
Complexity of Token Swapping and its Variants∗

Édouard Bonnet1, Tillmann Miltzow2, and Paweł Rzążewski3

1 Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary
edouard.bonnet@dauphine.fr

2 Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary
t.miltzow@gmail.com

3 Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary; and
Faculty of Mathematics and Information Science, Warsaw University of
Technology, Warsaw, Poland
p.rzazewski@mini.pw.edu.pl

Abstract
In the Token Swapping problem we are given a graph with a token placed on each vertex.
Each token has exactly one destination vertex, and we try to move all the tokens to their des-
tinations, using the minimum number of swaps, i.e., operations of exchanging the tokens on two
adjacent vertices. As the main result of this paper, we show that Token Swapping is W [1]-
hard parameterized by the length k of a shortest sequence of swaps. In fact, we prove that, for
any computable function f , it cannot be solved in time f(k)no(k/ log k) where n is the number of
vertices of the input graph, unless the ETH fails. This lower bound almost matches the trivial
nO(k)-time algorithm.

We also consider two generalizations of the Token Swapping, namely Colored Token
Swapping (where the tokens have colors and tokens of the same color are indistinguishable), and
Subset Token Swapping (where each token has a set of possible destinations). To complement
the hardness result, we prove that even the most general variant, Subset Token Swapping, is
FPT in nowhere-dense graph classes.

Finally, we consider the complexities of all three problems in very restricted classes of graphs:
graphs of bounded treewidth and diameter, stars, cliques, and paths, trying to identify the
borderlines between polynomial and NP-hard cases.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases token swapping, parameterized complexity, NP-hardness, W[1]-hardness

Digital Object Identifier 10.4230/LIPIcs.STACS.2017.16

1 Introduction

In reconfiguration problems, one is interested in transforming a combinatorial or geometric
object from one state to another, by performing a sequence of simple operations. An important
example is motion planning, where we want to move an object from one configuration to
another. Elementary operations are usually translations and rotations. It turns out that

∗ Supported by the ERC grant PARAMTIGHT: “Parameterized complexity and the search for tight
complexity results”, no. 280152.

© Édouard Bonnet, Tillmann Miltzow, and Paweł Rzążewski;
licensed under Creative Commons License CC-BY

34th Symposium on Theoretical Aspects of Computer Science (STACS 2017).
Editors: Heribert Vollmer and Brigitte Vallée; Article No. 16; pp. 16:1–16:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2017.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 Complexity of Token Swapping and its Variants

v1 v2

v3v4

T1

T2

T3

T4

v1

v2

v3

v4

πstart

Figure 1 Every token placement can be uniquely described by a permutation.

motion planning can be reduced to the shortest path problem is some higher dimensional
Euclidean space with obstacles [7].

Finding the shortest flip sequence between any two triangulations of a convex polygon is a
major open problem in computational geometry. Interestingly it is equivalent to a myriad of
other reconfiguration problems of so-called Catalan structures [4]. Examples include: binary
trees, perfect matchings of points in convex position, Dyck words, monotonic lattice paths,
and many more. Reconfiguring permutations under various constraints is heavily studied
and usually called sorting.

An important class of reconfiguration problems is a big family of problems in graph theory
that involves moving tokens, pebbles, cops or robbers along the edges of a given graph, in
order to reach some final configuration [30, 5, 9, 14, 2, 28, 20, 8, 12]. In this paper, we study
one of them.

The Token Swapping problem, introduced by Akers and Krishnamurthy [1], and stated
more recently by Yamanaka et al. [31], fits nicely into this long history of reconfiguration
problems and can be regarded as a sorting problem with special constraints.

The problem is defined as follows, see also Figure 1. We are given an undirected connected
graph with n vertices v1, . . . , vn, a set of tokens T = {t1, . . . , tn} and two permutations πstart
and πtarget. These permutations are called start permutation and target permutation. Initially
vertex vi holds token tπstart(i). In one step, we are allowed to swap tokens on a pair of adjacent
vertices, that is, if v and w are adjacent, v holds the token s, and w holds the token t, then
the swap between v and w results in the configuration where v holds t, w holds s, and all the
other tokens stay in place. The Token Swapping problem asks if the target configuration
can be reached in at most k swaps. Thus, a solution for the Token Swapping problem is a
sequence of edges, where the swaps take place. The solution is optimal if its length is shortest
possible. To see the correspondence to sorting note that every placement of tokens can be
regarded as a permutation and the target permutation can be regarded as the sorted state.

It has been observed, for example in [1, 31], that every instance of Token Swapping
has a solution, and its length is O(n2). Moreover, Ω(n2) swaps are sometimes necessary. It
is interesting to note that some special cases of Token Swapping have been studied in the
context of sorting permutations with additional restrictions (see Knuth [21, Section 5.2.2] for
paths, Pak [27] for stars, Cayley [6] for cliques, and Heath and Vergara [16] for squares of a
path). Recently the problem was also solved for a special case of complete split graphs (see
Yasui et al. [33]). Is is also worth mentioning that a very closely related concept of sorting
permutations using cost-constrained transitions was considered by Farnoud et al. [11], and
Farnoud and Milenkovic [10].

