.

Proof. To show that the shifted partials complexity of P is large, we will follow the outline
in [13]. We consider the following subset S of monomials of degree equal to k =

√
d:

S = {x1a11 · x2a21 · · ·xkak1 : a1, a2, . . . , ak ∈ [m]}.

Firstly, note that for any monomial xα = x1a11 · · ·xkak1 ∈ S, the derivative ∂xα(P ) is just
the monomial

(x1a12 · · ·x1a1k) · · · (xkak2 · · ·xkakk) .

Thus, it suffices to get a lower bound of distinct monomials obtained as shifts of such
derivatives. To assist this calculation, we pick a subset S ′ of the set S such that the distance
between any two monomials in S ′ is ‘large’, and the size of S ′ is also ‘large’. This can be done
by picking the monomials which correspond to a good code of length k over the alphabet
Σ = {1, 2, . . . ,m}. To this end, we pick a Reed-Somolon code of relative distance 1/2 and
rate 1/2. This can be done as long as m is a prime power and

√
d ≤ m. Let S ′ be a such set

of size mk/2 where any pair of monomials in S ′ differ on at least
√
d/2 locations.

When we take derivatives of P with respect to monomials in the set S ′, two monomials
obtained from distinct elements of S ′ have distance at least ∆ =

√
d(
√
d− 1)/2 = (d−

√
d)/2.

So, each of the shifted partial derivatives obtained by shifting the derivatives of P by
monomials of degree ` is just a monomial, and a lower bound on the number of distinct
monomials obtained in this way gives us a lower bound on Dim

(
x=` · ∂=k(P )

)
. In fact, we

shall choose an even smaller set S ′′ to ensure the following bounds work out.
By the inclusion-exclusion approach of Chillara and Mukhopadhyay [2], for any set

S ′′ ⊂ S ′ we get the following:

Dim
(
x=` · ∂=k(P )

)
≥ |S ′′| ·

(
n+ `− 1

n

)
− |S

′′|2

2 ·
(
n+ `−∆− 1

n

)
.

If we pick our parameters, such that the first term above is at least twice the second term,
then we would be done. For this, we need

|S ′′| ≤
(
n+`−1
n

)(
n+`−∆−1

n

) .
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For our choice of parameters, `, n� d2, the ratio (n+`−1
n )

(n+`−∆−1
n ) can be approximated by

(
n+`
`

)∆
within a factor 1± o(1) by Theorem 2.3. So, it suffices if our choice of parameters satisfies
(omitting floors)

|S ′′| = 1
2 ·
(
n+ `

`

)∆
.

Plugging in ∆ and the size of S ′′ in the inclusion-exclusion bound, we get

Dim
(
x=` · ∂=k(P )

)
≥ 1

4 ·
(
n+ `

`

)(d−
√
d)/2
·
(
n+ `− 1

n

)
. J

3.5 Putting it together
I Theorem 3.9 (Theorem 1.1 restated). Let C be a homogeneous depth-4 arithmetic circuit
which computes the polynomial Pm,d for d = 0.0001 log2 n. Then, the size of C is at least
exp(Ω(

√
d logn)).

Proof. Assume on the contrary that the polynomial Pm,d can be computed by C, a homo-
geneous depth-4 circuit of size at most exp(0.001

√
d logn). If we apply a random restriction

that sets every variable to zero independently with probability 1/n0.1, by Theorem 3.1 (with
ε = 0.1), the circuit reduces to C ′, a homogeneous depth-4 circuit with bottom support
bounded by

√
d/10 with probability 1− o(1).

On the other hand by Theorem 3.3, the polynomial Pm,d under such a random restriction
still retains P ′m,d as a projection with high probability. Fix a restriction that satisfies both
these properties and we now have a homogeneous depth-4 circuit C ′′ with bottom support
bounded by

√
d/10 and size at most exp(0.001

√
d logn) that computes P ′m,d.

Let k =
√
d and ` = n

√
d

logn . By Theorem 3.7, we have

Γk,`(C ′′) ≤ Size(C ′′) · 22d ·
(
n+ `+ (0.1)d

n

)
.

On the other hand, by Theorem 3.8 and Theorem 3.6,

Γk,`(P ′m,d) ≥ 1
4 ·
(
n+ `

`

)(d−
√
d)/2

.

(
n+ `− 1

n

)
.

Together, this implies that

Size(C ′′) ≥ 1
4 ·
(
n+`−1
n

)
·
(
n+`
`

)(d−√d)/2

22d ·
(
n+`+(0.1)d

n

) .

For our regime of parameters,
√
d = 0.01 logn and hence 22d = n0.02

√
d = exp(0.02

√
d logn).

Simplifying the ratio of binomial coefficients using (Theorem 2.3), and using d−
√
d

2 > d
3 , we

get

Size(C ′′) ≥ 1
exp(0.02

√
d logn)

·
(

1 + n

`

)d/3
≥ 1

exp(0.02
√
d logn)

· exp
(

(nd/3`)
(n/`) + 1

)
(By Theorem 2.4)

> exp
(

0.1
√
d logn

)
,

which contradicts the assumption on the size of C. Hence Size(C) ≥ exp(0.001
√
d logn). J
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4 Open questions

We end with some open questions.
One question of great interest to us would be to show the lower bounds in this paper
when the degree is larger. The other proofs of lower bounds for homogeneous depth-4
circuits [9, 14] tolerate degrees as high as n1/2. We conjecture that the results in this
paper are true even when the degree d and the number of variables n are polynomially
related.
Is the dimension of projected shifted partials of a generic homogeneous depth-5 circuit
close to the largest possible value? This could offer one approach to resolving the first
open problem.
If the answer to the second problem above is negative, then we might be able to use
projected shifted partials as a complexity measure to prove new lower bounds for homo-
geneous depth-5 arithmetic circuits. Hence, even proving non-trivial upper bounds on
the projected shifted partials complexity of homogeneous depth-5 circuits would be very
interesting.

Acknowledgements. Part of this work was done while the authors were visiting Microsoft
Research, Bangalore in Summer 2014. We are grateful to Neeraj Kayal for many insightful
discussions.
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