Understanding Cutting Planes for QBFs*

Olaf Beyersdorff ${ }^{1}$, Leroy Chew ${ }^{2}$, Meena Mahajan ${ }^{3}$, and Anil Shukla ${ }^{4}$

1 School of Computing, University of Leeds, United Kingdom
2 School of Computing, University of Leeds, United Kingdom
3 The Institute of Mathematical Sciences, HBNI, Chennai, India
4 The Institute of Mathematical Sciences, HBNI, Chennai, India

Abstract

We define a cutting planes system $\mathrm{CP}+\forall$ red for quantified Boolean formulas (QBF) and analyse the proof-theoretic strength of this new calculus. While in the propositional case, Cutting Planes is of intermediate strength between resolution and Frege, our findings here show that the situation in QBF is slightly more complex: while CP $+\forall$ red is again weaker than QBF Frege and stronger than the CDCL-based QBF resolution systems Q-Res and QU-Res, it turns out to be incomparable to even the weakest expansion-based QBF resolution system $\forall \operatorname{Exp}+$ Res.

Technically, our results establish the effectiveness of two lower bound techniques for CP $+\forall$ red: via strategy extraction and via monotone feasible interpolation.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Complexity of Proof Procedures

Keywords and phrases proof complexity, QBF, cutting planes, resolution, simulations
Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.40

1 Introduction

The main problem of proof complexity is to understand the minimal size of proofs for natural classes of formulas in important proof systems. Proof complexity deeply connects to a number of other areas, most notably computational complexity, circuit complexity, first-order logic, and practical solving. Recently the connection to practical solving has been a main driver for the field. Modern SAT solvers routinely solve huge industrial instances of the NP-hard SAT problem with even millions of variables. Because runs of the solver on unsatisfiable formulas can be interpreted as proofs for unsatisfiability in a system corresponding to the solver, proof complexity provides the main theoretical tool for an understanding of the power and limitations of these algorithms.

During the last decade there has been great interest and research activity to extend the success of SAT solvers to the more expressive quantified Boolean formulas ($Q B F$). Due to its PSPACE completeness (even for restricted versions [2]), QBF is far more expressive than SAT and thus applies to further fields such as formal verification or planning [34, 5, 21].

Triggered by this exciting development in QBF solving, QBF proof complexity has seen a stormy development in past years. A number of resolution-based systems have been designed with the aim to capture ideas in QBF solving. Broadly, these systems can be classified into

[^0]
© Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla;
licensed under Creative Commons License CC-BY
36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016).
Editors: Akash Lal, S. Akshay, Saket Saurabh, and Sandeep Sen; Article No. 40; pp. 40:1-40:15
Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
two types corresponding to two principal approaches in QBF solving: proof systems modelling conflict driven clause learning (CDCL): Q-resolution Q-Res [29, 7], universal resolution QURes [38], long-distance resolution [3], and their extensions [4]; and proof systems modelling expansion solving: $\forall \operatorname{Exp}+\operatorname{Res}[28]$ and their extensions [7]. Proof complexity research of these systems resulted in a complete understanding of the relative complexity of QBF resolution systems $[8,4]$, and the transfer of classical techniques to QBF systems was thoroughly assessed $[9,10,11]$. In addition, stronger QBF Frege and Gentzen systems were defined and investigated $[20,6,12]$.

Most SAT and QBF solvers use resolution as their underlying proof system. Resolution is a weak proof systems for which a wealth of lower bounds and in fact lower bound techniques are known (cf. [37, 16]). This raises the question - often controversially discussed within the proof complexity and solving communities - whether it would be advantageous to build solvers on top of more powerful proof systems. While Frege systems appear too strong and proof search is hindered by non-automatisability results [31, 14], a natural system of intermediate strength is Cutting Planes first defined in [19].

Using ideas from integer linear programming [25, 17], Cutting Planes works with linear inequalities, allowing addition of inequalities as well as multiplication and division by positive integers as rules. Translating propositional clauses into inequalities, Cutting Planes derives the contradiction $0 \geq 1$, thereby demonstrating that the original set of inequalities (and hence the corresponding clause set) has no solution. As mentioned, Cutting Planes is a proof system of intermediate strength: it simulates resolution, but allows short proofs for the famous pigeonhole formulas hard for resolution [27], while it is simulated by and strictly weaker than Frege [24, 33].

Our contributions

For QBFs a similar Cutting Planes system based on integer linear programming has been missing. It is the aim of this paper to define a natural Cutting Planes system for QBF and give a comprehensive analysis of its proof complexity.

1. Cutting Planes for QBF. We introduce a complete and sound QBF proof system $C P+\forall r e d ~ t h a t ~ w o r k s ~ w i t h ~ q u a n t i f i e d ~ l i n e a r ~ i n e q u a l i t i e s, ~ w h e r e ~ e a c h ~ v a r i a b l e ~ i s ~ e i t h e r ~ q u a n t i f i e d ~$
 Cutting Planes system with one single \forall-reduction rule allowing manipulation of universally quantified variables. The definition of the system thus naturally aligns with the QBF resolution systems Q-Res [29] and QU-Res [38] and the stronger QBF Frege systems [6] that likewise add universal reduction to their classical base systems.

Inspired by the recent work on semantic Cutting Planes [23] we also define a stronger system semCP $+\forall$ red where in addition to universal reduction all semantically valid inferences between inequalities are allowed (Section 7).
2. Lower bound techniques for $\mathbf{C P}+\forall$ red. We establish two lower bound methods for $C P+\forall r e d$: strategy extraction (Section 4) and feasible interpolation (Section 5).

Strategy extraction as a lower bound technique was first devised for Q-Res [8] and subsequently extended to QBF Frege systems [6, 12]. The technique applies to calculi that allow to efficiently extract winning strategies for the universal player from a refutation (or alternatively Skolem functions for the existential variables from a proof of a true QBF). Here we show that $C P+\forall$ red admits strategy extraction in TC^{0}, thus establishing an appealing link between CP $+\forall$ red proofs (which can count) and the counting circuit class TC^{0} (Theorem 8).

For each function $f \in$ PSPACE/poly we construct false QBFs $Q_{\text {qbf }} f_{n}$ where each winning strategy forces the universal player to compute f. Thus assuming the existence of $f \in$ PSPACE/poly $\backslash \mathrm{TC}^{0}$ we obtain lower bounds for $Q_{\text {qbf }} f_{n}$ in CP $+\forall$ red (Corollary 9) and even semCP+ \forall red (Corollary 21).

Feasible interpolation is another classical technique transferring circuit lower bounds to proof size lower bounds; however, here we import lower bounds for monotone arithmetic circuits [33] and hence the connection between the circuits and the lines in the proof system is less direct than in strategy extraction. Feasible interpolation holds for classical resolution [30] and Cutting Planes [33], and indeed was shown to be effective for all QBF resolution systems [9]. Following the approach of [33] we establish this technique for CP $+\forall$ red (Theorem 12) and in fact for the stronger semCP $+\forall$ red (Theorem 22).

It is interesting to note that while feasible interpolation is the only technique known for classical Cutting Planes, we have two conceptually different lower bound methods - and hence more (conditionally) hard formulas in QBF. This is in line with recent findings in [12] showing that lower bounds for QBF Frege either stem from circuit lower bounds (for $N C^{1}$) or from classical Frege lower bounds. Our results here illustrate the same paradigm for $\mathrm{CP}+\forall$ red: lower bounds arise either from TC^{0} lower bounds (via strategy extraction) or via classical lower bound methods for Cutting Planes (feasible interpolation).
3. Relations to other QBF proof systems. We compare our new system CP+ \forall red with previous QBF resolution and Frege systems. In contrast to the classical setting, the emerging picture is somewhat more complex: while $C P+\forall$ red is strong enough to simulate the core CDCL QBF resolution systems Q-Res and QU-Res and indeed is exponentially stronger than these systems (Theorem 17), CP $+\forall$ red is incomparable (under a natural circuit complexity assumption) to even the base system $\forall \operatorname{Exp}+$ Res of the expansion resolution systems (Theorem 18). Conceptually, this means that in contrast to the SAT case, QBF solvers based on linear programming and corresponding to $C P+\forall$ red will not encompass the full strength of current resolution-based QBF solving techniques.

