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Abstract
We study approximation of Boolean functions by low-degree polynomials over the ring Z/2kZ.
More precisely, given a Boolean function F : {0, 1}n → {0, 1}, define its k-lift to be Fk : {0, 1}n →
{0, 2k−1} by Fk(x) = 2k−F (x) (mod 2k). We consider the fractional agreement (which we refer
to as γd,k(F )) of Fk with degree d polynomials from Z/2kZ[x1, . . . , xn].

Our results are the following:
Increasing k can help: We observe that as k increases, γd,k(F ) cannot decrease. We give two
kinds of examples where γd,k(F ) actually increases. The first is an infinite family of functions
F such that γ2d,2(F ) − γ3d−1,1(F ) ≥ Ω(1). The second is an infinite family of functions F
such that γd,1(F ) ≤ 1

2 + o(1) – as small as possible – but γd,3(F ) ≥ 1
2 + Ω(1).

Increasing k doesn’t always help: Adapting a proof of Green [Comput. Complexity, 9(1):16–38,
2000], we show that irrespective of the value of k, the Majority function Majn satisfies

γd,k(Majn) ≤ 1
2 + O(d)√

n
.

In other words, polynomials over Z/2kZ for large k do not approximate the majority function
any better than polynomials over Z/2Z.

We observe that the model we study subsumes the model of non-classical polynomials in the
sense that proving bounds in our model implies bounds on the agreement of non-classical polyno-
mials with Boolean functions. In particular, our results answer questions raised by Bhowmick and
Lovett [In Proc. 30th Computational Complexity Conf., pages 72—87, 2015] that ask whether
non-classical polynomials approximate Boolean functions better than classical polynomials of the
same degree.
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1 Introduction

Many lower bound results in circuit complexity are proved by showing that any small sized
circuit in a given circuit class can be approximated by a function from a simple computational
model (e.g., small depth circuits by low-degree polynomials) and subsequently showing that
this is not possible for some suitable “hard” function.

A classic case in point is the work of Razborov [12] which shows lower bounds for AC0[⊕],
the class of constant depth circuits made up of AND, OR and ⊕ gates. Razborov shows
that any small AC0[⊕] circuit C can be well approximated by a low-degree multivariate
polynomial Q(x1, . . . , xn) ∈ F2[x1, . . . , xn] in the sense that

Pr
x∼{0,1}n

[Q(x) 6= C(x)] = o(1).

The next step in the proof is to show that the hard function, on the other hand, does not have
any such approximation. Razborov does this for a suitable symmetric function, Smolensky [13]
for the MODq function (for constant odd q), and Szegedy [15] and Smolensky [14] for the
Majority function Majn on n bits.

Given the importance of the above lower bound, polynomial approximations in other
domains and metrics have been intensely investigated and have resulted in interesting
combinatorial constructions and error-correcting codes [8, 4], learning algorithms [11, 9] and
more recently in the design of algorithms for combinatorial problems [17, 1] as well.

To describe the model of polynomial approximation considered in this paper, we first
recall the Razborov [12] model of polynomial approximation. Given a Boolean function
F : {0, 1}n → {0, 1} and degree d ≤ n, Razborov considers the largest γ such that there
is a degree d polynomial Q ∈ F2[x1, . . . , xn] that has agreement at least γ with F (i.e.,
Prx[Q(x) = F (x)] ≥ γ). Call this γd(F ). In this notation, Szegedy [15] and Smolensky’s [14]
results for the Majority function can be succinctly stated as

γd(Majn) ≤ 1
2 + O(d)√

n
.

We consider a generalization of the above model to rings Z/2kZ in the following simple
manner. To begin with, we consider the ring Z/4Z. Given a Boolean function F , let
F2 : {0, 1}n → {0, 2} ⊆ Z/4Z be the 2-lift of F defined as F2(x) := 22−F (x) (i.e., F2(x) := 0
if F (x) = 0 and F2(x) := 2 otherwise). Once again, we can define γd,2(F ) to be the largest γ
such that there exists a degree d polynomial Q2 ∈ Z/4Z[x1, . . . , xn] that has agreement γ
with F2. Note that γd,2(F ) ≥ γd(F ) since if, for instance, Q(x) = x1x2 + x3 ∈ F2[x1, . . . , xn]
has agreement γ with F , then Q2 := 2(x1x2 + x3) ∈ Z/4Z[x1, . . . , xn] also has the same
agreement γ with F2. Hence, proving upper bounds for γd,2(F ) is at least as hard as proving
upper bounds for γd(F ).

