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Abstract
Binary search finds a given element in a sorted array with an optimal number of log n queries.
However, binary search fails even when the array is only slightly disordered or access to its
elements is subject to errors. We study the worst-case query complexity of search algorithms
that are robust to imprecise queries and that adapt to perturbations of the order of the elements.
We give (almost) tight results for various parameters that quantify query errors and that measure
array disorder. In particular, we exhibit settings where query complexities of log n + ck, (1 +
ε) log n+ck, and

√
cnk+o(nk) are best-possible for parameter value k, any ε > 0, and constant c.
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1 Introduction

Imagine a large register with n files from which you wish to extract a particular file. All files
are indexed by some key and the files are sorted by key value. Not knowing the distribution
of the keys, you probably use binary search since looking at log n keys is best possible in
the worst case. Unfortunately, however, other users have accessed files before you and have
only returned the files to approximately the right place. As a result, the register is unsorted,
but at least each file is within some small number k of positions of where it should be. How
should you proceed? If you knew k and n, at what ratio of k vs. n should you resort to a
linear search of the register? If you do not know k, can you still do reasonably well? What if
the register was recently moved, by packing the files into boxes, but in the process the order
of the boxes got mixed up, and now there are large blocks of files that are far away from
their correct locations? What if you misread some of the keys? Situations like these are close
to searching in a sorted register and there are plenty of parameters that measure closeness to
a sorted array, e.g., maximum displacement or minimum block moves to sort, respectively
persistent or temporary read errors. We give (almost) optimal algorithms for a large variety
of these measures, and thereby establish for each of them exact regimes in which we can
outperform a linear search of all elements, or even be almost as good as binary search.

More formally, we study the fundamental topic of comparison-based search, which is
central to many algorithms and data structures [20, 24, 31]. In its most basic form, the
search problem can be phrased in terms of locating an element e within a given array A. In
order to search A efficiently, we need structure in the ordering of its elements: In general,
we cannot hope to avoid querying all entries to find e. The most prominent example of an

∗ A full version of the paper is available at http://arxiv.org/abs/1702.05932.
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26:2 Robust and Adaptive Search

efficient search algorithm that exploits special structure is binary search for sorted arrays.
Binary search is best-possible for this case. It needs only logarithmically many queries and is
thus very well suited for searching extremely large collections of data. However, it heavily
relies on perfect order and reliable access to the data. For large and dynamically changing
collections of data, both requirements may be difficult to ensure, but it may be reasonable
to assume the number of imperfections to be bounded. Accordingly, we ask: What is the
best-possible search algorithm if the data may be disordered or we cannot access it reliably?
In what regime of the considered measure is it better than linear search?

We provide (almost) tight bounds on the query complexity of searching an array A with n

entries for an element e in a variety of settings. Each setting is characterized by bounding a
different parameter k that quantifies the imperfections regarding either our access to array
elements or regarding the overall disorder of the data. Note that one can always resort to
linear search, which rules out lower bounds stronger than n comparisons.1 Table 1 gives an
overview of the parameters we analyze and our respective results. Qualitatively, our results
can be grouped into three groups of settings leading to different query complexities, and we
briefly highlight each group in the following.

The first group contains the parameters ksum, kmax, and kinv, which quantify the summed
and maximum distance of each element from its position in sorted order and the number of
element pairs in the wrong relative order, respectively (detailed definitions can be found the
the corresponding sections). For all of these parameters we are able to show that log n + ck

queries are necessary and sufficient, for constant c. Intuitively, this is the best complexity we
can hope for: We cannot do better than log(n) queries, and the impact of k on the query
complexity is linear and can be isolated.

The second group of results is with respect to the parameters klies, kfaults, as well as
multiple parameters for edit distances that measure the number of element operations needed
to sort A. The parameter klies limits the number of queries that yield the wrong result,
and kfaults limits the number of array positions that yield wrong query outcomes. For
bounded values of klies and kfaults we show that e cannot be found with log n + ck queries
using any binary-search-like algorithm.2 On the other hand, we provide an algorithm that
needs (1 + 1/c) log n + ck queries, for any c ≥ 1. For bounded edit distances, it is easy to see
that we need n queries if e need not be at its correct position relative to sorted order, since e

can be moved anywhere with just 2 edits, forcing us to scan the whole array. If we assume e

to be at its correct location, we can carry over the results for klies and kfaults to obtain the
same bounds for the edit-distance related parameters krep, kseq, kmov, and kswap.