On the other hand, $C P+\forall$ red turns out to be simulated by Frege $+\forall r$ red, and Frege $+\forall r e d$ is exponentially more powerful than $\mathrm{CP}+\forall$ red (Theorem 19). While this separation could be achieved by lifting the classical separation [33] to QBF by considering purely existentially quantified formulas, we highlight that our separation also holds for natural QBFs expressing the clique-co-clique principle, which is not known to have a succinct propositional representation.

2 Notation and preliminaries

Quantified Boolean Formulas. A literal is a Boolean variable or its negation. We say a literal x is complementary to the literal $\neg x$ and vice versa. A clause is a disjunction of literals and a term is a conjunction of literals. The empty clause is denoted by \square, and is semantically equivalent to false, denoted \perp. A formula in conjunctive normal form (CNF) is a conjunction of clauses. For a literal $l=x$ or $l=\neg x$, we write $\operatorname{var}(l)$ for x and extend this notation to $\operatorname{var}(C)$ for a clause C. Let α be any partial assignment. For a clause C, we write $\left.C\right|_{\alpha}$ for the clause obtained after applying the partial assignment α to C.

Quantified Boolean Formulas (QBFs) extend propositional logic with Boolean quantifiers with the standard semantics that $\forall x . F$ is satisfied by the same truth assignments as $\left.F\right|_{x=0} \wedge$ $\left.F\right|_{x=1}$ and $\exists x$.F as $\left.\left.F\right|_{x=0} \vee F\right|_{x=1}$. We assume that QBFs are in closed prenex form with a CNF matrix, i.e., we consider the form $\mathcal{Q}_{1} x_{1} \cdots \mathcal{Q}_{n} x_{n} . \phi$ where each \mathcal{Q}_{i} is either \exists or \forall,
and ϕ is a quantifier-free CNF formula, called the matrix, in the variables x_{1}, \ldots, x_{n}. Any QBF can be efficiently (in polynomial time) converted to an equivalent QBF in this form (using PSPACE-completeness of such QBFs). We denote such formulas succinctly as $\mathcal{Q} . \phi$. The index $\operatorname{ind}(y)$ of a variable y is its position in the prefix \mathcal{Q}; for each $i \in[n], \operatorname{ind}\left(x_{i}\right)=i$. If $\operatorname{ind}(x)<\operatorname{ind}(y)$, we say that x occurs before y, or to the left of y. The quantification level $\operatorname{lv}(y)$ of a variable y in $\mathcal{Q} . \phi$ is the number of alternations of quantifiers to the left of y in the quantifier prefix of $\mathcal{Q} \cdot \phi$. For instance, in the QBF $\exists x_{1} \forall x_{2} \forall x_{3} \exists x_{4} \phi, \operatorname{lv}\left(x_{1}\right)=1$, $\operatorname{lv}\left(x_{2}\right)=\operatorname{lv}\left(x_{3}\right)=2$, and $\operatorname{lv}\left(x_{4}\right)=3$.

Often it is useful to think of a $\mathrm{QBF} \mathcal{Q}_{1} x_{1} \cdots \mathcal{Q}_{n} x_{n} . \phi$ as a game between two players: universal (\forall) and existential (\exists). In the i-th step of the game, the player \mathcal{Q}_{i} assigns a value to the variable x_{i}. The existential player wins if ϕ evaluates to 1 under the assignment constructed in the game. The universal player wins if ϕ evaluates to 0 . A strategy for x_{i} is a function from all variables of index $<i$ to $\{0,1\}$. A strategy for the universal player is a collection of strategies, one for each universally quantified variable. Similarly, a strategy for the existential player is a collection of strategies, one for each existentially quantified variable. A strategy for the universal player is a winning strategy if using this strategy to assign values to variables, the universal player wins any possible game, irrespective of the strategy used by the existential player. Winning strategies for the existential player are similarly defined. For any QBF, exactly one of the two players has a winning strategy. A QBF is false if and only if there exists a winning strategy for the universal player ([26],[1, Sec.4.2.2],[32, Chap. 19]).

Proof systems. Following notation from [18], a proof system for a language \mathcal{L} is a polynomialtime onto function $f:\{0,1\}^{*} \rightarrow \mathcal{L}$. Each string $\phi \in \mathcal{L}$ is a theorem, and if $f(\pi)=\phi$, then π is a proof of ϕ in f. Given a polynomial-time function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ the fact that $f\left(\{0,1\}^{*}\right) \subseteq \mathcal{L}$ is the soundness property for f and the fact that $f\left(\{0,1\}^{*}\right) \supseteq \mathcal{L}$ is the completeness property for f.

Proof systems for the language of propositional unsatisfiable formulas (UNSAT) are called propositional proof systems and proof systems for the language of false QBFs are called QBF proof systems. These are refutational proof systems. Equivalently, propositional proof systems and QBF proof systems can be defined respectively for the languages of true propositional formulas (TAUT) and of true QBFs. Since any QBF $\mathcal{Q} . \phi$ can be converted in polynomial time to another $\operatorname{QBF} \mathcal{Q}^{\prime} . \phi^{\prime}$ such that exactly one of $\mathcal{Q} . \phi$ and $\mathcal{Q}^{\prime} . \phi^{\prime}$ is true, it suffices to consider only refutational QBF proof systems.

Given two proof systems f_{1} and f_{2} for the same language L, we say that f_{1} simulates f_{2}, if there exists a function g and a polynomial p such that $f_{1}(g(w))=f_{2}(w)$ and $|g(w)| \leq p(|w|)$ for all w. Thus g translates a proof w of $x \in L$ in the system f_{2} into a proof $g(w)$ of $x \in L$ in the system f_{1}, with at most polynomial blow-up in proof-size. If there is such a g that is also polynomial-time computable, then we say that $f_{1} \mathrm{p}$-simulates f_{2}.

QBF resolution calculi. Resolution (Res), introduced by Blake [13] and Robinson [36], is a refutational proof system for formulas in CNF form. The lines in the Res proofs are clauses. The only inference (resolution) rule is $\frac{C \vee x \quad D \vee \neg x}{C \cup D}$ where C, D denote clauses and x is a variable. A Res refutation derives the empty clause \square

Q-resolution (Q-Res) [29] is a resolution-like calculus operating on QBFs in prenex form with a CNF matrix. The lines in the Q-Res proofs are clauses. It uses the propositional resolution rule above with the side conditions that variable x is existential, and if $z \in C$, then $\neg z \notin D$. (Unlike in the propositional case, dropping this latter condition that $C \cup D$ is not a tautology can lead to unsoundness.) In addition Q-Res has the universal reduction rule
$\frac{C \vee u}{C}$ and $\frac{C \vee \neg u}{C}(\forall-\operatorname{Red})$, where variable u is universal and every existential variable $x \in C$ has $\operatorname{lv}(x)<\operatorname{lv}(u)$. If resolution is also permitted with universal variable x (as long as tautologies are not created), then we get the calculus QU-Res [38].

Expansion-based calculi are another type of resolution systems significantly different from Q-Res. In this paper, we will briefly refer to one such calculus, the $\forall \operatorname{Exp}+$ Res from [28]. In $\forall \operatorname{Exp}+$ Res, one expands the formula on universal variables, creating multiple annotated copies of existential variables, and then uses classical resolution. For details, see [28].