More generally, we can extend these definitions to γd,k(F ), the agreement of Fk, the k-lift
of F , defined as Fk(x) = 2k−F (x) mod 2k, with degree d polynomials from Z/2kZ[x1, . . . , xn].
It is not hard to show that γd,k+1(F ) ≥ γd,k(F ) and hence as k increases, the problem of
proving upper bounds on γd,k(F ) can only get harder.

Our motivation for this model comes from a recent work of Bhowmick and Lovett [3], who
study the maximum agreement between non-classical polynomials of degree d and a Boolean
function F , which is similar to γd,d(F ) (see Section 5 for an exact translation between the
above model and non-classical polynomials). In particular, non-classical polynomials of
degree d can be considered as a subset of the degree d polynomials in Z/2dZ[x1, . . . , xn].
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With respect to correlation1, Bhowmick and Lovett showed that there exist non-classical
polynomials (and hence polynomials in Z/2dZ[x1, . . . , xn]) of logarithmic degree that have
very good correlation with the Majn function. With respect to agreement, they show that
low-degree non-classical polynomials can only have small agreement with the Majority
function. Their results stated in our language, imply that

γd,d(Majn) ≤ 1
2 + O(d · 2d)√

n
.

In particular, if d = Ω(logn), this result unfortunately does not give any non-trivial bound
on the maximum agreement between non-classical polynomials of degree d and the Majn
function. Bhowmick and Lovett, however, conjectured that this result could be improved and
left open the question of whether non-classical polynomials of degree d can do any better
than classical polynomials of the same degree in approximating the Majority function. More
generally, they informally conjectured that although non-classical polynomials achieve better
correlation with Boolean functions than their classical counterparts, they possibly do not
approximate Boolean functions any better than classical polynomials. Our work stems from
trying to answer these questions.

1.1 Our results
We prove the following results about agreement of Boolean functions with polynomials over
the ring Z/2kZ:
1. We explore whether there exist Boolean functions for which agreement can increase by

increasing k. In particular, do there exist Boolean F such that γd,k(F ) > γd,1(F )?
It is not hard to show that this is impossible for d = 1. Further, it can be shown that if
γd,k(F ) > 1− 1

2d , then γd,k(F ) = γd,1(F ). Keeping this in mind, the first place where we
can expect larger k to show better agreement is γ2,2 vs. γ2,1. Our first result shows that
there are indeed separating examples in the regime.
(a) Fix d ∈ N to be any power of 2. For infinitely many n, there exists a Boolean function

F : {0, 1}n → {0, 1} such that γ3d−1,1(F ) ≤ 5/8 + o(1) but γ2d,2(F ) ≥ 3/4.
Note that since F is Boolean, γd,k(F ) ≥ 1/2 for any d, k. We then ask if there exist
Boolean functions F such that γd,1(F ) is more or less the trivial bound of 1/2, while
γd′,k(F ) is significantly larger for d′ ≤ d and some k > 1. In this context, we show the
following result.
(b) Fix any ` ≥ 2. For large enough n, there is a Boolean function F : {0, 1}n → {0, 1}

such that γ2`−1,1(F ) ≤ 1/2 + o(1) but γd,3(F ) ≥ 9/16− o(1), for d = 2`−1 + 2`−2 ≤
2` − 1.

2. We show that for Majn, the majority function on n bits, and any d, k ∈ Z+,

γd,k(Majn) ≤ 1
2 + O(d)√

n
, 2

by adapting a proof due to Green [7] of a result on the approximability of the parity
function by low-degree polynomials over the ring Z/pkZ for prime p 6= 2.

1 The correlation between F,G : {0, 1}n → Z/2kZ is defined to be Ex[ωF (x)−G(x)] where ω is the primitive
2kth root of unity in C. If F,G are {0, 2k−1}-valued, then this quantity is exactly 2γ − 1 where γ is the
agreement between F and G. Otherwise, however, it does not measure agreement.