The complexity of the Token Swapping problem was investigated by Miltzow et al. [25].
They show that the problem is NP-complete and APX-complete. Moreover, they show
that any algorithm solving the Token Swapping problem in time 2o(n) would refute the
Exponential Time Hypothesis (ETH) [17]. The results of Miltzow et al. [25] carry over also to

É. Bonnet, T. Miltzow, and P. Rzążewski 16:3

some generalization of the Token Swapping problem, called Colored Token Swapping,
first introduced by Yamanaka et al. [32]. In this problem, vertices and tokens are partitioned
into color classes. For each color c, the number of tokens colored c equals the number of
vertices colored c. The goal is to reach, with the minimum number of swaps, a configuration
in which each vertex contains a token of its own color. Token Swapping corresponds to the
special case where each color class comprises exactly one token and one vertex. NP-hardness
of Colored Token Swapping was first shown by Yamanaka et al. [32], even in the case
where only 3 colors exist.

We introduce the Subset Token Swapping problem, which is an even further general-
ization of Token Swapping. Here a function D : T → 2V specifies the set D(ti) of possible
destinations D(ti) for the token ti. Observe that Subset Token Swapping also generalizes
Colored Token Swapping. It might happen that there is no satisfying swapping sequence
at all to this new problem. Though, this can be checked in polynomial time by deciding if
there is a perfect matching in the bipartite token-destination graph. Thus we shall always
assume that we have a satisfiable instance.

In this paper we continue and extend the work of Miltzow et al. [25]. They presented a
very simple algorithm which solves the instance of the Token Swapping problem in nO(k)

time and space, where k denotes the number of allowed swaps. In Section 3 we show that this
algorithm can be easily generalized to Colored Token Swapping and Subset Token
Swapping problems. One of the main bottlenecks for exponential-time algorithms is not
time, but space consumption. Thus we present a slightly slower exact algorithm, using only
polynomial space (in fact, only slightly super-linear).

The existence of an XP algorithm (i.e., with time complexity O(nf(k)) for some computable
function f) for the Token Swapping problem gives rise to the question whether the problem
can be solved in FPT time (i.e., f(k) ·nO(1), for some computable function f). There is some
evidence indicating that this could be possible. First, observe that an instance with more
than 2k misplaced tokens, is a No-instance, as each swap moves only two tokens. Further,
one can safely remove all vertices from the graph that are at distance more than k from all
misplaced tokens. This preprocessing yields an equivalent instance, where every connected
component has diameter O(k2). Thus if the maximum degree ∆ is bounded by k, each
component has size bounded by a function of k. The connected components of f(k) size
can be solved separately by exhaustively guessing (still in FPT time) the number of swaps
to perform in each of them. Moreover, even the generalized Subset Token Swapping
problem is FPT in k + ∆ (see Proposition 6). For those reasons, one could have hoped for
an FPT algorithm for general graphs. However, as the main result of this paper, we show in
Section 4 that this is very unlikely.

I Theorem 1 (Parameterized Hardness). Token Swapping is W [1]-hard, parameterized by
the number k of allowed swaps. Moreover, assuming the ETH, for any computable function
f , Token Swapping cannot be solved in time f(k)(n + m)o(k/ log k) where n and m are
respectively the number of vertices and edges of the input graph.

Observe that this lower bound shows that the simple nO(k)-time algorithm is almost best
possible. It is worth mentioning that the parameter for which we show hardness is in fact
number of swaps + number of initially misplaced tokens + diameter of the graph, which
matches the reasoning presented in the previous paragraph.

To show the lower bound, we introduce handy gadgets called linkers. They are simple
and can be used to give a significantly simpler proof of the lower bounds given by Miltzow et
al. [25].

STACS 2017

16:4 Complexity of Token Swapping and its Variants

Table 1 The parameterized complexity of Token Swapping, Colored Token Swapping, and
Subset Token Swapping.

k + ∆ k + diam k, nowhere-dense tw + diam
/ k + tw

TS FPT ([25]) W[1]-h (Th 1) FPT paraNP-c (Th 4)
CTS FPT W[1]-h FPT paraNP-c
STS FPT (Prop 6) W[1]-h FPT (Th 2) paraNP-c

Since there is no FPT algorithm for the Token Swapping problem (parameterized by
the number k of swaps), unless FPT = W [1], a natural approach is to try to restrict the
input graph classes, in hope to obtain some positive results. Indeed, in Section 5 we show
that FPT algorithms exist, if we restrict our input to the so-called nowhere-dense graph
classes.

I Theorem 2 (FPT in nowhere dense graphs). Subset Token Swapping is FPT paramet-
erized by k on nowhere-dense graph classes.

The notion of nowhere-dense graph classes has been introduced as a common generalization
of several previously known notions of sparsity in graphs such as planar graphs, graphs
with forbidden (topological) minors, graphs with (locally) bounded treewidth or graphs with
bounded maximum degree. Grohe, Kreutzer, and Siebertz [15] proved that every property
definable as a first-order formula ϕ is solvable in O(f(|ϕ|, ε)n1+ε) time on nowhere-dense
classes of graphs, for every ε > 0. We use this meta-theorem to show the existence of an
FPT time algorithm for the Subset Token Swapping problem, restricted to nowhere-dense
graph classes. In particular, this implies the following results.

I Corollary 3. Subset Token Swapping is FPT
(a) parameterized by k + tw(G),
(b) parameterized by k in planar graphs.

