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Abstract
We study the strip packing problem, a classical packing problem which generalizes both bin
packing and makespan minimization. Here we are given a set of axis-parallel rectangles in the
two-dimensional plane and the goal is to pack them in a vertical strip of fixed width such that
the height of the obtained packing is minimized. The packing must be non-overlapping and the
rectangles cannot be rotated.

A reduction from the partition problem shows that no approximation better than 3/2 is
possible for strip packing in polynomial time (assuming P6=NP). Nadiradze and Wiese [SODA16]
overcame this barrier by presenting a ( 7

5 +ε)-approximation algorithm in pseudo-polynomial-time
(PPT). As the problem is strongly NP-hard, it does not admit an exact PPT algorithm (though
a PPT approximation scheme might exist).

In this paper we make further progress on the PPT approximability of strip packing, by
presenting a ( 4

3 + ε)-approximation algorithm. Our result is based on a non-trivial repacking of
some rectangles in the empty space left by the construction by Nadiradze and Wiese, and in some
sense pushes their approach to its limit.

Our PPT algorithm can be adapted to the case where we are allowed to rotate the rectangles
by 90◦, achieving the same approximation factor and breaking the polynomial-time approxima-
tion barrier of 3/2 for the case with rotations as well.
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1 Introduction

In this paper, we consider the strip packing problem, a well-studied classical two-dimensional
packing problem [6, 14, 28]. Here we are given a collection of rectangles, and an infinite
vertical strip of width W in the two dimensional (2-D) plane. We need to find an axis-parallel
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9:2 Improved Pseudo-Polynomial-Time Approximation for Strip Packing

embedding of the rectangles without rotations inside the strip so that no two rectangles
overlap (feasible packing). Our goal is to minimize the total height of this packing.

More formally, we are given a parameterW ∈ N and a set R = {R1, . . . , Rn} of rectangles,
each one characterized by a width wi ∈ N, wi ≤W , and a height hi ∈ N. A packing of R is a
pair (xi, yi) ∈ N×N for each Ri, with 0 ≤ xi ≤W −wi, meaning that the left-bottom corner
of Ri is placed in position (xi, yi) and its right-top corner in position (xi +wi, yi + hi). This
packing is feasible if the interior of rectangles is disjoint in this embedding (or equivalently
rectangles are allowed to overlap on their boundary only). Our goal is to find a feasible
packing of minimum height maxi{yi + hi}.

Strip packing is a natural generalization of one-dimensional bin packing [13] (when all the
rectangles have the same height) and makespan minimization [12] (when all the rectangles
have the same width). The problem has lots of applications in industrial engineering and
computer science, specially in cutting stock, logistics and scheduling [28, 20]. Recently, there
have been a lot of applications of strip packing in electricity allocation and peak demand
reductions in smart-grids [36, 27, 32].

A simple reduction from the partition problem shows that the problem cannot be
approximated within a factor 3

2 − ε for any ε > 0 in polynomial-time unless P=NP. This
reduction relies on exponentially large (in n) rectangle widths.

Let OPT = OPT (R) denote the optimal height for the considered strip packing instance
(R,W ), and hmax = hmax(R) (resp. wmax = wmax(R)) be the largest height (resp. width)
of any rectangle in R. Observe that trivially OPT ≥ hmax. W.l.o.g. we can assume
that W ≤ nwmax. The first non-trivial approximation algorithm for strip packing, with
approximation ratio 3, was given by Baker, Coffman and Rivest [6]. The First-Fit-Decreasing-
Height algorithm (FFDH) by Coffman et al. [14] gives a 2.7 approximation. Sleator [34]
gave an algorithm that generates packing of height 2OPT + hmax

2 , hence achieving a 2.5
approximation. Afterwards, Steinberg [35] and Schiermeyer [33] independently improved the
approximation ratio to 2. Harren and van Stee [21] first broke the barrier of 2 with their
1.9396 approximation. The present best ( 5

3 + ε)-approximation is due to Harren et al. [20].
Nadiradze and Wiese [31] overcame the 3

2 -inapproximability barrier by presenting a
( 7

5 + ε)-approximation algorithm running in pseudo-polynomial-time (PPT). More specifically,
the running time of their algorithm is O((Nn)O(1)), where N = max{wmax, hmax}1. As strip
packing is strongly NP-hard [17], it does not admit an exact PPT algorithm. However, the
existence of a PPT approximation scheme is currently not excluded.