Lastly, we consider the parameter kainv that counts the number of adjacent elements that
are in the wrong relative order, as well as several parameters measuring the number of block
operations needed to sort A. Intuitively, these settings are much more difficult for a search
algorithm, as it takes relatively small parameter values to introduce considerable disorder.
For the case that e is guaranteed to be at the correct position, we show that

√
cnk + o(nk)

queries are necessary and sufficient to locate e.
The algorithms for kainv and related parameters assume that the parameter value is

known to the algorithm a priori. In contrast, all our other algorithms are oblivious to the
parameter, in the sense that they do not require knowledge of the parameter value as long

1 Accordingly, all (lower) bounds of the form f(n, k) throughout the paper are to be understood
as min{f(n, k), n}. A naive bound of n can easily be obtained by scanning the whole array.

2 We interpret the array as a binary tree (rooted at entry n/2, with the two children n/4, 3n/4, etc.), and
call an algorithm “binary-search-like” if it never queries a node (other than the root) before querying its
parent.
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Table 1 Overview of our results, with main results in boldface.1 (o: even if oblivious to parameter
value; c: for all c ≥ 1; t: for tree-algorithms; e: for pos(e) = rank(e))

bounds
parameter description lower upper

Section 3 – number of imprecise queries
klies wrong outcomes log n + ck [Th. 3]ct (1+ 1

c
) log n + (2c+2)k [Th. 2]oc

kfaults indices with wrong outcomes log n + ck [Th. 3]ct (1+ 1
c
) log n + (2c+2)k [Th. 4]oc

Section 4.1 – displacement of elements
ksum total displacement log n/k + 2k + O(1) [Th. 5]o

kmax maximum displacement log n/k + 3k + O(1) [Th. 6]o

Section 4.2 – number of inversions
kinv all inversions log n/k+2k+O(1) [Co. 7] log n/k + 4k +O(1) [Co. 7]o

kainv adjacent inversions
√

8nk + o(
√

nk) [Th. 10,9]e

Section 4.3 – element operations needed to sort the array
krep element replacements log n + ck [Co. 14]cte (1+ 1

c
) log n + (4c+4)k [Th. 13]oe

kseq n− |max ordered subseq.| log n + ck [Co. 14]cte (1+ 1
c
) log n + (4c+4)k [Th. 13]oe

kmov element moves log n + ck [Co. 14]cte (1+ 1
c
) log n + (4c+4)k [Th. 13]oe

kswap element swaps log n + ck [Co. 14]cte (1+ 1
c
) log n + (8c+8)k [Th. 13]oe

kaswap adj. element swaps log n/k+2k+O(1) [Co. 15] log n/k + 4k +O(1) [Co. 15]o

Section 4.4 – block operations needed to sort the array
kbswap block swaps 4

√
nk + o(

√
nk) [Th. 17]e

krbswap equal size block swaps 2
√

2nk + o(
√

nk) [Th. 18]e 4
√

nk + o(
√

nk) [Th. 18]e

kbmov block moves 2
√

2nk + o(
√

nk) [Th. 19]e

as the target element e is guaranteed to be present in the array. Note that if e need not be
present and we have no bound on the disorder, we generally need to inspect every entry of
the array in case we cannot find e. For the parameter klies, we do not even know how long
we need to continue querying the same elements until we may conclude that e is not part
of the array. Any of our oblivious algorithms can trade the guarantee that e ∈ A against
knowledge of the parameter value k: Compute from k the maximum number m of queries
that it would take without knowing k when e ∈ A. If the algorithm does not stop within m

queries then it is safe to answer that e is not in A.

Overall, our results point out several parameters for which a fairly large regime of k

(as a function of n) allows search algorithms that are provably better than linear search.
For example, while moving only a single element by a lot can lead to bounds of Ω(n) on
the values of several parameters, and hence trivial guarantees, moving many elements by
at most k places gives kmax = k and yields better bounds than linear search (roughly) for
k < n

3 , and as good as binary search when k = O(log n). Moving only few elements by an
arbitrary number of spaces, in turn, still leads to good bounds via parameters such as kmov
or kswap, as long as the target is in the correct place. Parameters such as kainv grow even
more slowly, for certain types of disorder, but, on the other hand, only a small regime allows
for better than trivial guarantees. While, for each individual parameter we study, there are
“easily searchable” instances where the parameter becomes large and makes the corresponding
bound trivial, our results often allow for good bounds by resorting to a different parameter.

STACS 2017
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1.1 Related Work

Our work falls into the area of adaptive analysis of algorithms, which aims at a fine-grained
analysis of polynomial-time algorithms with respect to structural parameters of the input.
An objective of this field is to find algorithms whose running-time dependence on input
size and the structural parameters interpolates smoothly between known (good) bounds for
special cases and the worst-case bound for general inputs. The topic of adaptive sorting,
i.e., sorting arrays that are presorted in some sense, has attracted a lot of attention, see,
e.g., [4, 13, 23, 28].