It is often observed that NP-hard graph problems become tractable on classes of graphs
with bounded treewidth (or, at least, with bounded tree-depth; see Nešetřil and Ossona
de Mendez [26, Chapter 10] for the definition and some background of tree-depth and
related parameters). It is not uncommon to see FPT algorithms running in time f(tw)nO(1)

(or f(td)nO(1)) or XP algorithms running in time nf(tw) (or nf(td)), for some computable
functions f . Especially, in light of Corollary 3(a), we want to know if there exists an algorithm
that runs in polynomial time for constant treewidth. In Section 6 we rule out the existence
of such algorithms by showing that Token Swapping remains NP-hard when restricted to
graphs with tree-depth 4 (treewidth and pathwidth 2; diameter 6; distance 1 to a forest).

I Theorem 4 (Hard on Almost Trees). Token Swapping remains NP-hard even when both
the treewidth and the diameter of the input graph are constant, and cannot be solved in time
2o(n), unless the ETH fails.

The Table 1 shows the current state of our knowledge about the parameterized complexity
of Token Swapping (TS), Colored Token Swapping (CTS), and Subset Token
Swapping (STS) problems, for different choices of parameters.

É. Bonnet, T. Miltzow, and P. Rzążewski 16:5

Table 2 The complexity of Token Swapping (TS), Colored Token Swapping (CTS), and
Subset Token Swapping (STS) on very restricted classes of graphs. The results in bold are proved
in this paper. The three polynomial algorithms for Token Swapping on cliques, stars, and paths,
are folklore and can be found for instance in [25, 19].

trees cliques stars paths

TS ? P P P
CTS ? NP-c P P
STS NP-c NP-c NP-c ?

While we think that our results give a fairly detailed view on the complexity landscape of
the Token Swapping problem, we also want to point out that our reductions are significantly
simpler than those by Miltzow et al. [25].

Since the investigated problems seem to be immensely intractable, we investigate their
complexities in very restricted classes of graphs, namely cliques, stars, and paths. We focus
on finding the borderlines between easy (polynomially solvable) and hard (NP-hard) cases.
The summary of these results is given in Table 2. Observe that cliques distinguish the
complexities of the Token Swapping and the Colored Token Swapping problems,
while stars distinguish the complexities of the Colored Token Swapping and the Subset
Token Swapping problems.

The paper concludes with several open problems in Section 7.

2 Preliminaries

For a token t, let dist(t) denote the distance from the position of t to its destination. For
an instance I of the Token Swapping problem, we define L(I) :=

∑
t dist(t), i.e., the sum

of distances to the destination over all the tokens. Clearly, after performing a single swap,
dist(t) may change by at most 1. We shall also use the following classification of swaps: for
x, y ∈ {−1, 0, 1}, x ≤ y, by a (x, y)-swap we mean a swap, in which one token changes its
distance by x, and the other one by y. Intuitively, (−1,−1)-swaps are the most “efficient”
ones, thus we will call them happy swaps. Since each swap involves two tokens, we get the
following lower bound.

I Proposition 5 ([25]). The length of an optimal solution for an instance I of Token
Swapping is at least L(I)/2. Besides, it is exactly L(I)/2 iff there is a solution using happy
swaps only.

When designing algorithms, it is natural to ask about lower bounds. However, the standard
complexity assumption used for distinguishing easy and hard problems, P 6= NP, cannot
rule out, say, subexponential time algorithms. The stronger assumption that is typically
used for this purpose is the so-called Exponential Time Hypothesis (ETH), formulated by
Impagliazzo and Paturi [17]. We refer the reader to the survey by Lokshtanov and Marx for
more information about ETH and conditional lower bounds [22]. The version we present
below (and is most commonly used) is not the original statement of this hypothesis, but its
weaker version (see also Impagliazzo, Paturi, and Zane [18]).

I Exponential Time Hypothesis (Impagliazzo and Paturi [17]). There is no algorithm solving
every instance of 3-Sat with N variables and M clauses in time 2o(N+M).

STACS 2017

16:6 Complexity of Token Swapping and its Variants

u1 u2

u3u4

V1 V2

V3

V4

ϕ(u1)

ϕ(u2)

ϕ(u3)

ϕ(u4)

Figure 2 On the left is the pattern graph P ; on the right, the host graph H. We indicate the
image of ϕ with white vertices. To keep the example small, we did not make P 3-regular.

3 Algorithms

First, we prove that Subset Token Swapping (and therefore also Colored Token
Swapping as its restriction) is FPT in k + ∆, where k is the number of allowed swaps, and
∆ is the maximum degree of the input graph. This generalizes the observation of Miltzow et
al. [25] for the Token Swapping problem. Furthermore, we show that the simple algorithm
for the Token Swapping problem, presented by Miltzow et al. [25], carries over to the
generalized problems, i.e., Colored Token Swapping and Subset Token Swapping. At
last, we will present an algorithm that has polynomial space complexity.

I Proposition 6. Subset Token Swapping problem is FPT in k + ∆ and admits a kernel
of size 2k + 2k2 ·∆k.

Miltzow et al. [25] show that an optimal solution for the Token Swapping problem can
be found by performing a breath-first-search on the configuration graph, that is, the graph
whose vertices are all possible configurations of tokens on vertices, and two configurations are
adjacent when one can be obtained from the other with a single swap1. We observe that the
same approach works for the Colored Token Swapping and the Subset Token Swapping
problems, the only difference is that we terminate on any feasible target configuration.

The main drawback of such an approach is an exponential space complexity. Here we
show the following complementary result, inspired by the ideas of Savitch [29].

I Theorem 7. Let G be a graph with n vertices, and let k be the maximum number of allowed
swaps. The Subset Token Swapping problem on G can be solved in time 2O(n logn log k) =
2O(n log2 n) and space O(n logn log k) = O(n log2 n).