1.1 Our contribution and techniques
In this paper, we make progress on the PPT approximability of strip packing, by presenting
an improved ( 4

3 + ε) approximation. Our approach refines the technique of Nadiradze and
Wiese [31], that modulo several technical details works as follows. Let α ∈ [1/3, 1/2) be
a proper constant parameter, and define a rectangle Ri to be tall if hi > α · OPT . They
prove that the optimal packing can be structured into a constant number of axis-aligned
rectangular regions (boxes), that occupy a total height of OPT ′ ≤ (1 + ε)OPT inside the
vertical strip. Some rectangles are not fully contained into one box (they are cut by some box).
Among them, tall rectangles remain in their original position. All the other cut rectangles
are repacked on top of the boxes: part of them in a horizontal box of size W ×O(ε)OPT ,

1 For the case without rotations, the polynomial dependence on hmax can indeed be removed with
standard techniques.
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(a) Final packing obtained by
Nadiradze & Wiese [31].

Bdisc

B
M
,v
er

B
V
,c
u
t

B
V
,r
o
u
n
d

BS

BH,cut

BH,round

BM,hor

0

0 W

OPT
OPT ′

O(ε) ·OPT ′

α ·OPT ′

γ ·W (1− γ) ·W

(1 + ε− 2α) ·OPT ′

(b) Final packing obtained in this work.
Here γ is a small constant depending on ε.

Figure 1 Comparison of final solutions.

and the remaining ones in a vertical box of size O(εW )× αOPT (that we next imagine as
placed on the top-left of the packing under construction).

Some of these boxes contain only relatively high rectangles (including tall ones) of
relatively small width. The next step is a rearrangement of the rectangles inside one such
vertical box B (see Figure 3a), say of size w × h: they first slice non-tall rectangles into
unit width rectangles (this slicing can be finally avoided with standard techniques). Then
they shift tall rectangles to the top/bottom of B, shifting sliced rectangles consequently (see
Figure 3b). Now they discard all the (sliced) rectangles completely contained in a central
horizontal region of size w× (1 +ε−2α)h, and they nicely rearrange the remaining rectangles
into a constant number of sub-boxes (excluding possibly a few more non-tall rectangles, that
can be placed in the additional vertical box).

These discarded rectangles can be packed into 2 extra boxes of size w
2 × (1 + ε− 2α)h

(see Figure 3d). In turn, the latter boxes can be packed into two discarded boxes of size
W
2 × (1 + ε − 2α)OPT ′, that we can imagine as placed, one on top of the other, on the
top-right of the packing. See Figure 1a for an illustration of the final packing. This leads
to a total height of (1 + max{α, 2(1− 2α)}+O(ε)) ·OPT , which is minimized by choosing
α = 2

5 .
Our main technical contribution is a repacking lemma that allows one to repack a

small fraction of the discarded rectangles of a given box inside the free space left by the
corresponding sub-boxes (while still having Oε(1) many sub-boxes in total). This is illustrated
in Figure 3e. This way we can pack all the discarded rectangles into a single discarded box
of size (1− γ)W × (1 + ε− 2α)OPT ′, where γ is a small constant depending on ε, that we

FSTTCS 2016



9:4 Improved Pseudo-Polynomial-Time Approximation for Strip Packing

can place on the top-right of the packing. The vertical box where the remaining rectangles
are packed still fits to the top-left of the packing, next to the discarded box. See Figure 1b
for an illustration. Choosing α = 1/3 gives the claimed approximation factor.

We remark that the basic approach by Nadiradze and Wiese strictly requires that at
most 2 tall rectangles can be packed one on top of the other in the optimal packing, hence
imposing α ≥ 1/3. Thus in some sense we pushed their approach to its limit.

The algorithm by Nadiradze and Wiese [31] is not directly applicable to the case when
90◦ rotations are allowed. In particular, they use a linear program to pack some rectangles.
When rotations are allowed, it is unclear how to decide which rectangles are packed by
the linear program. We use a combinatorial container-based approach to circumvent this
limitation, which allows us to pack all the rectangles using dynamic programming. This way
we achieve a PPT (4/3 + ε)-approximation for strip packing with rotations, breaking the
polynomial-time approximation barrier of 3/2 for that variant as well.

1.2 Related work

For packing problems, many pathological lower bound instances occur when OPT is small.
Thus it is often insightful to consider the asymptotic approximation ratio. Coffman et
al. [14] described two level-oriented algorithms, Next-Fit-Decreasing-Height (NFDH) and
First-Fit-Decreasing-Height (FFDH), that achieve asymptotic approximations of 2 and 1.7,
respectively. After a sequence of improvements [18, 5], the seminal work of Kenyon and
Rémila [28] provided an asymptotic polynomial-time approximation scheme (APTAS) with
an additive term O

(
hmax

ε2

)
. The latter additive term was subsequently improved to hmax by

Jansen and Solis-Oba [24].