We now discuss results that are specific to searching in arrays. Several authors addressed
the question of how much preprocessing, i.e., sorting, helps for searching, if we take into
account the total time investment [8, 22, 29]. Fredman [18] gave lower bounds on searching
regarding both queries and memory accesses. A classic work of Yao [32] established that the
best way of storing n elements in a table such as to minimize number of queries for accessing
an element is by keeping the elements sorted, which requires log n queries, provided that the
key space is large enough. Regarding searching in (partially) unordered arrays, there is a
nice result of Biedl et al. [5] about insertion sort based on repeated binary searches.

Under appropriate assumptions, namely that array is sorted and its elements are drawn
from a known distribution (e.g., searching for a name in a telephone book), one can do much
better than binary search, since the distribution allows a good prediction of where the target
should be located. In this case O(log log n) queries suffice on average (cf. [31]); to avoid
having to query the entire array, previous work suggests combinations of algorithms that
perform no worse than binary search in the worst case [10, 6]. Another interesting branch of
study is related to search in arrays of more complicated objects such as (long) strings [1, 17]
or abstract objects with nonuniform comparison cost [19, 2].

Many papers have studied searching in the presence of different types of errors, e.g., [7,
15, 16, 25], see [11, 27] for surveys. A popular error model for searching allows for a linear
number of lies [3, 7, 12, 14, 26], for which Borgstrom and Kosaraju [7] gave an O(log n)
search algorithm. In contrast, we bound the number of lies separately via the parameter klies.
Rivest et al. [30] gave an upper bound of log n + k log log n + O(k log k) queries for this
parameter. Their algorithm is based on a continuous strategy for the (equivalent) problem
of finding an unknown value in [1, n], up to a given precision, using few yes-no questions.
Our algorithm (Theorem 2) uses asymptotically fewer queries if klies = ω(log n/ log log n).3

The works of Finocchi and Italiano [16] and Finocchi et al. [15] consider a parameter
very similar to kfaults, with the additional assumption that faults may affect also the working
memory of the algorithm, except for O(1) “safe” memory words. Finocchi and Italiano [16]
give a deterministic searching algorithm that needs O(log n + k2) queries. Brodal et al. [9]
improve this bound toO(log n+k) and Finocchi et al. [15] provide a lower bound of Ω(log n+k)
even for randomized algorithms. Our results are incomparable as our result for parameter
kfaults uses only (1 + 1

c ) log n + (2c + 2)k queries, getting arbitrarily close to log n + O(k)
(cf. Theorem 4), but does not consider faults in the working memory; the high level approach
of balancing progress in the search with security queries is the same as in [9], but more careful
counting is needed to get small constants. For parameter klies we give a simpler algorithm
with 2 log n + 4k queries and using only O(1) words of working memory, but it is not clear
whether the result can be transferred to kfaults without increasing the memory usage.

3 A technical report of Long [21] claims that the actual tight bound of the algorithm of Rivest et al. [30]
is O(log n + k), which is consistent with our results.
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Finally, we comment on the measures of disorder we adopt in this paper. We study
various well-known measures that are mostly folklore. Detailed overviews of measures and
their relations were given by Petersson and Moffat [28] and Estivill-Castro and Wood [13].
For the sake of completeness and to get all involved coefficients the full version of this work,
accessible at http://arxiv.org/abs/1702.05932, provides proofs of all pairwise relations
between our parameters; these are depicted in Figure 1.

2 Preliminaries

In this paper we consider the following problem: Given an array A of length n and an
element e, find the position of e in A or report that e /∈ A with as few queries as possible.
We use A[i], i ∈ 1, . . . , n to denote the i-th entry of A. We allow access to the entries of A

only via queries to its indices, regarding the relation of the corresponding element to e. We
write query(i) for the operation of querying A at index i, and let query(i) = ‘<’ (respectively,
‘>’ or ‘=’) denote the outcome indicating that A[i] < e (respectively A[i] > e or A[i] = e).
Note that in faulty settings the query outcome need not be accurate.

To keep notation simple, we generally assume the entries of A to be unique unless explicitly
stated otherwise. We emphasize that none of our results relies on this assumption. We can
then define pos(a) to denote the index of a in A, by setting pos(a) = i if and only if A[i] = a.
Further, let rank(a) = |{i : A[i] < a}|+ 1 be the “correct” position of a with respect to a
sorted copy of A, irrespective of whether or not a ∈ A. We often use an element a ∈ A and
its index pos(a) interchangeably, especially for the target element e. Note that, as discussed
in the introduction, for oblivious algorithms we generally assume e ∈ A.