STACS 2017
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Coupled with the observation that the class of polynomials over rings Z/2kZ subsumes the
class of non-classical polynomials, part (b) of the first result provides a counterexample to an
informal conjecture of Bhowmick and Lovett [3] that, for any Boolean function F , non-classical
polynomials of degree d do not approximate F any better than classical polynomials of the
same degree, and the second result confirms their conjecture that non-classical polynomials
do not approximate the Majority function any better than classical polynomials.

1.2 Organization
We start with some preliminaries in Section 2. In Section 3, we show some separation results.
Next, in Section 4, we prove upper bounds for γd,k(Majn). Finally, in Section 5, we discuss
how our model relates to non-classical polynomials, answering questions raised by Bhowmick
and Lovett.

2 Preliminaries

For x ∈ {0, 1}n, |x| denotes the Hamming weight of x, and for i ≥ 0, |x|i is the (i + 1)th
least significant bit of |x| in base 2. For d ∈ N, we use {0, 1}n

≤d (resp. {0, 1}n
=d) to denote

the set of elements in {0, 1}n of Hamming weight at most d (resp. exactly d). We use Fn to
denote the collection of all Boolean functions defined on {0, 1}n.

2.1 Elementary symmetric polynomials
Recall that for t ≥ 1, the elementary symmetric polynomial of degree t over F2, St(x1, . . . , xn),
is defined as St(x1, . . . , xn) =

⊕
1≤a1<...<at≤n xa1 . . . xat . Here ⊕ denotes addition modulo

two. This may be interpreted as

St(x1, . . . , xn) =
(
|x|
t

)
mod 2. (1)

A direct consequence of Lucas theorem (see, e.g., [10, Section 1.2.6, Ex. 10]) and
Equation (1) is the following:

I Lemma 2.1. For every ` ≥ 0, S2`(x) = |x|`. More generally, St(x) =
∏

i |x|i where the
product runs over all i ≥ 0 such that the (i+ 1)th least significant bit of the binary expansion
of t is 1.

The following result follows from the work of Green and Tao [6, Theorem 11.3], who build
upon the ideas of Alon and Beigel [2].

I Theorem 2.2 (Alon-Beigel [2]). Fix ` ≥ 0. Then, for every multilinear polynomial
P ∈ F2[x1, . . . , xn] of degree at most 2` − 1, we have Prx∼{0,1}n [S2`(x) = P (x)] ≤ 1/2 + o(1).

Theorem 2.2 has a nice corollary:

I Corollary 2.3. For every fixed ` ≥ 0, the functions {S2i(x)}0≤i≤` are almost balanced and
almost uncorrelated, i.e.
∀ 0 ≤ i ≤ `, |Pr[S2i(x) = 0]− Pr[S2i(x) = 1]| = o(1)
∀ a0, . . . , a` ∈ {0, 1}, |Pr[

∧
0≤i≤` S2i(x) = ai]− 1

2`+1 | = o(1).

2 The constant in the O(·) is an absolute constant.
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Combining Corollary 2.3 with Lemma 2.1, we get another useful fact:

I Lemma 2.4. Let x be uniformly distributed over {0, 1}n. Then, for every fixed r ≥ 1, the
random variables {|x|i}0≤i≤r−1 are almost uniform and almost r-wise independent i.e.
∀ 0 ≤ i ≤ r − 1, |Pr[|x|i = 0]− Pr[|x|i = 1]| = o(1).
∀ (a0, . . . , ar−1) ∈ {0, 1}r, |Pr[(|x|0, . . . , |x|r−1) = (a0, . . . , ar−1)]− 1

2r | = o(1).

2.2 Boolean functions and polynomials over Z/2kZ
Given an F ∈ Fn and k ≥ 1, we define the k-lift of F to be the function Fk : {0, 1}n → Z/2kZ
defined as follows. For any x ∈ {0, 1}n,

Fk(x) =
{

0 if F (x) = 0,
2k−1 otherwise.

For d ∈ N, k ≥ 1, Pd,k will denote the set of multilinear polynomials in Z/2kZ[x1, . . . , xn]
of degree at most d .

For functions F,G : D → R for some finite domain D and range R, define the agreement
of F and G – denoted agr(F,G) – to be the fraction of inputs where they agree: i.e.,

agr(F,G) = Pr
x∼D

[F (x) = G(x)] .