Frege systems. Frege proof systems are the 'textbook' proof systems for propositional logic based on axioms and rules [18]. A Frege system comprises a finite set of axiom schemes and rules. A Frege proof is a sequence of formulas (using \wedge, \vee, \neg) where each formula is either a substitution instance of an axiom, or can be inferred from previous formulas by a valid inference rule. Frege systems are required to be sound and implicationally complete.

A refutation of a false $\operatorname{QBF} \mathcal{Q} . \phi$ in the system Frege $+\forall$ red [6] is sequence of lines L_{1}, \ldots, L_{ℓ} where each line is a formula, $L_{1}=\phi, L_{\ell}=\perp$ and each L_{i} is inferred from previous lines $L_{j}, j<i$, using the inference rules of Frege or using the universal reduction rule $\frac{L_{j}}{L_{j}[u / B]}(\forall \mathbf{R e d})$, where u is a universal variable and is the rightmost (highest index) variable among the variables of L_{j}, B is a formula containing only variables left of u, and $L_{j}[u / B]$ is the formula obtained from L_{j} by replacing each occurrence of u in L_{j} by B.

Circuit classes. We recall the definitions of some standard circuit classes (cf. [39]). The class TC^{0} contains all languages recognisable by polynomial-size circuits using \neg, \vee, \wedge and threshold gates with constant depth and unbounded fan-in. Stronger classes are obtained by using $N C^{1}$ circuits of polynomial size and logarithmic depth with bounded fan-in \neg, \vee, \wedge gates, and by $\mathrm{P} /$ poly circuits of polynomial size. We use non-uniform classes throughout.

Decision lists [35]. A decision list is a list L of pairs $\left(t_{1}, v_{1}\right), \ldots,\left(t_{r}, v_{r}\right)$, where each t_{i} is a term and v_{i} is a value in $\{0,1\}$, and the last term t_{r} is the constant term true (i.e., the empty term). A decision list L defines a Boolean function as follows: for any assignment $\alpha, L(\alpha)$ is defined to be equal to v_{j} where j is the least index such that $\left.t_{j}\right|_{\alpha}=1$. (Such an item always exists, since the last term always evaluates to 1). In [6], this definition has been generalised to \mathcal{C}-decision lists (for some circuit class \mathcal{C}), where instead of terms one can use circuits from \mathcal{C}. A \mathcal{C}-decision list yields the circuit $f(x)=\vee_{i=1}^{r}\left(v_{i} \wedge C_{i}(x) \wedge \wedge_{j<i} \neg C_{j}(x)\right)$. Thus a polynomial-sized TC^{0}-decision list yields a TC^{0} circuit.

3 The CP $+\forall$ red proof system

In this section we define a QBF analogue of the classical Cutting Planes proof system by augmenting it with a reduction rule for universal variables. We denote this system by $\mathrm{CP}+\forall$ red. Consider a false quantified set of inequalities $\mathcal{F} \equiv \mathcal{Q}_{1} x_{1} \ldots \mathcal{Q}_{n} x_{n} . F$, where F is a set of linear inequalities of the form $\sum x_{i} a_{i} \geq A$ for integers a_{i} and A, and F includes the set of inequalities $B=\left\{x_{i} \geq 0,-x_{i} \geq-1 \mid i \in[n]\right\}$. The inequalities in B are called the Boolean axioms, because they force any integer-valued assignment \bar{a} to the variables, satisfying F, to take only 0 , 1 -values. We point out that classical Cutting Planes proof systems (only existential variables) can refute any inconsistent set of linear inequalities over integers. However, once universal quantification is allowed, dealing with an unbounded domain is more
messy. Since our primary goal in defining this proof system is to refute false QBFs, and since QBFs have only Boolean variables, we only consider sets of inequalities that contain B.

Definition 1 (CP $+\forall$ red proofs for inequalities). Consider a set of quantified inequalities $\mathcal{F} \equiv \mathcal{Q}_{1} x_{1} \ldots \mathcal{Q}_{n} x_{n} . F$, where F also contains the Boolean axioms. A CP $+\forall$ red refutation π of \mathcal{F} is a quantified sequence of linear inequalities $\mathcal{Q}_{1} x_{1} \ldots \mathcal{Q}_{n} x_{n} .\left[I_{1}, I_{2}, \ldots, I_{l}\right]$ where the quantifier prefix is the same as in \mathcal{F}, I_{l} is an inequality of the form $0 \geq C$ for some positive integer C, and for every $j \in\{1, \ldots, l\}$, either $I_{j} \in F$, or I_{j} is derived from earlier inequalities in the sequence via one of the following inference rules:

1. Addition: From $\sum_{k} c_{k} x_{k} \geq C$ and $\sum_{k} d_{k} x_{k} \geq D$, derive $\sum_{k}\left(c_{k}+d_{k}\right) x_{k} \geq C+D$.
2. Multiplication: From $\sum_{k} c_{k} x_{k} \geq C$, derive $\sum_{k} d c_{k} x_{k} \geq d C$, where $d \in \mathbb{Z}^{+}$.
3. Division: From $\sum_{k} c_{k} x_{k} \geq C$, derive $\sum_{k} \frac{c_{k}}{d} x_{k} \geq\left\lceil\frac{C}{d}\right\rceil$, where $d \in \mathbb{Z}^{+}$divides each c_{k}.
4. \forall-red: From $\sum_{k \in[n] \backslash\{i\}} c_{k} x_{k}+h x_{i} \geq C$, derive $\begin{cases}\sum_{k \in[n] \backslash\{i\}} c_{k} x_{k} \geq C \quad \text { if } h>0 ; \\ \sum_{k \in[n] \backslash\{i\}} c_{k} x_{k} \geq C-h & \text { if } h<0 .\end{cases}$

This rule can be used provided variable x_{i} is universal, and provided all existential variables with nonzero coefficients in the hypothesis are to the left of x_{i} in the quantification prefix. (That is, if x_{j} is existential, then $j>i \Rightarrow c_{j}=0$.) Observe that when $h>0$, we are replacing x_{i} by 0 , and when $h<0$, we are replacing x_{i} by 1 . We say that the universal variable x_{i} has been reduced.
Each inequality I_{j} is a line in the proof π. Note that proof lines are always of the form $\sum_{k} c_{k} x_{k} \geq C$ for integer-valued c_{k}, C. The length of π (denoted $\left.|\pi|\right)$ is the number of lines in it, and the size of π (denoted $\operatorname{size}(\pi)$) is the bit-size of a representation of the proof (this depends on the number of lines and the binary length of the numbers in the proof).

In order to use $C P+\forall$ red as a refutational system for QBFs in prenex form with CNF matrix, we must translate QBFs into quantified sets of inequalities.

- Definition 2 (Encoding QBFs as inequalities). We first describe how to encode a CNF formula F over variables x_{1}, \ldots, x_{n} as a set of linear inequalities. Define $R(x)=x, R(\bar{x})=$ $1-x$. A clause $C \equiv\left(l_{1} \vee \cdots \vee l_{k}\right)$ is translated into the inequality $R(C) \equiv \sum_{i=1}^{k} R\left(l_{i}\right) \geq$ 1. A CNF formula $\phi=C_{1} \wedge \cdots \wedge C_{m}$ is represented as the set of inequalities $F_{\phi}=$ $\left\{R\left(C_{1}\right), R\left(C_{2}\right), \ldots, R\left(C_{m}\right)\right\} \cup B$, where B is the set of Boolean axioms $x \geq 0,-x \geq-1$ for each variable x. We call this the standard encoding. For a QBF $\mathcal{Q}_{1} x_{1} \ldots \mathcal{Q}_{n} x_{n} . \phi$ with a CNF matrix ϕ, the encoding is the quantified set of linear inequalities $\mathcal{Q}_{1} x_{1} \ldots \mathcal{Q}_{n} x_{n} . F_{\phi}$.