In the variant of strip packing with rotations, we are allowed to rotate the input rectangles
by 90◦ (in other terms, we are free to swap the width and height of an input rectangle). The
case with rotations is much less studied in the literature. It seems that most techniques that
work for the case without rotations can be extended to the case with rotations, however this
is not always a trivial task. In particular, it is not hard to achieve a 2 + ε approximation, and
the 3/2 hardness of approximation extends to this case as well [24]. In terms of asymptotic
approximation, Miyazawa and Wakabayashi [30] gave an algorithm with asymptotic perfor-
mance ratio of 1.613. Later, Epstein and van Stee [16] gave a 3

2 asymptotic approximation.
Finally, Jansen and van Stee [25] achieved an APTAS for the case with rotations.

Strip packing has also been well studied for higher dimensions. The present best asymp-
totic approximation for 3-D strip packing is due to Jansen and Prädel [23] who gave
1.5-approximation extending techniques from 2-D bin packing.

There are many other related geometric packing problems. For example, in the independent
set of rectangles problems we are given a collection of axis-parallel rectangles embedded in
the plane, and we need to find a maximum cardinality/weight subset of non-overlapping
rectangles [1, 10, 11]. Interesting connections between this problems and unsplittable flow on
a path were recently discovered [3, 4, 7, 9, 19]. In the geometric knapsack problem we wish
to pack a maximum cardinality/profit subset of the rectangles in a given square knapsack
[2, 26]. One can also consider a natural geometric version of bin packing, where one needs to
pack a given set of rectangles in the smallest possible number of square bins [8]. We refer
the readers to [29] for a survey on geometric packing problems.



W.Gálvez, F. Grandoni, S. Ingala, and A.Khan 9:5

1.3 Organization of the paper
First, we discuss some preliminaries and notations in Section 2. Section 3 contains our main
technical contribution, our repacking lemma. There we also discuss a refined structural result
leading to a packing into Oε(1) many containers. In Section 4, we describe our algorithm to
pack the rectangles. Then in Section 5, we extend our algorithm to the case with rotations.
Finally, in Section 6, we conclude with some observations.

Due to space constraints, some proofs are omitted from this extended abstract and will
appear in the full version of the paper.

2 Preliminaries and notations

Throughout the present work, we will follow the notation from [31], which will be explained
as it is needed.

Recall that OPT ∈ N denotes the height of the optimal packing for instance R. By trying
all the pseudo-polynomially many possibilities, we can assume that OPT is known to the
algorithm. Given a setM⊆ R of rectangles, a(M) will denote the total area of rectangles
inM, i.e., a(M) =

∑
Ri∈M hi · wi, and hmax(M) (resp. wmax(M)) denotes the maximum

height (resp. width) of rectangles inM. Throughout this work, a box of size a× b means an
axis-aligned rectangular region of width a and height b.

In order to lighten the notation, we sometimes interpret a rectangle/box as the corre-
sponding region inside the strip according to some given embedding. The latter embedding
will not be specified when clear from the context. Similarly, we sometimes describe an
embedding of some rectangles inside a box, and then embed the box inside the strip: the
embedding of the considered rectangles is shifted consequently in that case.

A vertical (resp. horizontal) container is an axis-aligned rectangular region where we
implicitly assume that rectangles are packed one next to the other from left to right (resp.,
bottom to top), i.e., any vertical (resp. horizontal) line intersects only one packed rectangle
(see Figure 2b). Container-like packings will turn out to be particularly useful since they
naturally induce a (one-dimensional) knapsack instance.

2.1 Classification of rectangles
Let 0 < ε < α, and assume for simplicity that 1

ε ∈ N. We first classify the input rectangles
into six groups according to parameters δh, δw, µh, µw satisfying ε ≥ δh > µh > 0 and
ε ≥ δw > µw > 0, whose values will be chosen later (see also Figure 2a). A rectangle Ri is

Large if hi ≥ δhOPT and wi ≥ δwW .
Tall if hi > αOPT and wi < δwW .
Vertical if hi ∈ [δhOPT, αOPT ] and wi ≤ µwW ,
Horizontal if hi ≤ µhOPT and wi ≥ δwW ,
Small if hi ≤ µhOPT and wi ≤ µwW ;
Medium in all the remaining cases, i.e., if hi ∈ (µhOPT, δhOPT ), or wi ∈ (µwW, δwW )
and hi ≤ αOPT .