3 Searching with imprecise queries

In this section, we consider the problem of finding the index pos(e) of an element e in a
sorted array A of length n = 2d, d ∈ N in a setting where queries may yield erroneous results.
We say that ‘<’ is a lie (the truth) for index i if A[i] ≥ e (A[i] < e), and analogously for ‘>’
and ‘=’. To quantify the number of lies, we introduce two parameters klies and kfaults. The
first parameter klies simply bounds the number of queries with erroneous results, which we
interpret as the number of lies allowed to an adversary. The second parameter kfaults bounds
the number of indices i for which query(i) (consistently) returns the wrong result, allowing the
conclusion that e /∈ A in case query(e) yields the wrong result. Equivalently, for an unsorted
array A, we can require all queries to be truthful and define kfaults(e) to be the number of
inversions involving e, i.e., kfaults(e) = |i : (i < pos(e) ∧A[i] > e) ∨ (i > pos(e) ∧A[i] < e)|.
Observe that both definitions of kfaults are equivalent. For clarity, we write kfaults when
considering the adversarial interpretation, and kfaults(e) when considering it as a measure of
disorder of an unsorted array. For both klies and kfaults, we only allow queries to e to yield ‘=’.

The algorithms of this section operate on the binary search tree rooted at index r = n/2
that contains a path for each possible sequence of queries in a binary search of the array, and
identify nodes of the tree with their corresponding indices. We write next>(i) and next<(i)
to denote the two successors of node i, e.g., next>(r) = n/4 and next<(r) = 3n/4. Similarly,
we write prev(i) to denote the predecessor of i in the binary search tree, and prevq(i) = v

for the last vertex v on the unique r-i-path such that nextq(v) also lies on the r-i-path
(prevq(i) = ∅ if no such node exists). Intuitively, prevq(i) is the last vertex corresponding
to an array entry larger (if q =“>”) or smaller (if q =“<”) than A[i]. For convenience,
query(∅) = ∅, prev</>(r) = ∅, and next</>(i) = i if i is a leaf of the tree. We further denote

STACS 2017
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Algorithm 1: Algorithm with 2 log n + 4klies queries.
the algorithm stops once a query yields ‘=’
i← n/2 // start at the root
while (q ← query(i)) 6=‘=’ do // by definition, ‘=’ cannot be a lie

i′ ← prev¬q(i) // ∅ if all queries on the path from the root yielded q

while i 6= i′ ∧ query(i′) = q do // while query(i′) contradicts its previous
outcome...

i← prev(i) // ...backtrack towards i′

if i 6= i′ then // if we did not backtrack all the way to i′...
i← nextq(i) // ...proceed according to q

by d(i, j) the length of the path from node i to node j in the search tree. We say that an
algorithm operates on the binary search tree if no index is queried before its predecessor in
the tree.

We start by considering the parameter klies. If we knew the value of this parameter, we
could try a regular binary search, replace every query with 2klies + 1 queries to the same
element and use the majority outcome in each step. However, this would give (2klies +1) log n

queries, where ideally we should not use more than log n + f(k) queries. We first give an
algorithm that achieves the separation between n and klies while being oblivious to the value
of klies. Importantly, the algorithm only needs O(1) memory words, which also makes it
applicable to settings where “safe” memory, that cannot be corrupted during the course of
the algorithm, is limited. This algorithm still needs 2 log n + f(k) queries, but we will show
later how to build on the same ideas to (almost) eliminate the factor of 2.

Intuitively, Algorithm 1 searches the binary search tree defined above, simply proceeding
according to the query outcome at each node. In addition, the algorithm invests queries
to double check past decisions. We distinguish left and right turns, depending on whether
the algorithm proceeds with the left or the right child. In particular, before proceeding, the
algorithm queries the last vertex on the path from the root where it decided for a turn in
the opposite direction. While an inconsistency to previous queries is detected, i.e., a query
to a vertex where it turned right (or left) gives ‘>’ (or ‘<’), the algorithm backtracks one
step. In this manner, the algorithm guarantees that it never proceeds along a wrong path
without the adversary investing additional lies. Note that if the algorithm only ever turned
right (or left), i.e., there was no previous turn in the opposing direction, it does not double
check any past decisions until the query outcome changes. This is alright since either the
algorithm is on the right path or the adversary needs to invest a lie in each step.

I Theorem 1. We can find e obliviously using 2 log n + 4klies queries and O(1) memory.

Proof. We claim that Algorithm 1 achieves the bound of the theorem. Note that prev¬q(i)
only depends on i and not on the outcome of previous queries, therefore, we can determine
it with O(1) memory words. We will show that in each iteration of the outer loop of the
algorithm, the potential function Φ = 2d(i, e) + 4k decreases by at least one for each query,
where k is the number of remaining lies the adversary may make. This proves the claim,
since Φ ≥ 0 and initially Φ ≤ 2 log n + 4klies. We analyze a single iteration of the outer loop.