We say that a 0,1 -assignment α satisfies the inequality $I \equiv \sum_{i=1}^{n} a_{i} x_{i} \geq b$ (i.e., $\left.I\right|_{\alpha}=1$), if $\sum_{i=1}^{n} a_{i} \alpha_{i} \geq b$. For any clause C, an assignment satisfies C if and only if it satisfies $R(C)$. Since the standard encoding includes all Boolean axioms, we obtain the following:

- Proposition 3. Let $\mathcal{Q} . \phi$ be a $Q B F$ in closed prenex $C N F$, and let $\mathcal{F}=\mathcal{Q}$. F_{ϕ} be its encoding as a quantified set of linear inequalities. Then $\mathcal{Q} . \phi$ is false if and only if \mathcal{F} is false.

As for QBFs, we can play the 2-player game on the encoding \mathcal{F} of a QBF. Players choose 0-1 values for their variables in the order defined in the prefix. The \forall player wins if the assignment so constructed violates some inequality in F. As before, when \mathcal{F} is false, the universal player has a winning strategy; otherwise the existential player has a winning strategy.

- Definition 4 (CP $+\forall$ red proofs for QBFs). Let $\mathcal{Q} . \phi=\mathcal{Q}_{1} x_{1} \cdots \mathcal{Q}_{n} x_{n} . \phi$ be a false QBF in prenex CNF, and let \mathcal{F} be its encoding as a quantified set of linear inequalities. A CP $+\forall$ red (refutation) proof of $\mathcal{Q} \cdot \phi$ is a $\mathrm{CP}+\forall$ red proof of \mathcal{F} as defined in Definition 1.

It is worth noting that a CP $+\forall$ red proof for inequalities, as in Definition 1, can start with encodings of QBFs, but can also start with quantified sets of inequalities that contain the Boolean axioms but do not correspond to any QBF, since the initial non-Boolean inequalities can have arbitrary integer coefficients.

Observe that in the \forall-red step of $C P+\forall r e d$, if u is the universal variable being reduced, then u need not be the rightmost variable with a non-zero coefficient. There may be universal variables to the right of u with non-zero coefficients. This is analogous to the conditions in QU-Res, where we require only that every existential variable x in C has $\operatorname{lv}(x)<\operatorname{lv}(u)$. However, in the Frege $+\forall$ red proof system defined in [6], the variable being reduced from a formula is required to be the rightmost in the formula; that is, $\operatorname{ind}(x)<\operatorname{ind}(u)$ for every variable other than x in C. We show below that imposing such a condition in CP $+\forall$ red does not affect the strength of the proof system. That is, if we call a proof where the \forall-red steps are applied only to the rightmost universal variables with non-zero coefficients a normal-form proof, then any CP $+\forall$ red proof can be efficiently converted to one in normal form. In later sections we often assume this normal form.

- Lemma 5. Any $C P+\forall$ red proof can be converted into normal form in polynomial time.

Proof Sketch. To reduce a variable u, first reduce all universal variables to the right of u, then reduce u, then re-introduce the previously reduced variables using Boolean axioms. The constant on the right-hand-side may change along the way but finally reverts to its original value.

Now we show that $C P+\forall r e d$ is a complete and sound proof system for false QBFs.

- Theorem 6. CP $+\forall$ red is a complete and sound proof system for false QBFs. That is, if φ is a false $Q B F$, then there exists a $C P+\forall$ red refutation of φ (completeness), and if there exists a $C P+\forall$ red refutation of φ, then φ is false (soundness).

Proof Sketch. Completeness: We show that CP $+\forall$ red p-simulates QU-Res; given a QU-Res proof π, for each $C \in \pi$ we can derive $R(C)$ in $C P+\forall$ red. (The resolution rule is simulated by the CP part as in the classicial case, and the \forall-Red rule of QU-Res is also present in $C P+\forall r e d$.$) Since QU-Res is known to be complete, it follows that CP +\forall$ red is complete.

Soundness: Let $\mathcal{F}=\mathcal{Q} . F$ be the standard encoding of φ, and let $\pi=\mathcal{Q} .\left[I_{1}, I_{2}, \ldots, I_{l}\right]$ be a normal form $C P+\forall$ red refutation of \mathcal{F}. We show that the following is valid for each $j \in[l]: \mathcal{Q} .\left[F \wedge I_{1} \wedge \cdots \wedge I_{j-1}\right] \Longrightarrow \mathcal{Q} .\left[F \wedge I_{1} \wedge \cdots \wedge I_{j-1} \wedge I_{j}\right]$. Thus if $\mathcal{F}=\mathcal{Q} . F$ is true, then so is $\mathcal{Q} .\left[F \wedge I_{1} \wedge \cdots \wedge I_{l-1} \wedge I_{l}\right]$. However, I_{l} is not satisfied by any assignment, so this statement is false. Hence \mathcal{F} is false, and by Proposition $3, \varphi$ is also false.

Note that for false quantified inequalities, the soundness of CP+ \forall red follows from the same proof, but completeness will require an additional argument.

Since we will refer to the p-simulation of QU-Res by CP $+\forall$ red later, we state it as a separate lemma; the proof is in the completeness part of the proof of Theorem 6.

- Lemma 7. $C P+\forall$ red p-simulates $Q U$-Res.

4 Strategy extraction for CP $+\forall$ red

Strategy extraction is an important paradigm in QBF, also very desirable in practice (cf. $[26,3,22,7])$. Winning strategies for the universal player can be very complex. But a QBF proof system has the strategy extraction property for a particular class of circuits \mathcal{C} whenever we can efficiently extract, from every refutation π of a false $\mathrm{QBF} \varphi$, a winning strategy for the universal player where the strategies for individual universal variables are computable in circuit class \mathcal{C}.

In this section we show how to extract, from a refutation in $C P+\forall r e d$, winning strategies computable by bounded depth circuits with threshold gates.

- Theorem 8 (Strategy Extraction Theorem). Given a false $Q B F \varphi=\mathcal{Q} . \phi$, with n variables, and a $C P+\forall$ red refutation π of φ of size m, it is possible to extract from π a winning strategy where for each universal variable $u \in \varphi$, the strategy σ_{u} can be computed by Boolean circuits of $(m+n)^{O(1)}$ size, constant depth, with unbounded fanin AND, OR, NOT gates as well as threshold gates. In particular, if φ can be refuted in $C P+\forall r e d$ in $n^{O(1)}$ size, then the winning strategies can be computed in TC^{0}.

Proof Sketch. We adapt the technique from [6]. Let $\mathcal{Q} . F$ be the standard encoding of φ, and let $\pi=\mathcal{Q} .\left[I_{1}, \ldots, I_{l}\right]$ be a normal-form $C P+\forall$ red proof of $\mathcal{Q} . F$ of length l and size $m \geq l$. For $j \in\{0,1, \ldots, l\}$, define $\pi_{j}=\mathcal{Q} .\left[I_{j+1}, \ldots, I_{l}\right]$ and $F_{j}=F \cup\left\{I_{1}, \ldots, I_{j}\right\}$. By downward induction on j, from π_{j} we show how to compute, for each universal variable u, a Boolean function σ_{u}^{j} that maps each assignment to the variables quantified before u to a bit $\{0,1\}$. These functions satisfy the property that in a 2-player game played on the formula $\mathcal{Q} . F_{j}$, if the universal player uses strategy σ_{u}^{j} for each universal variable u, then finally some inequality in F_{j} is falsified. We describe the functions σ_{u}^{j} by decision lists of size $O(l)$, where each condition is checkable by a constant-depth polynomial-in- m sized threshold circuit.