4 Lower Bounds on parameterized Token Swapping

Let us start by defining an auxiliary problem, called Multicolored Subgraph Isomorph-
ism (also known as Partitioned Subgraph Isomorphism; see Figure 2).

1 The configuration graph of a Token Swapping instance on a graph G with n vertices can also be seen
as the Cayley graph Γ(Pn, S) where Pn is the symmetric group on n elements and S is the set of all
transpositions (u v) where uv is an edge of G.

É. Bonnet, T. Miltzow, and P. Rzążewski 16:7

In Multicolored Subgraph Isomorphism, one is given a host graph H whose vertex
set is partitioned into k color classes V1] V2] . . .] Vk and a pattern graph P with k

vertices: V (P) = {u1, . . . , uk}. The goal is to find an injection ϕ : V (P) → V (H) such
that uiuj ∈ E(P) implies that ϕ(ui)ϕ(uj) ∈ E(H) and ϕ(ui) ∈ Vi for all i, j. Thus we
can assume that each Vi forms an independent set. Further, we assume without loss of
generality that E(Vi, Vj) := {ab ∈ E(H) : a ∈ Vi, b ∈ Vj} is non-empty iff uiuj ∈ E(P). In
other words, we try to find k vertices v1 ∈ V1, v2 ∈ V2, . . ., vk ∈ Vk such that, for any
i < j ∈ [k],2 there is an edge between vi and vj iff E(Vi, Vj) is non-empty. TheW [1]-hardness
of Multicolored Subgraph Isomorphism problem follows from the W [1]-hardness of
the Multicolored Clique. Marx [23] showed that assuming the ETH, Multicolored
Subgraph Isomorphism cannot be solved in time f(k)(|V (H)|+ |E(H)|)o(k/ log k), for any
computable function f , even when the pattern graph P is 3-regular and bipartite (see also
Marx and Pilipczuk [24]). In particular, k has to be an even integer since |E(P)| is exactly
3k/2. We finally assume that for every i ∈ [k] it holds that |Vi| = t, by padding potentially
smaller classes with isolated vertices. This can only increase the size of the host graph by a
factor of k, and does not create any new solution nor destroy any existing one.

Now we are ready to prove the following theorem.

I Theorem 1 (Parameterized Hardness). Token Swapping is W [1]-hard, parameterized by
the number k of allowed swaps. Moreover, assuming the ETH, for any computable function
f , Token Swapping cannot be solved in time f(k)(n + m)o(k/ log k) where n and m are
respectively the number of vertices and edges of the input graph.

Proof (Sketch). We will present a reduction from Multicolored Subgraph Isomorphism.
To show the parameterized hardness of the Token Swapping problem, we introduce a very
handy linker gadget. This gadget has a robust and general ability to link decisions. As such,
it permits to reduce from a wide range of problems. Its description is short and its soundness
is intuitive. Because it yields very light constructions, we can rule out fairly easily unwanted
swap sequences. We describe the linker gadget and provide some intuitive reason why it
works (see Figure 3).

Linker gadget. Given two integers a and b, the linker gadget La,b contains a set of a vertices,
called finishing set and a path on a vertices, that we call starting path. The tokens initially on
vertices of the finishing set are called local tokens; they shall go to the vertices of the starting
path in the way depicted in Figure 3. The tokens initially on vertices of the starting path
are called global tokens. Global tokens have their destination in some other linker gadget. To
be more specific, their destination is in the finishing set of another linker.

We describe and always imagine the finishing set and the starting paths to be ordered
from left to right. Below the finishing set and to the left of the starting path, stand b disjoint
induced paths, each with a vertices, arranged in a grid, see Figure 3. We call those paths
private paths. The private tokens on private paths are already well-placed. Every vertex in
the finishing set is adjacent to all private vertices below it and the leftmost vertex of the
starting path is adjacent to all rightmost vertices of the private paths.

For local tokens to go to the starting path, they must go through a private path. As its
name suggests, the linker gadget aims at linking the choice of the private path used for every
local token. Intuitively, the only way of benefiting from a2 happy swaps between the a local
tokens and the a global tokens is to use a common private path (note that the destination

2 For an integer p, by [p] we denote the set {1, . . . , p}.

STACS 2017

16:8 Complexity of Token Swapping and its Variants

local token

global token

private token

private paths

starting path

finishing set

︸ ︷︷ ︸

︸
︷︷

︸

a

b

Figure 3 The linker gadget La,b. Black tokens are initially properly placed. Dashed arcs represent
where tokens of the finishing set should go in the starting path. At the bottom left, we depict the
gadget after all the local tokens are swapped to a single private path. At the bottom right, we see
the result after swapping all the local tokens to the starting path. In this case, the global tokens go
to that private path.

of the global tokens will make those swaps happy). That results in a kind of configuration
as depicted in the bottom right of Figure 3, where each global token is in the same private
path. The fate of the global tokens has been linked.

Construction. We present a reduction from Multicolored Subgraph Isomorphism
with cubic pattern graphs to Token Swapping where the number of allowed swaps is linear
in k. Let (H,P) be an instance of Multicolored Subgraph Isomorphism. For any color
class Vi = {vi,1, vi,2, . . . , vi,t} of H, we add a copy of the linker L3,t that we denote by Li. We
denote by j1 < j2 < j3 the indices of the neighbors of ui in the pattern graph P . The linker
Li will be linked to 3 other gadgets and it has t private paths (or choices). The finishing set of
Li contains, from left to right, the vertices a(i, j1), a(i, j2), and a(i, j3). We denote the tokens
initially on the vertices a(i, j1), a(i, j2), and a(i, j3) by local(i, j1), local(i, j2), local(i, j3),
respectively.