Observe that if z is the number of iterations of the inner loop, then the total number
of queries is z + 2 if the inner loop terminates because query(i′) = ¬q, and z + 1 if it
terminates because i = i′. If an iteration of the inner loop is caused by query(i′) being a
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Algorithm 2: Algorithm with (1 + 1
c ) log n + (2c + 2)klies queries.

the algorithm stops once a query yields ‘=’
i← n/2 // start at the root
while (q ← query(i)) 6=‘=’ do // by definition, ‘=’ cannot be a lie

i′ ← prev¬q(i) // ∅ if all queries on the path from the root yielded q

while 0 < c∆i′ < d(i, i′) + 1 do // while we do not have sufficient
support to proceed...

query(i′) // ...query i′ for support

if ∆i′ = 0 then // if we ran out of support at i′ altogether...
i← i′ // ...backtrack to i′

else // if we have sufficient support at i′...
i← nextq(i) // ...proceed according to q

lie, then in this iteration ∆Φ ≤ 2− 4 = −2, and otherwise, d(i, e) is decreased by one and
likewise ∆Φ = −2 + 0 = −2. Overall, the change in potential during the inner loop is always
∆Φ = −2z. If the inner loop terminates because i = i′, then z ≥ 1 and the total change in
potential is ∆Φ ≤ −2z ≤ −z − 1, enough to cover all z + 1 queries.

Now consider the case that the inner loop terminates because query(i′) = ¬q. If ¬q is a
lie for i′ or q is a lie for i, the adversary invested an additional lie, and even if the last update
to i increases d(i, e), the total change in potential is bounded by ∆Φ ≤ −2z−4+2 ≤ −2z−2,
enough to cover all z + 2 queries. On the other hand, if ¬q is the truth for i′ and q is the
truth for i, then e ∈ {i′, . . . , i} and i must lie on the unique r-e-path in the search tree (and
i 6= e). The final update to i thus decreases d(i, e) by 1 and the total change in potential is
∆Φ = −2z − 2, again enough to cover all z + 2 queries. J

We now adapt Algorithm 1 to minimize the impact of potential lies on the dependency
on log n in the running time. Intuitively, instead of backing up each query q ← query(i) by
a query to prev¬q(i), we back only one in c queries (cf. Algorithm 2). During the course of
the algorithm and its analysis, we let nq,j denote the number of queries (so far) to node j

that resulted in q ∈ {<, >} and ∆j := |n<,j − n>,j |.

I Theorem 2 (∗4). For every c ≥ 1, we can find e obliviously using (1+ 1
c ) log n+(2c+2)klies

queries.

Proof Sketch. We show that Algorithm 2 achieves the bound of the theorem. Instead of
backing up every query as in Algorithm 1, Algorithm 2 only invests one supporting query
for every c consecutive queries with the same outcome (for integral c). To capture this, our
potential function needs to manage additional potential used to account for these irregular
backup queries. This gets more involved, as the algorithm will not usually backtrack by
increments of c, and we need to allow for fractional contributions to the potential in each
query. We introduce a potential function of the form

Φ = (1 + 1
c

)d(i, e) + (2 + 1
c

)L + 1
c

T + (2c + 2)k,

where k is the number of lies remaining to the adversary, and L and T will not be formally
defined in this proof sketch. Similarly to the proof of Theorem 1, assuming Φ ≥ 0 and

4 Due to space restrictions, proofs for results marked with ∗ are deferred to the full version of this work.

STACS 2017
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initially L, T = 0, we need to show that (on average) the potential function decreases by at
least 1 for each query the algorithm makes. We outline intuitively how this is achieved.

The first term of the potential function releases a small amount of potential for every
step (in the tree) towards the target element and stores the same amount of potential for
every step away from the target. The fourth term releases a lot of potential whenever the
adversary invests a lie.

To understand the role of the central terms intuitively, consider an iteration of the
algorithm, where it just turned left or right (i.e., moved to a left or right child) and reached
node i, and let i′ be the last vertex where it turned in the opposite direction. Now if the next
query result of q at node i is a lie, the potential function releases a lot of potential that we
can use to pay for the query, the possible backup query, and the change in the other terms
of the potential. Let us therefore assume that q is the truth for i.

We need to distinguish two situations, depending on whether the turn at i′ was correct
or not, i.e., whether the (majority of) backup query outcomes were truthful. If the turn
at i′ was wrong, with every step that the algorithm proceeds down the tree, the distance
to the target increases, but on the other hand, the adversary needs to invest a lie for each
additional backup query. This means that we can afford to store potential with every new
backup query, but need to invest potential for every step down the tree. Accordingly, the
contribution to L in the potential function is defined to be c∆j′ − d(j, j′) and there is no
contribution to T . If the turn at i′ was correct, since q is also the truth for i and since the
turns at i and i′ are in opposing directions, the algorithm must still be on a path towards
the target e. Hence, we can store potential with every step down the tree, but have to invest
potential to pay for the backup queries. Accordingly, the contribution to T in the potential
function is defined to be d(j, j′)− c(∆j′ − 1) and there is no contribution to L.