We will consider how well multilinear polynomials of a certain degree can approximate
Boolean functions in the above sense. More precisely, for any Boolean function F ∈ Fn, we
define

γd,k(F ) = max
Q∈Pd,k

agr(Fk, Q).

Following [5], we call a set I ⊆ {0, 1}n an interpolating set for Pd,k if the only polynomial
P ∈ Pd,k that vanishes at all points in I is zero everywhere. Formally, for any P ∈ Pd,k,

(∀x ∈ I P (x) = 0)⇒ (∀y ∈ {0, 1}n P (y) = 0).

We now state a number of standard facts regarding Boolean functions and multilinear
polynomials over Z/2kZ. The proofs are either easy or well-known, and appear in the full
version of the paper (see https://arxiv.org/abs/1701.06268).

Unless mentioned otherwise, let n, d, k be any integers satisfying n ≥ 1, d ≥ 0, k ≥ 1.

I Lemma 2.5. Any polynomial Q ∈ Pd,k satisfies the following:
1. If Q is non-zero, then Prx∼{0,1}n [Q(x) 6= 0] ≥ 1

2d .
2. Q is the zero polynomial iff Q(x) = 0 for all x ∈ {0, 1}n.
3. (Möbius Inversion) Say Q(x) =

∑
|S|≤d cSxS, where cS ∈ Z/2kZ and xS denotes

∏
i∈S xi.

Then, cS =
∑

T⊆S(−1)|S|−|T |Q(1T ) where 1T ∈ {0, 1}n is the characteristic vector of T .
4. ({0, 1}n

≤d is an interpolating set) Q vanishes at all points in {0, 1}n iff Q vanishes at all
points of {0, 1}n

≤d. By shifting the origin to any point of {0, 1}n, the same is true of any
Hamming ball of radius d in {0, 1}n.

I Lemma 2.6. Fix any F ∈ Fn.
1. γd,k(F ) ≥ 1

2 .
2. γd,k+1(F ) ≥ γd,k(F ).
3. γd,k(F ) > 1− 1

2d ⇒ γd,k(F ) = γd,1(F ).
4. γ1,k(F ) = γ1,1(F ).

STACS 2017
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3 Some separation results

3.1 A separation at k = 2
Let d ∈ N be any power of 2. In this section, we show that there are functions F for which
γ2d,2(F ) > γ3d−1,1(F ).

I Theorem 3.1. For large enough n, there exists a function F ∈ F2n such that γ2d,2(F ) ≥
3
4 − o(1) but γ3d−1,1(F ) ≤ 5

8 + o(1).

In particular, we see that γ2,2(F ) > γ2,1(F ). This result is notable, since it shows that there
is a separation at the first place where it is possible to have one (Recall that γ1,k(F ) = γ1,1(F )
for any F ∈ Fn by Lemma 2.6).

Let us begin the proof of Theorem 3.1. We first define a family of Boolean functions
on {0, 1}2n. We denote the 2n variables by x1, . . . , xn and y1, . . . , yn. We use

(|x|
d

)
to

denote the dth elementary symmetric polynomial from the ring Z/4Z[x1, . . . , xn], i.e.,
(|x|

d

)
=∑

S∈([n]
d )
∏

i∈S xi.3

The following theorem due to Kummer (see, e.g., [10, Section 1.2.6, Ex. 11]) determines
the largest power of a prime that divides a binomial coefficient.

I Theorem 3.2 (Kummer). Let p be a prime and N,M ∈ N such that N ≥M . Suppose r
is the largest integer such that pr |

(
N
M

)
. Then r is equal to the number of borrows required

when subtracting M from N in base p.

We will need the following easy corollary of Kummer’s theorem.

I Corollary 3.3. Let d be a power of 2. Then, for N ≥ d, the highest power of 2 dividing(
N
d

)
is equal to the highest power of 2 dividing bN

d c.

Let S = {(x, y) |
(|x|

d

)
,
(|y|

d

)
≡ 1 (mod 2)}. Given any function H : {0, 1}2n → {0, 1}, we

define the Boolean function FH(x1, . . . , xn, y1, . . . , yn) as follows:

FH(x, y) =


0 if

(|x|
d

)
·
(|y|

d

)
≡ 0 (mod 4),

1 if
(|x|

d

)
·
(|y|

d

)
≡ 2 (mod 4),

H(x, y) otherwise.