We use L, T , V , H, S, and M to denote large, tall, vertical, horizontal, small, and medium
rectangles, respectively. We remark that, differently from [31], we need to allow δh 6= δw and
µh 6= µw due to some additional constraints in our construction (see Section 4).

Notice that according to this classification, every vertical line across the optimal packing
intersects at most two tall rectangles. The following lemma allows us to choose δh, δw, µh

FSTTCS 2016
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Figure 2 Illustration of some of the definitions used in this paper.

and µw in such a way that δh and µh (δw and µw, respectively) differ by a large factor, and
medium rectangles have small total area.

I Lemma 1. Given a polynomial-time computable function f : (0, 1)→ (0, 1), with f(x) < x,
any constant ε ∈ (0, 1), and any positive integer k, we can compute in polynomial time a set
∆ of T = 2( 1

ε )k many positive real numbers upper bounded by ε, such that there is at least
one number δh ∈ ∆ so that a(M) ≤ εk · OPT ·W by choosing µh = f(δh), µw = εµh

12 , and
δw = εδh

12 .

Function f and constant k will be chosen later. From now on, assume that δh, δw, µh and
µw are chosen according to Lemma 1.

2.2 Overview of the algorithm
We next overview some of the basic results in [31] that are needed in our result. We define
the constant γ := εδh

2 , and w.l.o.g. assume γ ·OPT ∈ N.
Let us forget for a moment small rectangles S. We will pack all the remaining rectangles

L ∪H ∪ T ∪ V ∪M into a sufficiently small number of boxes embedded into the strip. By
standard techniques, as in [31], it is then possible to pack S (essentially using NFDH in
a proper grid defined by the above boxes) while increasing the total height at most by
O(ε)OPT . See Section 4.1 for more details on packing of small rectangles.

The following lemma from [31] allows one to round the heights and positions of rectangles
of large enough height, without increasing much the height of the packing.

I Lemma 2 ([31]). There exists a feasible packing of height OPT ′ ≤ (1 + ε)OPT where: (1)
the height of each rectangles in L ∪ T ∪ V is rounded up to the closest integer multiple of
γ ·OPT and (2) their x-coordinates are as in the optimal solution and their y-coordinates
are integer multiples of γ ·OPT .

We next focus on rounded rectangle heights (i.e., implicitly replace L∪T ∪V by their rounded
version) and on this slightly suboptimal solution of height OPT ′.

The following lemma helps us to pack rectangles in M .
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I Lemma 3. If k in Lemma 1 is chosen sufficiently large, all the rectangles in M can be
packed in polynomial time into a box BM,hor of size W ×O(ε)OPT and a box BM,ver of size
(γ3W ) × (αOPT ). Furthermore, there is one such packing using 3ε

µh
vertical containers in

BM,hor and γ
3µw

horizontal containers in BM,ver.

We say that a rectangle Ri is cut by a box B if both Ri \B and B \Ri are non-empty
(considering both Ri and B as open regions with an implicit embedding on the plane). We
say that a rectangle Ri ∈ H (resp. Ri ∈ T ∪ V ) is nicely cut by a box B if Ri is cut by B
and their intersection is a rectangular region of width wi (resp. height hi). Intuitively, this
means that an edge of B cuts Ri along its longest side (see Figure 2c).

Now it remains to pack L ∪H ∪ T ∪ V : The following lemma, taken from [31] modulo
minor technical adaptations, describes an almost optimal packing of those rectangles.

I Lemma 4. There is an integer KB = ( 1
ε )( 1

δw
)O(1) such that, assuming µh ≤ εδw

KB
, there is

a partition of the region BOPT ′ := [0,W ]× [0, OPT ′] into a set B of at most KB boxes and
a packing of the rectangles in L ∪ T ∪ V ∪H such that:

each box has size equal to the size of some Ri ∈ L ( large box), or has height at most
δhOPT

′ (horizontal box), or has width at most δwW (vertical box);
each Ri ∈ L is contained into a large box of the same size;
each Ri ∈ H is contained into a horizontal box or is cut by some box. Furthermore, the
total area of horizontal cut rectangles is at most W ·O(ε)OPT ′;
each Ri ∈ T ∪ V is contained into a vertical box or is nicely cut by some vertical box.