Now, at some point earlier in the execution of the algorithm, i′ had the role of i and there
was a node i′′ with the role of i′. Since the algorithm may backtrack to i′ in the future, the
potential function also needs to remember the contributions of the pair (i′, i′′) to L and T ,
as well as the contributions of each earlier such zig-zag pair along the path to the root. By
carefully defining L and T , we can balance all costs in such a way that, in each iteration
of the outer loop of Algorithm 2, the potential reduction is at least equal to the number of
queries made during that iteration. J

To provide a strong lower bound, we restrict ourselves to algorithms that operate on the
binary search tree. Such algorithms interpret the array as a binary tree (rooted at entry n/2,
with the two children n/4, 3n/4, etc.), and never query a node (other than the root) before
querying its parent.

I Theorem 3 (∗). For every c ∈ N and k ∈ {klies, kfaults}, no algorithm operating on the
search tree can find e with less than log n + ck queries in general.1

We show how to translate any algorithm with a performance guarantee with respect
to klies to an algorithm with the same guarantee for kfaults.

I Theorem 4 (∗). Let f : N2 → N. If we can find e with f(n, klies) queries, then we can
find e with f(n, kfaults) queries.

4 Searching disordered arrays

In this section, we consider the problem of finding the index pos(e) of an element e in array A

of length n = 2d, d ∈ N. In contrast to Section 3, we do not assume A to be sorted but
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kainv

kbswap krbswap kswap kaswap =kinv ksum

kbmov

krep =kmov =kseq kmax

2
2

2

2

Figure 1 Overview of relations between measures of disorder. A solid black path from k to k′

means that k ≤ ck′, where c is the product of the edge labels along the path (c = 1 for unlabeled
edges). If there is no solid black path from k to k′, then k cannot be bounded by ck′ for any constant c.
Every arc is proved explicitly in the full paper (dashed red arcs correspond to unboundedness results),
and all other relationships are implied.

expect all queries to yield correct results. We study a variety of parameters that quantify
the disorder of A and provide algorithms and lower bounds with respect to the different
parameters. Figure 1 gives the relationship between every pair of parameters.

4.1 Bounded displacement
We first consider the two parameters ksum and kmax that quantify the displacement of
elements between A and the sorted counterpart A? of A. More precisely, we define ksum :=∑

x∈A | pos(x)− rank(x)| and kmax := maxx∈A |pos(x)− rank(x)|. We obtain the following
bounds.

I Theorem 5 (∗). log n/ksum + 2ksum +O(1) queries are necessary1 and sufficient to find e.

I Theorem 6 (∗). log n/kmax + 3kmax +O(1) queries are necessary1 and sufficient to find e.

4.2 Inversions
We now consider the number of inversions between elements of the array A. More precisely,
we define the number of inversions to be kinv := |{i < j : A[i] > A[j]}|, and the number
of adjacent inversions to be kainv := |{i : A[i] > A[i + 1]}|. We have ksum ≤ kinv ≤ 2ksum,
therefore the results for ksum (Theorem 5) carry over to kinv with a gap of 2.

I Corollary 7. Every search algorithm needs at least log n/kinv + 2kinv +O(1) queries1, and
we can find e obliviously with log n/kinv + 4kinv +O(1) queries.

In general, we cannot hope to obtain results of similar quality for the smaller para-
meter kainv; already for kainv = 1 any search algorithm needs to query all n elements.

I Proposition 8. For kainv ≥ 1, no algorithm can find e with less than n queries.

Fortunately, we can do much better if the target e is guaranteed to be in the correct
position relative to sorted order, i.e., if pos(e) = rank(e). Note that this restriction still
allows us to prove a lower bound on the necessary number of queries that is much larger than
all preceding results. We complement this lower bound by a search algorithm that matches it
tightly (up to lower-order terms). Both upper and lower bound hinge on the question of how
efficiently (in terms of queries) an algorithm can find a good estimate of rank(e) by querying
the array.

STACS 2017
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I Theorem 9 (∗). We can find e using 2
√

2nkainv + o(
√

nkainv) queries if pos(e) = rank(e).