Define P (x, y) =
(|x|

d

)
·
(|y|

d

)
∈ Z/4Z[x1, . . . , xn, y1, . . . , yn]. Note that FH(x, y) is defined

so that its 2-lift agrees with P (x, y) on points (x, y) where P (x, y) ∈ {0, 2}. Also Corollary 3.3
implies that the following is an alternate equivalent definition of FH in terms of elementary
symmetric polynomials modulo 2.

FH(x, y) =


0 if Sd(x) = Sd(y) = 0,
S2d(y) if Sd(x) = 1 and Sd(y) = 0,
S2d(x) if Sd(x) = 0 and Sd(y) = 1,
H(x, y) otherwise.

(2)

First of all, let us note that for any choice of H, we have:

I Lemma 3.4. γ2d,2(FH) ≥ 3
4 − o(1).

3 We distinguish between
(|x|

d

)
and Sd(x) since the former is from Z/4Z[x1, . . . , xn] and latter a polynomial

in F2[x1, . . . , xn].
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Proof. Consider the polynomial P (x, y) ∈ P2d,2 defined above. From Equation (2), it follows
that the probability that P (x, y) 6= FH,2(x, y)4 is less than or equal to the probability that
Sd(x) = Sd(y) = 1, which is 1

4 + o(1) by Corollary 2.3. This gives the claim. J

The main lemma is the following.

I Lemma 3.5. Say H : {0, 1}2n → {0, 1} is chosen uniformly at random. Then,

Pr
H

[
γ3d−1,1(FH) > 5

8 + o(1)
]

= o(1).

This will prove Theorem 3.1.
The outline of the proof of the above lemma is as follows. Fix any polynomial Q ∈

F2[x1, . . . , xn, y1, . . . , yn] of degree at most 3d−1. We need to show that agr(FH , Q) ≤ 5
8 +o(1)

. The function H : {0, 1}2n → {0, 1} we choose will be a random function, which ensures
that any Q cannot agree with H on significantly more than half the inputs in S. For inputs
outside S, we need a more involved argument, following Alon and Beigel [2]. We show that
for any Q we can find somewhat large sets I and J of x and y variables respectively such
that when we set the variables outside I ∪ J , we obtain a polynomial that is symmetric in
the variables of I ∪ J . This is a Ramsey theoretic argument ála Alon-Beigel [2].

Following this argument, we only need to prove the agreement upper bound for Q that is
symmetric in x and y variables. This can be done by reduction to a constant-sized problem.
A careful computation to solve the constant-sized problem finishes the proof.

The complete technical details of the proof of Lemma 3.5 appear in the full version of the
paper.

3.2 Symmetric functions as separating examples
We know from Theorem 2.2 that, for every fixed ` ≥ 2, γ2`−1,1(S2`) ≤ 1

2 + o(1). In contrast,
the main result of this section shows that

I Theorem 3.6. For every fixed ` ≥ 2, γd,3(S2`) ≥ 9
16 − o(1), where d = 2`−1 + 2`−2.

Notice that 2`−1 + 2`−2 ≤ 2` − 1 for ` ≥ 2. This implies that, for ` ≥ 2, S2`(x) is an
example of a function F for which there exist k, d ∈ N such that γd,1(F ) ≤ 1

2 + o(1) but
γd′,k(F ) ≥ 1

2 + Ω(1) for some d′ ≤ d.

Proof of Theorem 3.6. Lemma 2.1 from Section 2 tells us that S2`(x) = |x|`. Thus,
S2`,3(x) ∈ Z/8Z[x1, . . . , xn], the 3-lift of S2`(x), is given by

S2`,3(x) =
{

4 if |x|` = 1
0 otherwise

(3)

Fix d to be 2`−1 + 2`−2 and consider the polynomial P (x) =
∑

T⊆[n]:|T |≤d

∏
i∈T xi in

Z/8Z[x1, . . . , xn]. To prove the theorem, it suffices to show that

Pr
x∼{0,1}n

[P (x) = S2`,3(x)] ≥ 1
2 + 1

16 − o(1).