The starting path contains, from left to right, vertices b(i, j1), b(i, j2), and b(i, j3) with
tokens global(i, j1), global(i, j2), and global(i, j3).

For each p ∈ [3], local(i, jp) shall go to vertex b(i, jp), whereas global(i, jp) shall go to
a(jp, i) in the gadget Ljp . Observe that the former transfer is internal and may remain within
the gadget Li, while the latter requires some interplay between the gadgets Li and Ljp

. For
any h ∈ [t], by U(i, h) we denote the h-th private path. This path represents the vertex vi,h.
The path U(i, h) consists of, from left to right, vertices u(i, h, j1), u(i, h, j2), u(i, h, j3). We
set U(i) :=

⋃
h∈[t] U(i, h). Initially, all the tokens placed on vertices of U(i) are already well

placed.
We complete the construction by adding every edge of the form u(i, h, j)u(j, h′, i) if

vi,hvj,h′ is an edge in E(Vi, Vj) (see Figure 5). Let G be the graph that we built, and let I

É. Bonnet, T. Miltzow, and P. Rzążewski 16:9

Li

b(
i,
j 1
)

b(
i,
j 2
)

b(
i,
j 3
)

a
(i
,j

1
)

a
(i
,j

2
)

a
(i
,j

3
)

a(j1, i)

Lj1

a(j2, i)

Lj2

a(j3, i)

Lj3

U(i, 1)

U(i, 2)

U(i, 3)

U(i)

u(i, 3, j2)

global(i, j2)

local(i, j2)

U(i, 2)

Figure 4 The different labels for tokens, vertices, and sets of vertices.

v3,1

V3

v3,2

v3,3

v7,1

V7

v7,2

v7,3

u(3, 1, 7)

u(3, 2, 7)

u(3, 3, 7)

u(7, 1, 3)

u(7, 2, 3)

u(7, 3, 3)

E(V3, V7)

Figure 5 The way linkers (in that case, L3 and L7) are assembled together, with t = 3.

be the whole instance of Token Swapping (with the initial position of the tokens). We
claim that (H,P) is a Yes-instance of Multicolored Subgraph Isomorphism if and
only if I has a solution of length at most ` := 16.5k = O(k). Recall that k is even, so 16.5k
is an integer.

Correctness. As already described above, the local tokens can reach their target vertices
more efficiently if they all use the same private path. This private path represents a choice of
the corresponding vertex in the original Multicolored Subgraph Isomorphism instance.
Thereafter, each global token can go with a single swap to its correct target gadget, if there
were an edge between the corresponding vertices. This sequence needs exactly 16.5k swaps.

The reverse direction is more difficult. Observe that, except from the swaps involving
private tokens, all the swaps in the described solution are happy. However, it can be shown
that the swaps that are not happy are necessary. In particular, any deviation from the
intended solution requires additional swaps. J

STACS 2017

16:10 Complexity of Token Swapping and its Variants

5 Token Swapping on nowhere-dense classes of graphs

As we have seen in Section 4, there is little hope for an FPT algorithm for the Token
Swapping problem (parameterized by k), unless FPT = W [1]. Now let us show that FPT
algorithms exist, if we restrict our input to nowhere-dense graph classes.

The formal definition of nowhere-dense graphs is technical, so we refer the reader to the
comprehensive book of Nešetřil and Ossona de Mendez [26, Chapter 13].

As graphs with bounded degree are nowhere-dense, this result generalizes Proposition 6.

I Theorem 2 (FPT in nowhere dense graphs). Subset Token Swapping is FPT paramet-
erized by k on nowhere-dense graph classes.

We derive the following corollary.

I Corollary 8. Subset Token Swapping is FPT
(a) parameterized by k + tw(G),
(b) parameterized by k in planar graphs.

To see Corollary 3 (a), recall that bounded-treewidth graphs are nowhere-dense. Thus
by Theorem 2 there exists an algorithm with running time O(f(k)n1+ε), for any ε > 0 and
treewidth bounded by some constant c. Observe that the constant hidden in the big-O
notation depends on the constant c. In particular c has no influence on the exponent of n.

6 Token Swapping on almost trees

This section is devoted to the proof of the following theorem.

I Theorem 4 (Hard on Almost Trees). Token Swapping remains NP-hard even when both
the treewidth and the diameter of the input graph are constant, and cannot be solved in time
2o(n), unless the ETH fails.

Proof. In Exact Cover by 3-Sets, one is given a family S = {S1, S2, . . . , Sm} of 3-element
subsets of the universe X = {x1, x2, . . . , xn}, where 3 divides n. The goal is to find n/3
subsets in S that partition (or here, equivalently, cover) X. The problem can be seen as a
straightforward generalization of the 3-Dimensional Matching problem. This problem is
NP-complete and has no 2o(n) algorithm, unless the ETH fails, even if each element belongs
to exactly 3 triples [13, 3]. Therefore we can reduce from the restriction of the Exact Cover
by 3-Sets problem, where each element belongs to 3 sets of S, and obviously |S| = |X| = n.