Since all axioms are included in F, we can skip the axiom steps in the proof.
The strategy is as follows: $\sigma_{u}^{l}=0$ for all u. For $j \leq l$, if I_{j} is obtained by a classical rule, then $\sigma_{u}^{j-1}=\sigma_{u}^{j}$ for every universal variable u. If I_{j} is derived using a \forall-red rule; that is $I_{j}=\left.I_{k}\right|_{u=b_{j}}$ for some $k<j$, then for all $u^{\prime} \neq u, \sigma_{u^{\prime}}^{j-1}=\sigma_{u^{\prime}}^{j}$. For u, if $\left.I_{k}\right|_{u=b_{j}}(\vec{a})=0$, then $\sigma_{u}^{j-1}(\vec{a})=b_{j}$, else $\sigma_{u}^{j-1}(\vec{a})=\sigma_{u}^{j}(\vec{a})$. (The value $\left.I_{k}\right|_{u=b_{j}}(\vec{a})$ can be determined since variables to the right of u have zero coefficient in I_{k}.) It is easy to see that these functions so defined have the desired property.

Theorem 8 yields the following conditional lower bound for $\mathrm{CP}+\forall$ red proof size.

- Corollary 9. If PSPACE/poly $\nsubseteq \mathrm{TC}^{0}$, then there exists a family of false $Q B F s Q_{q b f}-f_{n}$ that requires super-polynomial size proofs in $C P+\forall r e d$.

Proof. Let $f_{n} \in$ PSPACE/poly $\backslash \mathrm{TC}^{0}$. Consider the following false sentence based on f_{n} :

$$
\exists x_{1} \ldots x_{n} \forall z \cdot[f(\vec{x}) \neq z] .
$$

Since f_{n} is in PSPACE/poly and QBF is PSPACE-complete, the value of f_{n} can be compactly expressed by a QBF. That is, $f_{n}(\vec{x}) \equiv \mathcal{Q}_{1} y_{1} \ldots \mathcal{Q}_{r} y_{r} . \psi_{n}(\vec{x}, \vec{y})$ where r is polynomial in n and $\psi_{n}(\vec{x}, \vec{y})$ is in $\mathrm{P} /$ poly. Thus we have the false sentence

$$
\exists x_{1} \ldots x_{n} \forall z \cdot[(\overbrace{\mathcal{Q}_{1} y_{1} \ldots \mathcal{Q}_{r} y_{r} \cdot \psi_{n}(\vec{x}, \vec{y})}^{f_{n}(\vec{x})}) \leftrightarrow \neg z] .
$$

We now choose circuits C_{n} computing ψ_{n} and use additional variables \vec{s} and \vec{t} to represent the gate values in the $\mathrm{P} /$ poly circuits C_{n} and $\neg C_{n}$, respectively. We obtain the QBF

$$
\exists x_{1} \ldots x_{n} \forall z \mathcal{Q}_{1} y_{1} \ldots \mathcal{Q}_{r} y_{r} \overline{\mathcal{Q}}_{1} w_{1} \ldots \overline{\mathcal{Q}}_{r} w_{r} \exists \vec{s}, \vec{t} .\left[\left(C_{n}(\vec{x}, \vec{y}, \vec{s}) \vee z\right) \wedge\left(\neg C_{n}(\vec{x}, \vec{w}, \vec{t}) \vee \neg z\right)\right]
$$

where $\overline{\mathcal{Q}}=\exists$ if $\mathcal{Q}=\forall$ and vice versa. We call this formula $Q_{q b f}-f_{n}$ and remark that it is a false prenex QBF with CNF matrix. (C_{n} can be expressed as a CNF; then adding the literal z to each clause expresses $C_{n} \vee z$. Similarly for $\neg C_{n} \vee \neg z$.)

In the two-player game on $Q_{q b f}-f_{n}$ or on its standard encoding, the only winning strategy for the universal variable z is the function $f_{n}(\vec{x})$ itself. Therefore if there exists a polynomial size $\mathrm{CP}+\forall$ red proof for $Q_{q b f}-f_{n}$, then from Theorem $8, f_{n} \in \mathrm{TC}^{0}$, a contradiction.

$5 \quad$ Feasible (monotone) interpolation for CP $+\forall$ red

In this section we show that $C P+\forall$ red admits feasible monotone interpolation. We adapt the technique first used by Pudlák [33] to re-prove and generalise the result of Krajíček [30].

Consider a false QBF of the form

$$
\varphi=\exists \vec{p} \mathcal{Q} \vec{q} \mathcal{Q} \cdot\left[A^{\prime}(\vec{p}, \vec{q}) \wedge B^{\prime}(\vec{p}, \vec{r})\right]
$$

where \vec{p}, \vec{q}, and \vec{r} are mutually disjoint sets of propositional variables, $A^{\prime}(\vec{p}, \vec{q})$ is a set of clauses using only the \vec{p} and \vec{q} variables, and $B^{\prime}(\vec{p}, \vec{r})$ is a set of clauses using only the \vec{p} and \vec{r} variables. Thus \vec{p} are the common variables between them. The \vec{q} and \vec{r} variables can be quantified arbitrarily, with any number of quantification levels. Since φ is false, on any assignment \vec{a} to the variables in \vec{p}, either $\varphi_{\vec{a}, 0}=\mathcal{Q} \vec{q} \cdot A^{\prime}(\vec{a}, \vec{q})$ or $\varphi_{\vec{a}, 1}=\mathcal{Q} \vec{r} . B^{\prime}(\vec{a}, \vec{r})$ (or both) must be false. An interpolant for φ is a Boolean function that, given \vec{a}, indicates which of $\varphi_{\vec{a}, 0}, \varphi_{\vec{a}, 1}$ is false. As defined in [9], a QBF proof system S admits feasible interpolation if from an S-proof π of such a $\mathrm{QBF} \varphi$, we can extract a Boolean circuit C_{π} computing an interpolant for φ, such that, the size of C_{π} is polynomially related to the size of π. If, whenever the \vec{p} variables occur only positively in A^{\prime} or only negatively in B^{\prime}, the polynomial sized (with respect to the size of π) interpolating circuit for φ is monotone, then we say that S admits monotone feasible interpolation.

Cutting Planes naturally gives rise to arithmetic rather than Boolean circuits, as in the classical case in [33]. Generalising this to the case of QBFs, we have the following definitions.

- Definition 10 ([33]). A monotone real circuit is a circuit which computes with real numbers and uses arbitrary non-decreasing real unary and binary functions as gates.

We say that a monotone real circuit computes a Boolean function (uniquely determined by the circuit), if for all inputs of 0 's and 1 's the circuit outputs 0 or 1 .

- Definition 11. A QBF proof system S admits monotone real feasible interpolation if for any false QBF φ of the form $\exists \vec{p} \mathcal{Q} \vec{q} \mathcal{R} \cdot\left[A^{\prime}(\vec{p}, \vec{q}) \wedge B^{\prime}(\vec{p}, \vec{r})\right]$ where the \vec{p} variables occur only positively in A^{\prime} or only negatively in B^{\prime}, and for any S-proof π of φ, we can extract from π a monotone real circuit C of size polynomial in the length of π and the number n of \vec{p} variables, such that C computes a Boolean function, and on every 0,1 assignment \vec{a} for \vec{p},
$C(\vec{a})=0 \Longrightarrow \mathcal{Q} \vec{q} \cdot A^{\prime}(\vec{a}, \vec{q})$ is false, and
$C(\vec{a})=1 \Longrightarrow \mathcal{Q} \vec{r} \cdot B^{\prime}(\vec{a}, \vec{r})$ is false.
Such a C is called a monotone real interpolating circuit for φ.
We prove that the $C P+\forall$ red proof system for false QBFs has this property:
- Theorem 12. CP+甘red for false QBFs admits monotone real feasible interpolation.