We denote the sets of vertical, horizontal, and large boxes by BV ,BH and BL, respectively.
Observe that B can be guessed in PPT. We next use Tcut ⊆ T and Vcut ⊆ V to denote tall
and vertical cut rectangles in the above lemma, respectively. Let us also define Tbox = T \Tcut
and Vbox = V \ Vcut.

Using standard techniques (see e.g. [31]), we can pack all the rectangles excluding the
ones contained in vertical boxes in a convenient manner. This is summarized in the following
lemma.

I Lemma 5. Given B as in Lemma 4 and assuming µw ≤ γδh

6KB(1+ε) , there exists a packing
of L ∪H ∪ T ∪ V such that:
1. all the rectangles in L are packed in BL;
2. all the rectangles in H are packed in BH plus an additional box BH,cut of size W ×

O(ε)OPT ;
3. all the rectangles in Tcut ∪ Tbox ∪ Vbox are packed as in Lemma 4;
4. all the rectangles in Vcut are packed in an additional vertical box BV,cut of size (γ3W )×

(αOPT ).

We will pack all the rectangles (essentially) as in [31], with the exception of Tbox ∪ Vbox
where we exploit a refined approach. This is the technical heart of this paper, and it is
discussed in the next section.

3 A repacking lemma

We next describe how to pack rectangles in Tbox∪Vbox. In order to highlight our contribution,
we first describe how the approach by Nadiradze and Wiese [31] works.

FSTTCS 2016



9:8 Improved Pseudo-Polynomial-Time Approximation for Strip Packing

It is convenient to assume that all the rectangles in Vbox are sliced vertically into sub-
rectangles of width 1 each2. Let Vsliced be such sliced rectangles. We will show how to pack
all the rectangles in Tbox ∪ Vsliced into a constant number of sub-boxes. Using standard
techniques it is then possible to pack Vbox into the space occupied by Vsliced plus an additional
box BV,round of size (γ3W )× αOPT .

We next focus on a specific vertical box B, say of size w × h (see Figure 3a). Let T cut
be the tall rectangles cut by B. Observe that there are at most 4 such rectangles (2 on the
left/right side of B). The rectangles in T cut are packed as in Lemma 5. Let also T and V be
the tall rectangles and sliced vertical rectangles, respectively, originally packed completely
inside B.

They show that it is possible to pack T ∪ V into a constant size set S of sub-boxes
contained inside B−T cut, plus an additional box D of size w× (1 + ε− 2α)h. Here B−T cut
denotes the region inside B not contained in T cut. In more detail, they start by considering
each rectangle Ri ∈ T . Since α ≥ 1

3 by assumption, one of the regions above or below Ri
cannot contain another tall rectangle in T , say the first case applies (the other one being
symmetric). Then we move Ri up so that its top side overlaps with the top side of B. The
sliced rectangles in V that are covered this way are shifted right below R (note that there is
enough free space by construction). At the end of the process all the rectangles in T touch
at least one of the top and bottom side of B (see Figure 3b). Note that no rectangle is
discarded up to this point.

Next, we partition the space inside B− (T ∪T cut) into maximal height unit-width vertical
stripes. We call each such stripe a free rectangle if both its top and bottom side overlap
with the top or bottom side of some rectangle in T ∪ T cut, and otherwise a pseudo rectangle
(see Figure 3c). We define the i-th free rectangle to be the free rectangle contained in stripe
[i− 1, i]× [0, h].

Note that all the free rectangles are contained in a horizontal region of width w and
height at most h− 2αOPT ≤ h− 2αOPT

′

1+ε ≤ h(1− 2α
1+ε ) ≤ h(1 + ε− 2α) contained in the

central part of B. Let V disc be the set of (sliced vertical) rectangles contained in the free
rectangles. Rectangles in V disc can be obviously packed inside D. For each corner Q of
the box B, we consider the maximal rectangular region that has Q as a corner and only
contains pseudo rectangles whose top/bottom side overlaps with the bottom/top side of
a rectangle in T cut; there are at most 4 such non-empty regions, and for each of them we
define a corner sub-box, and we call the set of such sub-boxes Bcorn (see Figure 3c). The
final step of the algorithm is to rearrange horizontally the pseudo/tall rectangles so that
pseudo/tall rectangles of the same height are grouped together as much as possible (modulo
some technical details). The rectangles in Bcorn are not moved. The sub-boxes are induced
by maximal consecutive subsets of pseudo/tall rectangles of the same height touching the
top (resp., bottom) side of B (see Figure 3d). We crucially remark that, by construction, the
height of each sub-box (and of B) is a multiple of γOPT .