Proof Sketch. We know that if e is in the array then pos(e) = rank(e). Since we know
neither value beforehand, the algorithm proceeds by determining an estimate of rank(e) over
two stages of queries. For the first stage, we define a block size p = c ·

√
n/kainv and query

every (p + 1)-st position. This partitions the array into (so far) unqueried blocks of size p,
which we classify into <<-, >>-, <>-, and ><-blocks according to the query outcomes for
the two positions adjacent to the block. Taking into account the number kainv of adjacent
inversions, the number of blocks of each type gives rise to an upper and a lower bound on
the number of elements that are smaller than e, and hence on the rank of e. Essentially, in
<<- and >>-blocks with no adjacent inversion there are p respectively 0 smaller elements,
whereas any number between 0 and p is possible if there is at least one adjacent inversion.
In ><-blocks any number between 0 and p of smaller elements is possible, but these blocks
must contain at least one adjacent inversion. In <>-blocks any number between 0 and p

of smaller elements is possible without adjacent inversions, but the number of <>-blocks
can be bounded by the number of ><-blocks and hence depending on kainv. Overall, this
leads to a range of positions that certainly contains the position of e, if e ∈ A. Unfortunately,
querying this range entirely would not lead to the claimed upper bound.

Upon second inspection, the unknown number of adjacent inversions in ><-blocks has
the biggest impact on the size of the range. Accordingly, the second stage performs a binary
search on each ><-block, which creates a number of (smaller) >>- and <<-blocks separated
by an empty ><-block between two queried positions (where the binary search terminates).
Thus, repeating the above analysis after the refinement, all ><-blocks are now of size zero
and their impact on the range of possible positions is reduced. The algorithm can now afford
to query this range entirely and either find e or be sure that it is not in A. The claimed
bound is obtained by choosing the value of c in the block size p in order to balance the cost
of making the initial queries and the cost of eventually querying the computed range. J

I Theorem 10 (∗). Every search algorithm needs at least 2
√

2nkainv − o(
√

nkainv) queries1,
even if pos(e) = rank(e).

Proof Sketch. We outline an adversarial strategy for replying to queries. This strategy needs
to avoid revealing the position of e before the claimed number of queries, and simultaneously
needs to maintain that at least one realization of the array remains that is consistent with
the replies made so far, and that has at most kainv adjacent inversions and pos(e) = rank(e).

At the beginning, our strategy replies with ‘<’ to queries in the first half of A and with ‘>’
to queries in the second half. At some point, we may not be able to place e in one of the two
halves anymore: Say that the rightmost unqueried position in the left half has p positions
on its right for which we already committed to ‘<’. Since pos(e) = rank(e), the number of
elements smaller than e and on its right must be equal to the number of larger elements
on its left. Hence, a realization with e in the left half can only exist if there still remains
a way of placing p elements larger than e in the left half (leaving the rightmost unqueried
position for e), without causing more than kainv adjacent inversions. This is the case exactly
if we can still find a set of (roughly) at most kainv disjoint blocks of consecutive, unqueried
positions in the left half, which contain at least p unqueried positions overall. Analogously,
at some point, we may not be able to place e in the left half anymore. Our strategy continues
to reply to queries as before, until it has to commit to a realization and reply accordingly.
Careful analysis of the strategy yields that committing to a position for e can be avoided
until the claimed number of queries have been invested. J
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4.3 Edit distances
We now consider parameters that bound the number of elementary array modifications
needed to sort the given array A. More precisely, a replacement is the operation of replacing
one element with a new element, and we let krep be the (minimum) number of replacements
needed to obtain a sorted array. A swap is the exchange of the content of two array positions,
and kswap is the number of swaps needed to sort A. We let kaswap be the number of swaps
of pairs of neighboring elements needed to sort A. A move is the operation of removing an
element and re-inserting it after a given position i, shifting all elements between old and new
position by one. We let kmov be the number of moves needed to sort A.

Clearly, starting from a sorted array, we can move e to any position, without using more
than a single move or swap, or two replacements involving e. To find e we then have to query
the entire array.

I Proposition 11. For kmov ≥ 1, kswap ≥ 1, or krep ≥ 2, no algorithm can find e with less
than n queries in general.

We can obtain significantly improved bounds if the element e remains at its correct
position relative to the sorted array. Recall that we can interpret kfaults as a measure of
disorder via kfaults(e) = |i : (i < pos(e) ∧A[i] > e) ∨ (i > pos(e) ∧A[i] < e)|.

I Lemma 12 (∗). If rank(e) = pos(e), then kfaults(e) ≤ min{2krep, 4kswap, 2kmov}.

With this lemma, we can translate the upper bounds of any algorithm for klies. Before
we do, we introduce another measure of disorder, that turns out to be closely related to kmov.
We define the parameter kseq to be such that n−kseq is the length of a longest nondecreasing
subsequence in A. It turns out that kmov = kseq, and we can thus include this parameter in
our upper bound.

I Theorem 13 (∗). Let f : N2 → N. If rank(e) = pos(e) and we can find e with f(n, klies)
queries, then we can find e with min{f(n, 2krep), f(n, 4kswap), f(n, 2kmov), f(n, 2kseq)} quer-
ies.