4 FH,2 denotes the 2-lift of FH .

STACS 2017
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Clearly, P (x) =
(
|x|
d

)
mod 8, and

P (x) =


0 if 8 |

(
|x|
d

)
4 if 4 |

(
|x|
d

)
but 8 -

(
|x|
d

) (4)

Let B(x) be the number of borrows required when subtracting d from |x|. Rewriting (4)
in terms of B(x) using Kummer’s theorem (See Theorem 3.2), we get

P (x) =
{

4 if B(x) = 2
0 if B(x) ≥ 3

(5)

We will need the following lemma.

I Lemma 3.7. P (x) = S2`,3(x) if
1. |x|`−2 = 0, or
2. if (|x|`−2, |x|`−1, |x|`, |x|`+1) = (1, 0, 0, 0).

Proof. Since d = 2`−1 + 2`−2, all the bits of d except d`−1 and d`−2 are zero. An important
observation is that, when subtracting d from |x|, no borrows are required by the bits |x|i,
0 ≤ i ≤ `− 3.

Using the above observation, the reader can verify that when (|x|`−2, |x|`−1, |x|`, |x|`+1) =
(1, 0, 0, 0) the number of borrows required is at least 3 i.e. B(x) ≥ 3, which in turn implies
that P (x) = 0. Since |x|` = 0, S2`,3(x) = 0. This proves the second part of the lemma.

To prove the first part, suppose |x|`−2 = 0. Since d`−1 = d`−2 = 1, it follows that both
|x|`−2 and |x|`−1 will need to borrow when subtracting d from |x|. As argued before, no
borrows are required by the bits before (i.e. less significant than) |x|`−2, and thus the total
number of borrows required by the bits |x|i, 0 ≤ i ≤ `− 1, is 2.
Note that the bit |x|`−1 borrows from |x|`. Consider the following case analysis:

Case |x|` = 1: |x|` will not need to borrow since d` = 0. In fact, none of the bits after
(i.e. more significant than) |x|` will need to borrow, and thus B(x) = 2. This implies that
P (x) = 4. We also have S2`,3(x) = 4 and hence P (x) = S2`,3(x).
Case |x|` = 0: |x|` will require a borrow and this means B(x) ≥ 3. This would imply
P (x) = 0. Since |x|` = 0, it follows that P (x) = S2`,3(x).

This completes the proof. J

By Lemma 3.7, we have

Pr[P (x) = S2`,3(x)] ≥ Pr[|x|`−2 = 0] + Pr [(|x|`−2, |x|`−1, |x|`, |x|`+1) = (1, 0, 0, 0)] (6)

Using Lemma 2.4 from Section 2, we have

Pr[|x|`−2 = 0] ≥ 1
2 − o(1)

Pr[(|x|`−2, |x|`−1, |x|`, |x|`+1) = (1, 0, 0, 0)] ≥ 1
16 − o(1)

which, together with (6), implies

Pr[P (x) = S2`,3(x)] ≥ 1
2 + 1

16 − o(1). J
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4 Upper bounds for γd,k(Majn)

In this section, we show an upper bound on γd,k(Majn) where Majn denotes the Majority
function on n bits.5

I Theorem 4.1. For any k ≥ 1, d ∈ Z+, γd,k(Majn) ≤ 1
2 + 10d√

n
.

The proof of Theorem 4.1 presented below is an adaptation of techniques appearing in a
work of Green [7], who proved a similar result on the approximability of the parity function
by polynomials over the ring Z/pkZ, for prime p 6= 2.

We will need some definitions and facts about Pd,k.
We use π to denote the unique ring homomorphism from Z/2kZ to Z/2Z. Its kernel

π−1(0) = {a ∈ Z/2kZ | 2k−1a = 0} is the set of non-invertible elements in Z/2kZ.
We call a set S ⊆ {0, 1}n forcing for Pd,k if any polynomial P ∈ Pd,k that vanishes over

S is forced to take a value in π−1(0) at all points x ∈ {0, 1}n. Formally,

(∀x ∈ S P (x) = 0)⇒ (∀y ∈ {0, 1}n π(P (y)) = 0).