By splitting each discarded box D into two halves Bdisc,top and Bdisc,bot, and replicating
the packing of boxes inside BOPT ′ , it is possible to pack all the discarded boxes into two
boxes Bdisc,top and Bdisc,bot, both of size W

2 × (1 + ε− 2α)OPT ′.
A feasible packing of boxes (and hence of the associated rectangles) of height (1 +

max{α, 2(1− 2α)}+O(ε))OPT is then obtained as follows. We first pack BOPT ′ at the base
of the strip, and then on top of it we pack BM,hor, two additional boxes BH,round and BH,cut
(which will be used to repack the horizontal items), and a box BS (which will be used to pack

2 For technical reasons, slices have width 1/2 in [31]. For our algorithm, slices of width 1 suffice.
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some of the small items). The latter 4 boxes all have width W and height O(εOPT ′). On
the top right of this packing we place Bdisc,top and Bdisc,bot, one on top of the other. Finally,
we pack BM,ver, BV,cut and BV,round on the top left, one next to the other. See Figure 1a for
an illustration. The height is minimized for α = 2

5 , leading to a 7/5 +O(ε) approximation.
The main technical contribution of this paper is to show how it is possible to repack

a subset of V disc into the free space inside Bcut := B − T cut not occupied by sub-boxes,
so that the residual sliced rectangles can be packed into a single discarded box Bdisc of
size (1 − γ)w × (1 + ε − 2α)h (repacking lemma). See Figure 3e. This apparently minor
saving is indeed crucial: with the same approach as above all the discarded sub-boxes
Bdisc can be packed into a single discarded box Bdisc of size (1− γ)W × (1 + ε− 2α)OPT ′.
Therefore, we can pack all the previous boxes as before, and Bdisc on the top right. Indeed,
the total width of BM,ver, BV,cut and BV,round is at most γW for a proper choice of the
parameters. See Figure 1b for an illustration. Altogether the resulting packing has height
(1 + max{α, 1 − 2α} + O(ε))OPT . This is minimized for α = 1

3 , leading to the claimed
4/3 +O(ε) approximation.

It remains to prove our repacking lemma.

I Lemma 6 (Repacking Lemma). Consider a partition of D into w unit-width vertical stripes.
There is a subset of at least γw such stripes so that the corresponding sliced vertical rectangles
V repack can be repacked inside Bcut = B − T cut in the space not occupied by sub-boxes.

Proof. Let f(i) denote the height of the i-th free rectangle, where for notational convenience
we introduce a degenerate free rectangle of height f(i) = 0 whenever the stripe [i−1, i]× [0, h]
inside B does not contain any free rectangle. This way we have precisely w free rectangles.
We remark that free rectangles are defined before the horizontal rearrangement of tall/pseudo
rectangles, and the consequent definition of sub-boxes.

Recall that sub-boxes contain tall and pseudo rectangles. Now consider the area in Bcut
not occupied by sub-boxes. Note that this area is contained in the central region of height
h(1 − 2α

1+ε ). Partition this area into maximal-height unit-width vertical stripes as before
(newly free rectangles). Let g(i) be the height of the i-th newly free rectangle, where again
we let g(i) = 0 if the stripe [i− 1, i]× [0, h] does not contain any (positive area) free region.
Note that, since tall and pseudo rectangles are only shifted horizontally in the rearrangement,
it must be the case that:

w∑
i=1

f(i) =
w∑
i=1

g(i).

Let G be the (good) indexes where g(i) ≥ f(i), and G = {1, . . . , w} −G be the bad indexes
with g(i) < f(i). Observe that for each i ∈ G, it is possible to pack the i-th free rectangle
inside the i-th newly free rectangle, therefore freeing a unit-width vertical strip inside D.
Thus it is sufficient to show that |G| ≥ γw.

Observe that, for i ∈ G, f(i)− g(i) ≥ γOPT ≥ γ h
1+ε : indeed, both f(i) and g(i) must be

multiples of γOPT since they correspond to the height of B minus the height of one or two
tall/pseudo rectangles. On the other hand, for any index i, g(i)− f(i) ≤ g(i) ≤ (1− 2α

1+ε )h,
by the definition of g. Altogether

(1− 2α
1 + ε

)h · |G| ≥
∑
i∈G

(g(i)− f(i)) =
∑
i∈G

(f(i)− g(i)) ≥ γh

1 + ε
· |G| = γh

1 + ε
· (w− |G|) .