Construction. For each set Sj ∈ S, we add a set gadget consisting of a tree on 10 vertices
(see Figure 6). In the set gadget, the four gray tokens should cyclically swap as indicated by
the dotted arrows: gji shall go where gji+1 is, for each i ∈ [4] (addition is computed modulo 4).
The three black tokens, as usual, are initially well placed. The three remaining vertices are
called element vertices. They represent the three elements of the set. The tokens initially on
the element vertices are called element tokens. For each element of X, there are 3 element
tokens and 3 element vertices.

We add a vertex c that is linked to all the element vertices of the set gadgets and to all
the vertices gj0. Each token originally on an element vertex should cyclically go to its next
occurrence (see Figure 7). The token initially on c is well placed.

The constructed graph G has 10n+ 1 vertices. If one removes the vertex c the remaining
graph is a forest, which means that the graph has a feedback vertex set of size 1 and, in

É. Bonnet, T. Miltzow, and P. Rzążewski 16:11

g0 g1 g2 g3

Figure 6 The set gadget for red, green and blue. We voluntarily omit the superscript j.

.

c

Figure 7 The overall picture. Each element appears exactly 3 times, so there are 3 red tokens.

particular, treewidth 2. G has its diameter bounded by 6, since all the vertices are at distance
at most 3 of the vertex c. We now show that the instance S of Exact Cover by 3-Sets
admits a solution iff there exists a solution for our instance of Token Swapping of length
at most ` := 11 · n/3 + 9 · 2n/3 + 2n = 35n/3 = 11n+ 2n/3.

Soundness. The correctness of the construction relies mainly on the fact that there are
two competitive ways of placing the gray tokens. The first way is the most direct. It
consists of only swapping along the spine of the set gadget. By spine, we mean the 7 vertices
initially containing gray or black tokens. From hereon, we call that swapping the gray tokens
internally.

I Claim 9. Swapping the gray tokens internally requires 9 swaps.

Proof. In 6 swaps, we can first move g3 to its destination (where g0 is initially). Then, g0,
g1, and g2 need one additional swap each to be correctly placed. We observe that, after we
do so, the black tokens are back to their respective destination. J

We call the second way swapping the gray tokens via c. Basically, it is the way one would
have to place the gray tokens if the black tokens (except the one in c) were removed from
the graph. It consists of, first (a) swapping g0 with the token on c, then moving g0 to its
destination, then (b) swapping g1 with the current token on c, moving g1 to its destination,
(c) swapping g2 with the token on c, moving g2 to its destination, finally (d) swapping g3
with the token on c and moving it to its destination.

I Claim 10. Swapping the gray tokens via c requires 11 swaps.

Proof. Steps (a), (b), and (c) take 3 swaps each, while step (d) takes 2 swaps. J

Considering that swapping the gray tokens via c takes 2 more swaps than swapping them
internally, and leads to the exact same configuration where both the black tokens and the
element tokens are back to their initial position, one can question the interest of the second

STACS 2017

16:12 Complexity of Token Swapping and its Variants

way of swapping the gray tokens. It turns out that, at the end of steps (a), (b), and (c),
an element token is on vertex c. We will take advantage of that situation to perform two
consecutive happy swaps with its two other occurrences. By doing so, observe that the first
swap of steps (b), (c), and (d) are also happy and place the last occurrence of the element
tokens at its destination.

We assume that there is a solution Sa1 , . . . , San/3 to the Exact Cover by 3-Sets
instance. In the corresponding n/3 set gadgets, swap the gray tokens via c and interleave
those swaps with doing the two happy swaps over element tokens, whenever such a token
reaches c. By Claim 10, this requires 11 · n/3 + 2n swaps. At this point, the tokens that are
misplaced are the 4 · 2n/3 gray tokens in the 2n/3 remaining set gadgets. Swap those gray
tokens internally. This adds 9 · 2n/3 swaps, by Claim 9. Overall, this solution consists of
29n/3 + 2n = 35n/3 = `.

Let us now suppose that there is a solution s of length at most ` to the Token Swapping
instance. At this point, we should observe that there are alternative ways (to Claim 9 and
Claim 10) of placing the gray tokens at their destination. For instance, one can move g3 to
g1 along the spine, place tokens g2 and g3, then exchange g0 with the token on c, move g0
to its destination, swap g3 with the token on c, and finally move it to its destination. This
also takes 11 swaps but moves only one element token to c (compared to moving all three of
them in the strategy of Claim 10). One can check that all those alternative ways take 11
swaps or more. Let r ∈ [0, n] be such that s does not swap the gray tokens internally in r set
gadgets (and swap them internally in the remaining n− r set gadgets). The length of s is at
least 11r + 9(n− r) + 2(n− q) + 4q = 11n+ 2(r + q), where q is the number of elements of
X for which none occurrence of its three element tokens has been moved to c in the process
of swapping the gray tokens. Indeed, for each of those q elements, 4 additional swaps will
be eventually needed. For each of the remaining n − q elements, only 2 additional happy
swaps will place the three corresponding element tokens at their destination. It holds that
3r > n−q, since the element tokens within the r set gadgets where s does not swap internally
represent at most 3r distinct elements of X. Hence, 3r + q > n. Also, s is of length at most
` = 11n+ 2n/3, which implies that r + q 6 n/3. Thus, n 6 3r + q 6 3r + 3q 6 n. Therefore,
q = 0 and r = n/3. Let Sa1 , . . . , San/3 be the n/3 sets for which s does not swap the gray
tokens internally in the correponding set gadgets. For each element of X, an occurrence of
a corresponding element token is moved to c when the gray tokens are swapped in one of
those gadgets. So this element belongs to one Sai

and therefore Sa1 , . . . , San/3 is a solution
to the instance of Exact Cover by 3-Sets.