Define the polynomial π(P ) ∈ Z/2Z[x1, . . . , xn] to be the polynomial obtained by applying
the map π to each of the coefficients of P . Since a multilinear polynomial in Z/2kZ[x1, . . . , xn]
is the zero polynomial iff it vanishes at all points of {0, 1}n (by Lemma 2.5), we see that S is
forcing iff (∀x ∈ S P (x) = 0)⇒ π(P ) = 0.

Note that any interpolating set for Pd,k (see Theorem 2 for the definition) is forcing for
Pd,k, but the converse need not be true.

We now adapt the proof of Lemma 11 in [7] to bound the size of forcing sets for Pd,k.

I Lemma 4.2. If S is forcing for Pd,k, then |S| ≥ |{0, 1}n
≤d| =

(
n
≤d

)
.

The proof of the above lemma appears in the full version of the paper.
We now use Lemma 4.2 to prove Theorem 4.1.

Proof of Theorem 4.1. We assume throughout that 1 ≤ d ≤
√

n
10 ; otherwise, there is nothing

to prove. Let Majn,k : {0, 1}n → Z/2kZ be the k-lift of the Majn function. Let P ∈ Pd,k

be arbitrary and let SP = {x ∈ {0, 1}n | P (x) = Majn,k(x)}. We want to show that
|SP | ≤ 2n · ( 1

2 + 10d√
n

). We will argue by contradiction. So assume that |SP | > 2n · ( 1
2 + 10d√

n
).

Let EP be the complement of SP , i.e. the set of points where P makes an error in
computing Majn,k. We have |EP | < 2n( 1

2 −
10d√

n
). We will try to find a degree D (for suitable

D ≤ bn/2c) polynomial Q such that Q vanishes at all points in EP but has the property that
Q(x) is a unit (i.e. π(Q(x)) 6= 0) for some x ∈ {0, 1}n. To be able to do this, we need the
fact that EP is not forcing for PD,k. By Lemma 4.2, if EP is indeed forcing for PD,k, then

|EP | ≥
D∑

i=0

(
n

i

)
=

bn/2c∑
i=0

(
n

i

)− bn/2c∑
i=D+1

(
n

i

)

≥ 2n−1 − (bn/2c −D) ·
(

n

bn/2c

)
≥ 2n ·

(
1
2 −

2(bn/2c −D)√
n

)
= 2n ·

(
1
2 −

4d√
n

)

5 We define the majority function as Majn(x) = 1 iff |x| > n/2.

STACS 2017
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where the last equality follows if we choose D = bn/2c − 2d. This contradicts our upper
bound on the size of |EP |. Hence, EP cannot be forcing for PD,k. In particular, we can find
Q that vanishes on EP and furthermore, π(Q(x)) 6= 0 for some x ∈ {0, 1}n.

We now claim that π(Q(x0)) 6= 0 for some x0 of Hamming weight > n/2. To see this,
consider the polynomial Q1 = π(Q). By construction of Q, we know that Q1 is a non-zero
polynomial of degree D. Hence, by Lemma 2.5, Q1 is non-zero when restricted to the
Hamming ball of radius D < n/2 around the all 1s vector. In particular, this implies
that there is an input x0 of Hamming weight > n/2 where Q1(x0) is non-zero and hence
π(Q(x0)) 6= 0, or equivalently 2k−1Q(x0) 6= 0. Fix this x0 for the remainder of the proof.
Note that x0 6∈ EP since Q vanishes on EP .

Now, consider the polynomial R(x) = Q(x) · P (x). We first show that R(x) = 0 for all
x of Hamming weight ≤ n/2. Consider any x of Hamming weight ≤ n/2. If x ∈ EP , then
R(x) = 0 since Q(x) = 0. On the other hand, if x 6∈ EP , then P (x) = Majn,k(x) = 0 since x
has Hamming weight ≤ n/2. Thus, R vanishes at all inputs of Hamming weight ≤ n/2.

Since the degree of R is at most deg(Q) + deg(P ) = D+d = (bn/2c−2d) +d ≤ bn/2c−d
and R vanishes at all inputs of {0, 1}n

≤n/2, this implies (by Lemma 2.5) that R must be 0
everywhere. However, at x0, R(x0) = Q(x0)P (x0) = Q(x0)Majn,k(x0) = 2k−1Q(x0) 6= 0.
This yields the desired contradiction. J

5 Connection to non-classical polynomials

Let T = R/Z denote the one dimensional torus. Observing that the additive structure of
F2 is isomorphic to the additive subgroup {0, 1/2} < T, we can think of a Boolean function
F : Fn

2 → F2 as a function F : Fn
2 → {0, 1/2}, and conversely, a map F : Fn

2 → {0, 1/2} as a
Boolean function.