To prove this, we will actually prove a stronger theorem, about interpolants for all false quantified sets of inequalities (not just those arising from false QBFs).

- Theorem 13. $C P+\forall$ red for inequalities admits monotone real feasible interpolation. That is, let \mathcal{F} be any false quantified set of inequalities of the form $\exists \vec{p} \mathcal{Q} \vec{q} \mathcal{Q} \vec{r} .[A(\vec{p}, \vec{q}) \wedge B(\vec{p}, \vec{r})]$ where $A \cup B$ includes all Boolean axioms, and where the coefficients of \vec{p} are either all non-negative in A or are all non-positive in B. If \mathcal{F} has a $C P+\forall r e d-p r o o f \pi$, of length l, then we can extract a monotone real circuit C of size polynomial in l and the number n of \vec{p} variables in \mathcal{F}, such that C computes a Boolean function, and on any 0,1 assignment \vec{a} to \vec{p},

$$
\begin{aligned}
& C(\vec{a})=0 \Longrightarrow \mathcal{Q} \vec{q} \cdot A(\vec{a}, \vec{q}) \text { is false, and } \\
& C(\vec{a})=1 \Longrightarrow \mathcal{Q} \vec{r} \cdot B(\vec{a}, \vec{r}) \text { is false. }
\end{aligned}
$$

Such a C is called a monotone real interpolating circuit for \mathcal{F}.
Proof Sketch. Let $\pi=\exists \vec{p} \mathcal{Q} \vec{q} \mathcal{Q} \vec{r} .\left[I_{1}, \ldots, I_{l}\right]$ be a $C P+\forall$ red refutation of \mathcal{F}. The idea, as in [33], is to associate with each inequality

$$
I \equiv \sum_{k} e_{k} p_{k}+\sum_{i} f_{i} q_{i}+\sum_{j} g_{j} r_{j} \geq D
$$

in π, two inequalities

$$
I_{0} \equiv \sum_{i} f_{i} q_{i} \geq D_{0}, \quad I_{1} \equiv \sum_{j} g_{j} r_{j} \geq D_{1}
$$

depending on the Boolean assignment \vec{a} to the \vec{p} variables, in such a way that

- I_{0} and I_{1} together imply $\left.I\right|_{\vec{a}}$. (It suffices to ensure $D_{0}+D_{1} \geq D-\sum_{k} e_{k} a_{k}$.)
- I_{0} can be derived solely from the $\mathcal{Q} \vec{q} \cdot A(\vec{a}, \vec{q})$ part in CP++ red.
- I_{1} can be derived solely from the $\mathcal{Q} \vec{r} . B(\vec{a}, \vec{r})$ part in $\mathrm{CP}+\forall$ red.

Then the inequalities corresponding to the last step of the proof, I_{l}, are $0 \geq D_{0}$ and $0 \geq D_{1}$, with $D_{0}+D_{1} \geq 1$. Hence $D_{0}>0 \Longrightarrow \vec{Q} \vec{q} \cdot A(\vec{a}, \vec{q})$ is false, and $D_{1}>0 \Longrightarrow \vec{Q} \vec{r} \cdot B(\vec{a}, \vec{r})$ is false. Note that we only need to compute one of the values D_{0}, D_{1} to identify a false part of \mathcal{F}. Furthermore, we will show that if all the coefficients e_{k} in $B(\vec{p}, \vec{r})$ are non-positive, then D_{1} can be computed by a real monotone circuit of size $O(n l)$. If all the coefficients e_{k} in $A(\vec{p}, \vec{q})$ are non-negative, then we will show that $-D_{0}$ can be computed by a real monotone circuit of size $O(n l)$. (The inputs to the circuit are an assignment \vec{a} to the \vec{p} variables.) Applying the unary non-decreasing threshold function $D_{1}>0$? or $-D_{0} \geq 0$? to its output will then give a monotone real interpolating circuit for \mathcal{F}.

Using monotone interpolation (Theorem 12), we now prove an unconditional lower bound for the $C P+\forall$ red proof system, which is based on the false clique-co-clique formulas from [9].

- Definition 14. Fix positive integers k, n with $k \leq n$. CliqueCoClique n, k is the class of QBFs of the form $\exists \vec{p} \mathcal{Q} \vec{q} \mathcal{Q} \vec{r}$. $\left[A_{n, k}(\vec{p}, \vec{q}) \wedge B_{n, k}(\vec{p}, \vec{r})\right]$ where
- \vec{p} is the set of variables $\left\{p_{u v} \mid 1 \leq u<v \leq n\right\}$. An assignment to \vec{p} picks a set of edges, and thus an n-vertex graph that we denote $G_{\vec{p}}$.
- $\mathcal{Q} \vec{q} . A_{n, k}(\vec{p}, \vec{q})$ is a QBF expressing the property that $G_{\vec{p}}$ has a clique of size k.
- $\mathcal{Q} \vec{r} . B_{n, k}(\vec{p}, \vec{r})$ is a QBF expressing the property that $G_{\vec{p}}$ has no clique of size k.

Any QBF in CliqueCoCliquE ${ }_{n, k}$ expresses the clique-co-clique principle (there is a graph both containing and not containing a k-clique) and is obviously false. In [9], a particular QBF $\varphi_{n} \in$ CliqueCoCliquE $_{n, n / 2}$ of size polynomial in n is described. It can be easily generalised to QBFs $\varphi_{n, k} \in$ CLIQUECoCLIQUE $_{n, k}$ of size polynomial in n.

Let $\Phi_{n, k}$ be any QBF in CliqueCoClique, and suppose that it has a CP $+\forall$ red proof of length l. From Theorem 12, we obtain a monotone real circuit C of size $O\left(l+n^{2}\right)$ computing a Boolean function, such that for every 0,1 input vector \vec{a} of length $\binom{n}{2}$ encoding a graph G, $C(\vec{a})=1 \Longleftrightarrow G$ has a k clique.

In [33], Pudlák showed the following exponential lower bound on the size of real monotone circuits interpolating the famous "clique-color" encodings.

- Theorem 15 ([33]). Suppose that the inputs for a monotone real circuit C are 0,1 vectors of length $\binom{n}{2}$ encoding in the natural way graphs on an n-element set. Suppose that C outputs 1 on all cliques of size k and outputs 0 on all complete $(k-1)$-partite graphs, where $k=\left\lfloor\frac{1}{8}(n / \log n)^{2 / 3}\right\rfloor$. Then the size of the circuit is at least $2^{\Omega\left((n / \log n)^{1 / 3}\right)}$.
(In some earlier literature, clique-color has been referred to as clique-co-clique. However, this is misleading because the clique-color encoding is weaker than $\Phi_{n, k}$ in the following sense. The clique-color encoding says that there exists a graph which has a k-clique and is complete $(k-1)$-partite (maximal $(k-1)$-colorable). A graph may neither have a k-clique nor be complete $(k-1)$-partite, so both parts of the clique-color formula may be false. Our clique-co-clique formulas, on the other hand, always have exactly one true part.)

Since complete $(k-1)$-partite graphs have no k-clique, the real monotone interpolating circuit C we obtain from a $C P+\forall$ red proof of $\Phi_{n, k}$ also satisfies the premise of Theorem 15. Hence, C must have size exponential in n. But C 's size is polynomially related to the length of the $C P+\forall$ red proof of $\Phi_{n, k}$. We have thus obtained the following:

- Corollary 16. For $k=\left\lfloor\frac{1}{8}(n / \log n)^{2 / 3}\right\rfloor$, any false $Q B F \Phi_{n, k} \in$ CliqueCoClique $_{n, k}$ requires proofs of length exponential in n in the $C P+\forall$ red proof system. In particular, the $Q B F \varphi_{n, k}$ from Definition 14 requires proofs of length exponential in $\left|\varphi_{n, k}\right|$ in $C P+\forall r e d$.