We can also carry over the lower bound from parameter kfaults.

I Corollary 14. For every c ∈ N and pos(e) = rank(e), no algorithm operating on the search
tree can find e with less than log n + ck queries in general, for k ∈ {krep, kswap, kmov, kseq}.1

Finally, we immediately obtain bounds for kaswap from Corollary 7, because kaswap = kinv.

I Corollary 15. Every search algorithm needs at least log n/kaswap + 2kaswap +O(1) queries1,
and we can find e obliviously with log n/kaswap + 4kaswap +O(1) queries.

4.4 Block edit distances
In this section we consider the parameters kbswap, krbswap, and kbmov, which bound the number
of block edit operations needed to sort A. A block is defined to be a subarray A[i, i + 1, . . . , j]
of consecutive elements. A block swap is the operation of exchanging a subarray A[i, . . . , j]
with a subarray A[i′, . . . , j′] and vice versa, where i < j < i′ < j′. Note that a block swap
may affect the positions of other elements in case that the two blocks are of different sizes.
The parameter kbswap bounds the number of block swaps needed to sort A. For krbswap we
only allow block swaps restricted to pairs of blocks of equal sizes. Finally, for kbmov one of
the two blocks must be empty, i.e., only block moves are allowed. For all three parameters
one can easily prove that, without further restrictions, search algorithms need to query all
positions of an array to find the target.

STACS 2017
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I Proposition 16. For kbswap ≥ 1, krbswap ≥ 1, or kbmov ≥ 1, no algorithm can find e with
less than n queries.

Complementing this lower bound, for all of three parameters, an upper bound of O(
√

nk)
for finding e when pos(e) = rank(e) follows immediately from the results for kainv of Section 4.2
and the fact that kainv ≤ 2kbswap and kbswap ≤ min{krbswap, kbmov}. By inspecting the upper
and lower bounds proved for kainv, and adapting the proofs, we are able to obtain tight
leading constants in the upper and lower bounds for kbmov and kbswap, and leading constants
within a factor of

√
2 for krbswap.

I Theorem 17 (∗). If pos(e) = rank(e), then 4
√

nkbswap + o(
√

nkbswap) queries are neces-
sary1 and sufficient to find e.

I Theorem 18 (∗). If pos(e) = rank(e), then 2
√

2nkrbswap + o(
√

nkrbswap) queries are
necessary1 and 4

√
nkrbswap + o(

√
nkrbswap) queries are sufficient to find e.

I Theorem 19 (∗). If pos(e) = rank(e), then 2
√

2nkbmov+o(
√

nkbmov) queries are necessary1
and sufficient to find e.

5 Conclusion

We presented upper and lower bounds for the worst-case query complexity of comparison-
based search algorithms that are robust to persistent and temporary read errors, or are
adaptive to partially disordered input arrays. For many cases we gave algorithms that are
optimal up to lower order terms. In addition, many of the algorithms are oblivious to the
value of the parameter quantifying errors/disorder, assuming the target element is present
in the array. In most cases, for small values of k, the dependence of our algorithms on the
number n of elements is close to log n, with only additive dependency on the number of
imprecisions. In other words, these results smoothly interpolate between parameter regimes
where algorithms are as good as binary search and the unavoidable worst-case where linear
search is best possible.

That said, why should one be interested in, e.g., almost tight bounds relative to the
number of block moves that take A to a sorted array, as the bounds are far from binary
search? The point is that only the total number of comparisons matter, and having a worse
function that depends on a (in this case) much smaller parameter value can be favorable
to having a much better function of a large parameter value. E.g., after a constant number
of block swaps the parameters kmax, ksum etc. may have value Ω(n) and the guaranteed
bound becomes trivial, while running the search algorithm for the case of few block swaps
guarantees O(

√
n) comparisons. Similarly, having tight bounds for the various parameters

gives us the exact (worst-case) regime for the chosen parameter (in terms of n) where a
sophisticated algorithm can outperform linear search, or even be as good as binary search.

Despite having already asymptotic tightness, it would be interesting to close the gaps
between coefficients of dominant terms in upper and lower bounds for some of the cases.
Another question would be to find a different restriction than pos(e) = rank(e), i.e., the
target being in the correct position relative to sorted order, that avoids degenerate lower
bounds of Ω(n) queries for several parameters. A relaxation to allowing a target displacement
of ` and giving cost in terms of n, k, and ` seems doable in most cases, but is unlikely to be
particularly insightful. Finally, it seems interesting to study whether randomization could
lead to improved algorithms for some of the cases. The analysis of randomized lower bounds
requires entirely new adversarial strategies since the adversary must choose an instantiation
without access to the random bits of the algorithm.
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