Tao and Ziegler [16] give a characterization of non-classical polynomials as follows:

I Definition 5.1 (Tao and Ziegler [16]). A function F : Fn
2 → T is a non-classical polynomial

of degree ≤ d if and only if it has the following form:

F (x1, . . . , xn) = α+
∑

0≤e1,...,en≤1,k≥1:
∑

i
ei+(k−1)≤d

ce1,...,en,kx
e1
1 . . . xen

n

2k
(mod 1)

Here α ∈ T, and ce1,...,en,k ∈ {0, 1} are uniquely determined. α is called the shift of F , and
the largest k such that ce1,...,en,k 6= 0 for some (e1, . . . , en) ∈ {0, 1}n is called the depth of F .

Since we are interested in the agreement of a non-classical polynomial with Boolean (i.e.
{0, 1/2}-valued) functions, we will only consider polynomials with shift α = A

2k , where k is
the depth of the polynomial and A ∈ {0, . . . , 2k − 1}.

I Remark. Classical polynomials are non-classical polynomials with α ∈ {0, 1/2} and depth
= 1. It is easy to see that every classical polynomial corresponds to a Boolean function.
It is also not hard to show that every Boolean function can be represented as a classical
polynomial.

The following lemma relates our model to non-classical polynomials (the proof is given in
the full version of the paper):

I Lemma 5.2. Let F be a Boolean function, and d, k ∈ Z+, d ≥ k.
1. If there is a non-classical polynomial P of degree d and depth k satisfying agr(F, P ) = γ,

then there is a P ′ ∈ Pd,k satisfying agr(Fk, P
′) = γ, where Fk is the k-lift of F .
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2. If there is a P ∈ Pd,k satisfying agr(Fk, P ) = γ, then there is a non-classical polynomial
P ′ of degree ≤ d+ k − 1 and depth k satisfying agr(F, P ′) = γ.

The first part of Lemma 5.2 implies the following corollary of Theorem 4.1:

I Corollary 5.3. Let F : Fn
2 → T be a non-classical polynomial of degree d. Then,

Pr
x∼Fn

2

[Majn(x) = F (x)] ≤ 1
2 +O

(
d√
n

)
.

This proves a conjecture of Bhowmick and Lovett [3] that non-classical polynomials of degree
d do not approximate the Majority function any better than classical polynomials of the
same degree.

The following is a consequence of Theorem 2.2 and the first part of Lemma 5.2:

I Corollary 5.4. Let ` ≥ 2. Then, for every classical polynomial P : Fn
2 → T of degree

≤ 2` − 1,

Pr
x∼Fn

2

[P (x) = S2`(x)] ≤ 1
2 + o(1) .

On the other hand, the second part of Lemma 5.2 and Theorem 3.6 imply

I Corollary 5.5. For every ` ≥ 2, there is a non-classical polynomial F : Fn
2 → T of degree

≤ 2`−1 + 2`−2 + 2 and depth 3 such that

Pr
x∼Fn

2

[F (x) = S2`(x)] ≥ 9
16 − o(1) .

Noting that 2`−1 + 2`−2 + 2 < 2` for ` ≥ 4, Corollary 5.4 and Corollary 5.5 imply the
following:

I Theorem 5.6. There is a Boolean function F : Fn
2 → {0, 1/2} and d ≥ 1, such that for

every classical polynomial P of degree at most d, we have

Pr
x∼Fn

2

[F (x) = P (x)] ≤ 1
2 + o(1),

but there is a non-classical polynomial P ′ of degree d′ ≤ d satisfying

Pr
x∼Fn

2

[F (x) = P ′(x)] ≥ 1
2 + Ω(1).

This provides a counterexample to an informal conjecture of Bhowmick and Lovett [3] that,
for any Boolean function F , non-classical polynomials of degree d do not approximate F any
better than classical polynomials of the same degree.
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