We conclude that |G| ≥ γ
1+ε−2α+γw. The claim follows since by assumption α > ε ≥ γ. J
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(a) Original packing in a vertical
box B after removing Vcut. Gray
rectangles correspond to T , dark
gray rectangles to T cut and light
gray rectangles to V .

(b) Rectangles in T are shifted
vertically so that
they touch either the top
or the bottom of box B, shifting
also slices in V accordingly.

0

α
1+εh

(1− α
1+ε)h

h

(c) We define pseudo rectangles
and free space in B − (T ∪
T cut). Crosshatched stripes corre-
spond to pseudo rectangles, empty
stripes to free rectangles, and
dashed regions correspond to cor-
ner sub-boxes.

1
2w

(1
+
ε
−

2α
)h

(1
+
ε
−

2α
)h

Bdisc,bot

Bdisc,top

(d) Rearrangement of pseudo and tall rectangles
to get Oε(1) sub-boxes, and additional packing
of V disc as in [31].

≥ γw
good indexes

≤ (1− γ)w

(1
+
ε
−

2α
)h

Bdisc

(e) Our refined repacking of V disc according to
Lemma 6: some vertical slices are repacked in the
free space.

Figure 3 Creation of pseudo rectangles, how to get constant number of sub-boxes and repacking
of vertical slices in a vertical box B.

The original algorithm in [31] use standard LP-based techniques, as in [28], to pack the
horizontal rectangles. We can avoid that via a refined structural lemma: here boxes and
sub-boxes are further partitioned into vertical (resp., horizontal) containers. Rectangles are
then packed into such containers as mentioned earlier: one next to the other from left to right
(resp., bottom to top). Containers define a multiple knapsack instance, that can be solved
optimally in PPT via dynamic programming. This approach has two main advantages:

It leads to a simpler algorithm.
It can be easily adapted to the case with rotations, as discussed in Section 5.

We omit the proof of the following Lemma.

I Lemma 7. By choosing α = 1/3, there is an integer KF ≤
(

1
εδw

)O(1/(δwε))
such that,

assuming µh ≤ ε
KF

and µw ≤ γ
3KF

, there is a packing of R\S in the region [0,W ]× [0, (4/3+
O(ε))OPT ′] with the following properties:
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All the rectangles in R \ S are contained in KTOTAL = Oε(1) horizontal or vertical
containers, such that each of these containers is either contained in or disjoint from
BOPT ′ ;
At most KF containers are contained in BOPT ′ , and their total area is at most a(R \ S).

4 A refined algorithm

First of all, we find µh, δh, µw, δw as required by Lemma 1; this way, we can find the set S of
small rectangles. Consider the packing of Lemma 7: all the non-small rectangles are packed
into KTOTAL = Oε(1) containers, and only KF of them are contained in BOPT ′ . Since their
position (x, y) and their size (w, h) are w.l.o.g. contained in {0, . . . ,W}×{0, . . . , nhmax}, we
can enumerate in PPT over all the possible feasible such packings of k ≤ KTOTAL containers,
and one of those will coincide with the packing defined by Lemma 7.

Containers naturally induce a multiple knapsack problem: for each horizontal container
Cj of size wCj

× hCj
, we create a (one-dimensional) knapsack j of size hCj

. Furthermore,
we define the size b(i, j) of rectangle Ri w.r.t. knapsack j as hi if hi ≤ hCj and wi ≤ wCj .
Otherwise b(i, j) = +∞ (meaning that Ri does not fit in Cj). The construction for vertical
containers is symmetric. This multiple knapsack problem can be easily solved optimally
(hence packing all the rectangles) in PPT via dynamic programming.

Note that unlike [31], we do not use linear programming to pack horizontal rectangles,
which will be crucial when we extend our approach to the case with rotations.

4.1 Packing the small rectangles
It remains to pack the small rectangles S. We will pack them in the free space left by
containers inside [0,W ]× [0, OPT ′] plus an additional box BS of small height as the following
lemma states. By placing box BS on top of the remaining packed rectangles, the final height
of the solution increases only by ε ·OPT ′.

I Lemma 8. Assuming µh ≤ 1
31K2

F

, it is possible to pack in polynomial time all the rectangles
in S into the area [0,W ]× [0, OPT ′] not occupied by containers plus an additional box BS of
size W × εOPT ′.