6 Relative power of CP $+\forall$ red and other QBF proof systems

In this section we relate the power of $C P+\forall$ red with other well known QBF proof systems.

- Theorem 17. $C P+\forall$ red is exponentially stronger than Q-Res and $Q U-R e s$.

Proof. By Lemma 7, CP $+\forall$ red p-simulates QU-Res (and hence Q-Res), and is thus at least as strong as them. From classical proof complexity we know that false CNF formulas based on the pigeonhole principle are easy for Cutting Planes proof system [19] but hard for resolution [27]. Therefore CP $+\forall$ red is exponentially more powerful than any QBF proof system based on resolution (Q-Res, QU-Res, etc.); these systems cannot simulate CP $+\forall$ red.

- Remark. Note that the separating QBFs have only existential quantification. However, there are also separating QBFs using universal quantifiers.

This means that $C P+\forall r e d$ is stronger than the classical CDCL proof systems. However, as we show next, it is weaker than even the base system of expansion solving.

- Theorem 18. $C P+\forall$ red and $\forall E x p+$ Res are incomparable unless $\mathrm{P} /$ poly $=\mathrm{TC}^{0}$, i.e.,
- $\forall E x p+$ Res cannot simulate $C P+\forall r e d$.
- If $\mathrm{P} /$ poly $\nsubseteq \mathrm{TC}^{0}$ then $C P+\forall$ red cannot simulate $\forall E x p+$ Res.

Proof. In [28], Janota and Marques-Silva show that there exists a family of false QBFs which are hard for $\forall E x p+$ Res but easy to refute in Q-Res. As CP $+\forall$ red p-simulates Q-Res (Lemma 7), we conclude that $\forall \operatorname{Exp}+$ Res cannot simulate $C P+\forall r e d$.

For the second claim, let $f_{n} \in \mathrm{P} /$ poly $\backslash \mathrm{TC}^{0}$ be computed by circuit family C_{n} of size $l(n) \in n^{O(1)}$. We use C_{n} to express the obviously false sentence $\exists x_{1} \cdots x_{n} \forall z . f(\vec{x}) \neq z$. Associate a variable t_{i} with each gate g_{i} in C_{n}, and consider the QBF

$$
Q-f_{n} \equiv \exists x_{1} \cdots x_{n} \forall z \exists t_{1} \cdots t_{l} \cdot\left(t_{l} \neq z\right) \wedge \bigwedge_{i=1}^{l}\left(t_{i} \text { is consistent with the inputs to gate } i\right) .
$$

The inner formula can be written as an $O(l)$-sized CNF, so $Q-f_{n}$ has size $n^{O(1)}$. Note that $Q-f_{n}$ has a single universal variable z, and the (only) winning strategy for the universal player is $z=f(\vec{x})$. If $Q-f_{n}$ has a proof of size polynomial in n, then by Theorem 8 , this strategy, and hence f_{n}, are in TC^{0}, a contradiction. On the other hand, from [8, Proposition 28], we know that the formula $Q-f_{n}$ can be refuted in $\forall \operatorname{Exp}+$ Res in $O(n+l)$ steps. (Here, expand on both polarities of the single universal variable z, creating two copies t_{i}^{0} and t_{i}^{1} of each variable t_{i}. Inductively derive that for each $b \in\{0,1\}, t_{i}^{b}$ is consistent with the inputs to gate i with the same polarity b, and with the circuit inputs x_{j} which do not have any polarity. Hence derive $t_{l}^{0}=t_{l}^{1}$. Since the clauses expressing $t_{l} \neq z$ on expansion give the unit clauses $\neg t_{l}^{1}$ and t_{l}^{0}, we obtain a contradiction.)

- Theorem 19. Frege $+\forall$ red is exponentially stronger than $C P+\forall r e d:$

Frege $+\forall$ red p-simulates $C P+\forall$ red, whereas $C P+\forall$ red does not simulate Frege $+\forall$ red.
Proof Sketch. In the classical (propositional) setting, Cook, Coullard and Turán [19] first showed that Extended Frege p-simulates Cutting Planes. Then Goerdt [24] showed that even Frege p-simulates Cutting Planes. Using techniques from [15], [19], and [24], we show that the same simulation goes through with minor modifications for QBFs.

Since Frege is exponentially more powerful than Cutting Planes over propositional formulas (as witnessed by the clique-colour formulas [33], see also Section 5), the converse simulation fails, and CP $+\forall$ red and Frege $+\forall$ red are exponentially separated.

There are also separating examples with non-trivial universal quantifiers. In Section 5, we described a class of QBF formulas expressing the clique-co-clique principle. By Corollary 16, none of them have short proofs in $C P+\forall r e d$. We show that a particular member of this class (i.e., a particular way of encoding clique-co-clique) has short proofs in Frege $+\forall$ red.

- Theorem 20. There is a $\Phi_{n, k} \in$ CliqueCoClique $_{n, k}$ of size polynomial in n, with a Frege $+\forall$ red proof of size polynomial in n.

7 Semantic cutting planes for QBFs

The classical Cutting Planes proof system can be extended to the semantic Cutting Planes proof system by allowing the following semantic inference rule: from inequalities $I^{\prime}, I^{\prime \prime}$, we can infer I in one step if every Boolean assignment satisfying both I^{\prime} and $I^{\prime \prime}$ also satisfies I. In [23], it is shown that semantic Cutting Planes is exponentially more powerful than Cutting Planes. We now augment the system semantic Cutting Planes with the \forall-reduction rule as defined for $C P+\forall$ red, to obtain a QBF version denoted semCP $+\forall$ red. In fact, in this system we need only two rules, semantic inference and \forall-reduction, since the addition, multiplication and division rules of Cutting Planes are also semantic inferences, and the Boolean axioms can be semantically inferred from any inequality.

It is clear that semCP+ \forall red is sound and complete. However it is not possible to verify the semantic rule efficiently (unless $P=N P$).

As in CP $+\forall$ red, we call a semCP $+\forall$ red proof π a normal-form proof if \forall-red is applied only to the rightmost universal variable. Since one can use Boolean axioms in semCP+ \forall red; Lemma 5 is valid in semCP $+\forall$ red as well. That is one can convert any semCP $+\forall$ red proof π into a normal form in polynomial time.

Clearly, SemCP $+\forall$ red is at least as powerful as CP $+\forall$ red. From classical proof complexity we known that semantic Cutting Planes is exponentially more powerful than Cutting Planes [23]. That is, in [23, Theorem 2], it has been shown that for every n, there exists a CNF formula F_{n} which has a short semantic Cutting Planes refutation but needs $2^{n^{\Omega(1)}}$ lines to refute in Cutting Planes. Thus semCP+ \forall red is also exponentially more powerful than $C P+\forall r e d$, as witnessed by these purely existentially quantified formulas.

In Theorem 8, we established strategy extraction from CP $+\forall$ red proofs. These results hold for semCP $+\forall$ red proofs as well; if I_{j} is obtained by semantic inference, we do not change the strategy functions and let $\sigma_{u}^{j-1}=\sigma_{u}^{j}$ for every universal variable u. Thus all the conditional lower bounds on CP $+\forall$ red (Corollary 9, Theorem 18) continue to hold:

- Corollary 21.

1. If PSPACE $\nsubseteq \mathrm{TC}^{0}$, then for any $f_{n} \in \mathrm{PSPACE} \backslash \mathrm{TC}^{0}$, the false $Q B F s Q_{q b f}-f_{n}$ require super-polynomial size proofs in sem $C P+\forall$ red.
2. If $\mathrm{P} /$ poly $\nsubseteq \mathrm{TC}^{0}$, then sem $C P+\forall$ red cannot simulate $\forall E x p+$ Res. For any $f_{n} \in \mathrm{P} /$ poly $\backslash \mathrm{TC}^{0}$, the false $Q B F s$ s- f_{n} require super-polynomial size proofs in sem $C P+\forall$ red.