The ETH lower bound follows from the fact, that the size of constructed graph is O(n). J

7 Conclusion

We conclude the paper with several ideas for further research. First, we believe that it would
be interesting to fill the missing entries in Table 2. In particular, we conjecture that the
Token Swapping problem remains NP-complete even if the input graph is a tree.

Another interesting problem is the following. By Miltzow et al. [25, Theorem 1], the
Token Swapping problem can be solved in time 2O(n logn), and there is no 2o(n) algorithm,
unless the ETH fails. We conjecture that the lower bound can be improved to 2o(n logn).
It would also be interesting to find single-exponential algorithms for some restricted graph
classes, such as graphs with bounded treewidth or planar graphs.

Finally, to prove Corollary 3, we use the powerful and very general meta-theorem by
Grohe, Kreutzer, and Siebertz [15]. It would be interesting to obtain elementary FPT
algorithms for planar graphs and graphs with bounded treewidth (or even trees).

É. Bonnet, T. Miltzow, and P. Rzążewski 16:13

References
1 Sheldon B Akers and Balakrishnan Krishnamurthy. A group-theoretic model for symmetric

interconnection networks. IEEE transactions on Computers, 38(4):555–566, 1989.
2 Elwyn R Berlekamp, John Horton Conway, and Richard K Guy. Winning Ways, for Your

Mathematical Plays: Games in particular, volume 2. Academic Pr, 1982.
3 Hans L. Bodlaender and Jesper Nederlof. Subexponential time algorithms for finding small

tree and path decompositions. In ESA 2015 Proc., pages 179–190. Springer, 2015. doi:
10.1007/978-3-662-48350-3_16.

4 Prosenjit Bose and Ferran Hurtado. Flips in planar graphs. Computational Geometry,
42(1):60–80, 2009.

5 Gruia Calinescu, Adrian Dumitrescu, and János Pach. Reconfigurations in graphs and
grids. In LATIN 2006 Proc., pages 262–273. Springer, 2006. doi:10.1007/11682462_27.

6 Arthur Cayley. LXXVII. Note on the theory of permutations. Philosophical Magazine
Series 3, 34(232):527–529, 1849. doi:10.1080/14786444908646287.

7 Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Cheong Schwarzkopf.
Computational geometry. In Computational geometry, pages 1–17. Springer, 2000.

8 Erik D. Demaine, Martin L. Demaine, Eli Fox-Epstein, Duc A. Hoang, Takehiro Ito,
Hirotaka Ono, Yota Otachi, Ryuhei Uehara, and Takeshi Yamada. Linear-time al-
gorithm for sliding tokens on trees. Theoretical Computer Science, 600:132–142, 2015.
doi:10.1016/j.tcs.2015.07.037.

9 Ruy Fabila-Monroy, David Flores-Peñaloza, Clemens Huemer, Ferran Hurtado, Jorge Ur-
rutia, and David R. Wood. Token graphs. Graphs and Combinatorics, 28(3):365–380, 2012.
doi:10.1007/s00373-011-1055-9.

10 F. Farnoud, C. Y. Chen, O. Milenkovic, and N. Kashyap. A graphical model for computing
the minimum cost transposition distance. In Information Theory Workshop (ITW), 2010
IEEE, pages 1–5, Aug 2010. doi:10.1109/CIG.2010.5592890.

11 Farzad Farnoud and Olgica Milenkovic. Sorting of permutations by cost-constrained trans-
positions. IEEE Trans. Information Theory, 58(1):3–23, 2012. doi:10.1109/TIT.2011.
2171532.

12 Eli Fox-Epstein, Duc A. Hoang, Yota Otachi, and Ryuhei Uehara. Sliding token on bipartite
permutation graphs. In Khaled Elbassioni and Kazuhisa Makino, editors, Algorithms and
Computation, volume 9472 of Lecture Notes in Computer Science, pages 237–247. Springer
Berlin Heidelberg, 2015. doi:10.1007/978-3-662-48971-0_21.

13 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci., 38:293–306, 1985. doi:10.1016/0304-3975(85)90224-5.

14 Daniel Graf. How to sort by walking on a tree. In ESA 2015 Proc., pages 643–655. Springer,
2015. doi:10.1007/978-3-662-48350-3_54.

15 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties
of nowhere dense graphs. In STOC 2014 Proc., pages 89–98. ACM, 2014. doi:10.1145/
2591796.2591851.

16 Lenwood S. Heath and John Paul C. Vergara. Sorting by short swaps. Journal of Compu-
tational Biology, 10(5):775–789, 2003. doi:10.1089/106652703322539097.

17 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of
Computer and System Sciences, 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

18 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

19 Mark R. Jerrum. The complexity of finding minimum-length generator sequences. Theor-
etical Computer Science, 36:265–289, 1985. doi:10.1016/0304-3975(85)90047-7.