Proof. We first extend the sides of the containers inside [0,W ] × [0, OPT ′] in order to
define a grid. This procedure partitions the free space in [0,W ]× [0, OPT ′] into a constant
number of rectangular regions (at most (2KF + 1)2 ≤ 5K2

F many) whose total area is at
least a(S) thanks to Lemma 7. Let Bsmall be the set of such rectangular regions with width
at least µwW and height at least µhOPT (notice that the total area of rectangular regions
not in Bsmall is at most 5K2

Fµwµh ·W · OPT ). We now use NFDH to pack a subset of S
into the regions in Bsmall. By standard properties of NFDH, since each region in Bsmall
has size at most W × OPT ′ and each item in S has width at most µwW and height at
most µhOPT , the total area of the unpacked rectangles from S can be bounded above by
5K2

F ·
(
µwµhWOPT + µhOPT ·W + µwW · OPT ′

)
≤ 15K2

Fµh · OPT ′ ·W . Therefore we
can pack the latter small rectangles with NFDH in an additional box BS of width W and
height µhOPT + 30K2

FµhOPT
′ ≤ ε ·OPT ′ provided that µh ≤ 1

31K2
F

. J

The (rather technical) details on how to choose f and k (and consequently the actual
values of µh, δw, and µw) will be discussed in the full version of this paper. We next
summarize the constraints that arise from the analysis:
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µw = εµh
12 and δw = εδh

12 (Lemma 1), µw ≤ γ δh
6KB(1+ε) (Lemma 5),

γ = εδh
2 (Lemma 2), µw ≤ γ

3KF
(Lemma 7),

6εk ≤ γ
6 (Lemma 3) µh ≤ ε

KF
(Lemma 7),

µh ≤ εδw
KB

(Lemma 4), µh ≤ 1
31K2

F

(Lemma 8)

It is not difficult to see that all the constraints are satisfied by choosing f(x) = (εx)C/(εx)

for a large enough constant C and k =
⌈
logε

(
γ
36
)⌉
. Finally we achieve the claimed result.

I Theorem 9. There is a PPT ( 4
3 + ε)-approximation algorithm for strip packing.

5 Extension to the case with rotations

In this section, we briefly explain the changes needed in the above algorithm for the case
with rotations.

We first observe that, by considering the rotation of rectangles as in the optimum solution,
Lemma 7 still applies (for a proper choice of the parameters, that can be guessed). Therefore
we can define a multiple knapsack instance, where knapsack sizes are defined as before. Some
extra care is needed to define the size b(i, j) of rectangle Ri into a container Cj of size
wCj × hCj . Assume Cj is horizontal, the other case being symmetric. If rectangle Ri fits in
Cj both rotated and non-rotated, then we set b(i, j) = min{wi, hi} (this dominates the size
occupied in the knapsack by the optimal rotation of Ri). If Ri fits in Cj only non-rotated
(resp., rotated), we set b(i, j) = hi (resp., b(i, j) = wi). Otherwise we set b(i, j) = +∞.

There is a final difficulty that we need to address: we can not say a priori whether a
rectangle is small (and therefore should be packed in the final stage). To circumvent this
difficulty, we define one extra knapsack k′ whose size is the total area in BOPT ′ not occupied
by the containers. The size b(i, k′) of Ri in this knapsack is the area a(Ri) = wi · hi of Ri
provided that Ri or its rotation by 90◦ is small w.r.t. the current choice of the parameters
(δh, µh, δw, µw). Otherwise b(i, k′) = +∞.

By construction, the above multiple knapsack instance admits a feasible solution that
packs all the rectangles. This immediately implies a packing of all the rectangles, excluding
the (small) ones in the extra knapsack. Those rectangles can be packed using NFDH as in
the proof of Lemma 8 (here however we must choose a rotation such that the considered
rectangle is small). Altogether we achieve:

I Theorem 10. There is a PPT ( 4
3 + ε)-approximation algorithm for strip packing with

rotations.

6 Conclusions

In this paper we obtained a PPT 4/3 + ε approximation for strip packing (with and without
rotations). Our approach refines and, in some sense, pushes to its limit the basic approach in
previous work by Nadiradze and Wiese [31]. Indeed, the rearrangement of rectangles inside
a box crucially exploits the fact that there are at most 2 tall rectangles packed on top of
each other in the optimal packing, hence requiring α ≥ 1/3. We believe that any further
improvement requires substantially new algorithmic ideas.

A PPT approximation scheme for strip packing is not excluded by the current inapprox-
imability results (essentially, only strong NP-hardness). Note that, like bin packing, strip
packing admits an asymptotic polynomial-time approximation scheme (APTAS), and bin
packing admits a PPT approximation scheme [22, 15]. It is an interesting open problem to
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find a PPT approximation scheme for this problem, or to prove some stronger hardness of
approximation result in PPT.
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