For obtaining unconditional lower bounds, we need an analogue of real monotone interpolation (Theorems 12, 13). For this, we adapt the corresponding proof technique used in the classical case from [23]. Using their technique for semantic inference, and handling axioms and \forall-reduction rules as in the proof of Theorem 13, everything goes through as desired.

- Theorem 22. SemCP+ \forall red admits monotone real feasible interpolation for false QBFs.

Using Theorem 22, we obtain an unconditional exponential lower bound for semCP $+\forall$ red, analogous to Corollary 16.

- Corollary 23. For $k=\left\lfloor\frac{1}{8}(n / \log n)^{2 / 3}\right\rfloor$, any false $Q B F \Phi_{n, k} \in \operatorname{CLIQUECoCLIQUE}_{n, k}$ requires proofs of length exponential in n in the sem $C P+\forall$ red proof system. In particular, the QBFs $\varphi_{n, k}$ from Definition 14 require proofs of length exponential in $\left|\varphi_{n, k}\right|$ in semCP $+\forall r e d$.

References

1 Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge University Press, 2009.
2 Albert Atserias and Sergi Oliva. Bounded-width QBF is PSPACE-complete. J. Comput. Syst. Sci., 80(7):1415-1429, 2014. doi:10.1016/j.jcss.2014.04.014.
3 Valeriy Balabanov and Jie-Hong R. Jiang. Unified QBF certification and its applications. Formal Methods in System Design, 41(1):45-65, 2012. doi:10.1007/s10703-012-0152-6.
4 Valeriy Balabanov, Magdalena Widl, and Jie-Hong R. Jiang. QBF resolution systems and their proof complexities. In SAT'14, pages 154-169, 2014.
5 Marco Benedetti and Hratch Mangassarian. QBF-based formal verification: Experience and perspectives. JSAT, 5(1-4):133-191, 2008.
6 Olaf Beyersdorff, Ilario Bonacina, and Leroy Chew. Lower bounds: From circuits to QBF proof systems. In Proc. ACM Conference on Innovations in Theoretical Computer Science (ITCS'16), pages 249-260. ACM, 2016.

7 Olaf Beyersdorff, Leroy Chew, and Mikoláś Janota. On unification of QBF resolution-based calculi. In MFCS, II, pages 81-93, 2014.
8 Olaf Beyersdorff, Leroy Chew, and Mikoláš Janota. Proof complexity of resolution-based QBF calculi. In Proc. Symposium on Theoretical Aspects of Computer Science (STACS'15), pages 76-89. LIPIcs, 2015.
9 Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla. Feasible interpolation for QBF resolution calculi. In Proc. International Colloquium on Automata, Languages, and Programming (ICALP'15), pages 180-192. Springer, 2015.
10 Olaf Beyersdorff, Leroy Chew, Meena Mahajan, and Anil Shukla. Are short proofs narrow? QBF resolution is not simple. In Proc. Symposium on Theoretical Aspects of Computer Science (STACS'16), 2016.
11 Olaf Beyersdorff, Leroy Chew, and Karteek Sreenivasaiah. A game characterisation of tree-like Q-resolution size. In LATA, pages 486-498. Springer, 2015.
12 Olaf Beyersdorff and Ján Pich. Understanding Gentzen and Frege systems for QBF. In Proc. ACM/IEEE Symposium on Logic in Computer Science (LICS), 2016.
13 A. Blake. Canonical expressions in boolean algebra. PhD thesis, University of Chicago, 1937.

14 Maria Luisa Bonet, Carlos Domingo, Ricard Gavaldà, Alexis Maciel, and Toniann Pitassi. Non-automatizability of bounded-depth Frege proofs. Computational Complexity, 13(1-2):47-68, 2004.

15 Samuel R. Buss. Polynomial size proofs of the propositional pigeonhole principle. J. Symb. Log., 52(4):916-927, 1987.
16 Samuel R. Buss. Towards NP-P via proof complexity and search. Ann. Pure Appl. Logic, 163(7):906-917, 2012.
17 Václav Chvátal. Edmonds polytopes and weakly hamiltonian graphs. Math. Program., 5(1):29-40, 1973.
18 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof systems. The Journal of Symbolic Logic, 44(1):36-50, 1979.
19 William J. Cook, Collette R. Coullard, and György Turán. On the complexity of cuttingplane proofs. Discrete Applied Mathematics, 18(1):25-38, 1987.
20 Uwe Egly. On sequent systems and resolution for QBFs. In Theory and Applications of Satisfiability Testing (SAT'12), pages 100-113, 2012.
21 Uwe Egly, Martin Kronegger, Florian Lonsing, and Andreas Pfandler. Conformant planning as a case study of incremental QBF solving. In Artificial Intelligence and Symbolic Computation (AISC'14), pages 120-131, 2014.
22 Uwe Egly, Florian Lonsing, and Magdalena Widl. Long-distance resolution: Proof generation and strategy extraction in search-based QBF solving. In Logic for Programming, Artificial Intelligence, and Reasoning - 19th International Conference (LPAR), pages 291308, 2013.
23 Yuval Filmus, Pavel Hrubes, and Massimo Lauria. Semantic versus syntactic cutting planes. In 33rd Symposium on Theoretical Aspects of Computer Science, STACS, Orléans, France, pages 35:1-35:13, 2016.
24 Andreas Goerdt. Cutting plane versus Frege proof systems. In Computer Science Logic, 4 th Workshop, CSL'90, Heidelberg, Germany, October 1-5, Proceedings, pages 174-194, 1990.
25 Ralph E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of the American Mathematical Society, 64(5):275-278, 1958.
26 Alexandra Goultiaeva, Allen Van Gelder, and Fahiem Bacchus. A uniform approach for generating proofs and strategies for both true and false QBF formulas. In IJCAI, pages 546-553, 2011.

27 Amin Haken. The intractability of resolution. Theoretical Computer Science, 39:297-308, 1985.

28 Mikolás Janota and Joao Marques-Silva. Expansion-based QBF solving versus Q-resolution. Theor. Comput. Sci., 577:25-42, 2015.
29 Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. Resolution for quantified Boolean formulas. Inf. Comput., 117(1):12-18, 1995.
30 Jan Krajíček. Interpolation theorems, lower bounds for proof systems and independence results for bounded arithmetic. The Journal of Symbolic Logic, 62(2):457-486, 1997.
31 Jan Krajíček and Pavel Pudlák. Some consequences of cryptographical conjectures for S_{2}^{1} and EF. Information and Computation, 140(1):82-94, 1998.
32 Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
33 Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symb. Log., 62(3):981-998, 1997.
34 Jussi Rintanen. Asymptotically optimal encodings of conformant planning in QBF. In AAAI, pages 1045-1050. AAAI Press, 2007.
35 Ronald L. Rivest. Learning decision lists. Machine Learning, 2(3):229-246, 1987.
36 John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal of the ACM, 12:23-41, 1965.
37 Nathan Segerlind. The complexity of propositional proofs. Bulletin of Symbolic Logic, 13(4):417-481, 2007.
38 Allen Van Gelder. Contributions to the theory of practical quantified Boolean formula solving. In $C P$, pages 647-663, 2012.
39 Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach. Texts in Theoretical Computer Science. Springer Verlag, Berlin Heidelberg, 1999.

[^0]: * This work was supported by the EU Marie Curie IRSES grant CORCON, grant no. 48138 from the John Templeton Foundation, EPSRC grant EP/L024233/1, and a Doctoral Training Grant from EPSRC (2nd author).