STACS 2017

http://dx.doi.org/10.1007/978-3-662-48350-3_16
http://dx.doi.org/10.1007/978-3-662-48350-3_16
http://dx.doi.org/10.1007/11682462_27
http://dx.doi.org/10.1080/14786444908646287
http://dx.doi.org/10.1016/j.tcs.2015.07.037
http://dx.doi.org/10.1007/s00373-011-1055-9
http://dx.doi.org/10.1109/CIG.2010.5592890
http://dx.doi.org/10.1109/TIT.2011.2171532
http://dx.doi.org/10.1109/TIT.2011.2171532
http://dx.doi.org/10.1007/978-3-662-48971-0_21
http://dx.doi.org/10.1016/0304-3975(85)90224-5
http://dx.doi.org/10.1007/978-3-662-48350-3_54
http://dx.doi.org/10.1145/2591796.2591851
http://dx.doi.org/10.1145/2591796.2591851
http://dx.doi.org/10.1089/106652703322539097
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1016/0304-3975(85)90047-7

16:14 Complexity of Token Swapping and its Variants

20 Takumi Kasai, Akeo Adachi, and Shigeki Iwata. Classes of pebble games and complete
problems. SIAM Journal on Computing, 8(4):574–586, 1979. doi:10.1137/0208046.

21 Donald Erwin Knuth. The Art of Computer Programming, volume 3 / Sorting and Search-
ing. Addison-Wesley, 1982. ISBN 0-201-03803-X.

22 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the
exponential time hypothesis. Bulletin of the EATCS, 105:41–72, 2011. URL: http:
//albcom.lsi.upc.edu/ojs/index.php/beatcs/article/view/96.

23 Dániel Marx. Can you beat treewidth? Theory of Computing, 6(1):85–112, 2010. doi:
10.4086/toc.2010.v006a005.

24 Dániel Marx and Michal Pilipczuk. Optimal parameterized algorithms for planar facility
location problems using voronoi diagrams. CoRR, abs/1504.05476, 2015. URL: http:
//arxiv.org/abs/1504.05476.

25 Tillmann Miltzow, Lothar Narins, Yoshio Okamoto, Günter Rote, Antonis Thomas, and
Takeaki Uno. Approximation and hardness of token swapping. In Piotr Sankowski and
Christos D. Zaroliagis, editors, 24th Annual European Symposium on Algorithms, ESA
2016, August 22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 66:1–66:15.
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.ESA.
2016.66.

26 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity – Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

27 Igor Pak. Reduced decompositions of permutations in terms of star transpositions, gen-
eralized Catalan numbers and k-ARY trees. Disc. Math., 204(1):329–335, 1999. doi:
10.1016/S0012-365X(98)00377-X.

28 Torrence D Parsons. Pursuit-evasion in a graph. In Theory and applications of graphs,
pages 426–441. Springer, 1978.

29 Walter J. Savitch. Relationships Between Nondeterministic and Deterministic Tape Com-
plexities. J. Comput. Syst. Sci., 4(2):177–192, 1970. doi:10.1016/S0022-0000(70)
80006-X.

30 Richard M. Wilson. Graph puzzles, homotopy, and the alternating group. Journal of
Combinatorial Theory, Series B, 16(1):86–96, 1974. doi:10.1016/0095-8956(74)90098-7.

31 Katsuhisa Yamanaka, Erik D. Demaine, Takehiro Ito, Jun Kawahara, Masashi Kiyomi,
Yoshio Okamoto, Toshiki Saitoh, Akira Suzuki, Kei Uchizawa, and Takeaki Uno. Swapping
labeled tokens on graphs. In FUN 2014 Proc., pages 364–375. Springer, 2014. doi:10.
1007/978-3-319-07890-8_31.

32 Katsuhisa Yamanaka, Takashi Horiyama, David G. Kirkpatrick, Yota Otachi, Toshiki
Saitoh, Ryuhei Uehara, and Yushi Uno. Swapping colored tokens on graphs. In WADS
2015 Proc., pages 619–628, 2015. doi:10.1007/978-3-319-21840-3_51.

33 Gaku Yasui, Kouta Abe, Katsuhisa Yamanaka, and Takashi Hirayama. Swapping labeled
tokens on complete split graphs. SIG Technical Reports, 2015-AL-153(14):1–4, 2015.

http://dx.doi.org/10.1137/0208046
http://albcom.lsi.upc.edu/ojs/index.php/beatcs/article/view/96
http://albcom.lsi.upc.edu/ojs/index.php/beatcs/article/view/96
http://dx.doi.org/10.4086/toc.2010.v006a005
http://dx.doi.org/10.4086/toc.2010.v006a005
http://arxiv.org/abs/1504.05476
http://arxiv.org/abs/1504.05476
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.66
http://dx.doi.org/10.4230/LIPIcs.ESA.2016.66
http://dx.doi.org/10.1007/978-3-642-27875-4
http://dx.doi.org/10.1007/978-3-642-27875-4
http://dx.doi.org/10.1016/S0012-365X(98)00377-X
http://dx.doi.org/10.1016/S0012-365X(98)00377-X
http://dx.doi.org/10.1016/S0022-0000(70)80006-X
http://dx.doi.org/10.1016/S0022-0000(70)80006-X
http://dx.doi.org/10.1016/0095-8956(74)90098-7
http://dx.doi.org/10.1007/978-3-319-07890-8_31
http://dx.doi.org/10.1007/978-3-319-07890-8_31
http://dx.doi.org/10.1007/978-3-319-21840-3_51

	Introduction
	Preliminaries
	Algorithms
	Lower Bounds on parameterized Token Swapping
	Token Swapping on nowhere-dense classes of graphs
	Token Swapping on almost trees
	Conclusion

