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Abstract
The Orbit Problem consists of determining, given a linear transformation A on Qd, together

with vectors x and y, whether the orbit of x under repeated applications of A can ever reach y.
This problem was famously shown to be decidable by Kannan and Lipton in the 1980s.

In this paper, we are concerned with the problem of synthesising suitable invariants P ⊆ Rd,
i.e., sets that are stable under A and contain x and not y, thereby providing compact and
versatile certificates of non-reachability. We show that whether a given instance of the Orbit
Problem admits a semialgebraic invariant is decidable, and moreover in positive instances we
provide an algorithm to synthesise suitable invariants of polynomial size.

It is worth noting that the existence of semilinear invariants, on the other hand, is (to the
best of our knowledge) not known to be decidable.
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1 Introduction

The Orbit Problem was introduced by Kannan and Lipton in the seminal papers [8, 9], and
shown there to be decidable in polynomial time, answering in the process a decade-old open
problem of Harrison on accessibility for linear sequential machines [7]. The Orbit Problem
can be stated as follows:

Given a square matrix A ∈ Qd×d together with vectors x, y ∈ Qd, decide whether
there exists a non-negative integer n such that Anx = y.

In other words, if one considers the discrete ‘orbit’ of the vector x under repeated applications
of the linear transformation A, does the orbit ever hit the target y? Although it is not a
priori obvious that this problem is even decidable, Kannan and Lipton showed that it can
in fact be solved in polynomial time, by making use of spectral techniques as well as some
sophisticated results from algebraic number theory.

In instances of non-reachability, a natural and interesting question is whether one can
produce a suitable invariant as certificate, i.e., a set P ⊆ Rd that is stable under A (in the
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sense that AP ⊆ P) and such that x ∈ P and y /∈ P. The existence of such an invariant
then immediately entails by induction that the orbit of x does indeed avoid y.

Invariants appear in a wide range of contexts, from gauge theory, dynamical systems,
and control theory in physics, mathematics, and engineering to program verification, static
analysis, abstract interpretation, and programming language semantics (among others)
in computer science. Automated invariant synthesis is a topic of active current research,
particularly in the fields of theorem proving and program verification; in the latter, for
example, one might imagine that y corresponds to a faulty or undesirable program state,
and an invariant P as described above amounts to a succinct ‘safety’ certificate (here the
program or procedure in question corresponds to a simple while loop with linear updates).

The widespread use of invariants should not come as a surprise. In addition to their
obvious advantage in constituting easily understandable safety certificates, their inductive
nature makes them ideally suited to modular reasoning, often allowing one to analyse complex
systems by breaking them down into simpler parts, each of which can then be handled in
isolation. Invariants, viewed as safety certificates, also enable one to reason over large sets of
program states rather than individual instances: in the context of the Orbit Problem, for
example, an invariant P ⊆ Rd such that x ∈ P and y /∈ P doesn’t merely certify that y is not
reachable from x, but in fact guarantees that from any starting point x′ ∈ P , it is impossible
to reach any of the points y′ ∈ Rd \ P.

In general, when searching for invariants, one almost always fixes ahead of time a class of
suitable potential candidates. Indeed, absent such a restriction, one would point out that
the orbit O(x) = {Anx : n ≥ 0} is always by definition stable under A, and in instances of
non-reachability will therefore always constitute a safety invariant. Such an invariant will
however often not be of much use, as it will usually lack good algorithmic properties; for
example, as observed in [9], in dimension d = 5 and higher, the question of whether the orbit
O(x) reaches a given (d− 1)-dimensional hyperplane corresponds precisely to the famous
Skolem Problem (of whether an order-d linear recurrence sequence over the integers has a
zero), whose decidability has been open for over 80 years [12].

Thus let us assume that we are given a domain D ⊆ 2Rd of suitable potential invariants.
At a minimum, one would require that the relevant stability and safety conditions (i.e.,
for any P ∈ D, whether AP ⊆ P, x ∈ P, and y /∈ P) be algorithmically checkable (with
reasonable complexity). The following natural questions then arise:
1. In instances of non-reachability, does a suitable invariant in D always exist?
2. If not, can we characterise the exceptional instances in some way?
3. In instances of non-reachability, can we algorithmically determine whether a suitable

invariant in D exists, and when this is the case can we moreover synthesise such an
invariant?

1. and 3. are usually referred to as completeness and relative completeness respectively,
whereas 2. attempts to measure the extent to which completeness fails.

Main results. The main results of this paper concern the synthesis of semialgebraic invariants
for non-reachability instances of the Kannan-Lipton Orbit Problem, where the input is
provided as a triple (A, x, y) with all entries rational, and can be summarised as follows:

We prove that whether a suitable semialgebraic1 invariant exists or not is decidable in

1 A semialgebraic set is the set of solutions of a Boolean combination of polynomial inequalities, with the
polynomials in question having integer coefficients.
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polynomial space, and moreover in positive instances we show how to synthesise a suitable
invariant of polynomial size in polynomial space.
We provide a simple characterisation of instances of non-reachability for which there does
not exist a suitable semialgebraic invariant, and show that such instances are very ‘rare’,
in a measure-theoretic sense.

Since the existence of suitable semialgebraic invariants for the Orbit Problem does not
coincide precisely with non-reachability, our proof necessarily departs substantially from
that given by Kannan and Lipton in [8, 9]. In particular, handling negative instances relies
upon certain topological and geometrical insights into the structure of semialgebraic sets,
and positive instances require the explicit construction of suitable semialgebraic invariants of
polynomial size. We achieve this by making use of techniques from algebraic number theory
such as Kronecker’s Theorem on inhomogeneous simultaneous Diophantine approximation,
and Masser’s deep results on multiplicative relations among algebraic numbers.

The following three examples illustrate a range of phenomena that arise in searching for
semialgebraic invariants.

I Example 1. Consider the matrix

A = 1
5

(
4 −3
3 4

)
.

Matrix A defines a counterclockwise rotation around the origin by angle arctan(3/5), which
is an irrational multiple of π. Thus the topological closure of the orbit O = {x,Ax,A2x, . . .}
is a circle in R2. If y 6∈ O then O itself is clearly a suitable semialgebraic invariant. On other
hand, it can be shown that if y ∈ O \ O then there does not exist a suitable semialgebraic
invariant. (In passing, it is also not difficult to see that the only polygons P that are invariant
under A are ∅, {(0, 0)}, and R2.) More general orthogonal matrices can be handled along
similar lines to the present case, but the analysis is substantially more involved. In general,
the only cases in which y 6∈ O but there need not be a semialgebraic invariant are when the
matrix A is diagonalisable and all eigenvalues have modulus one, as in the case at hand.

I Example 2. Consider the matrix

A = 4
25


4 −3 4 −3
3 4 3 4
0 0 4 −3
0 0 3 4


Matrix A has spectral radius 4

5 and so Anx converges to 0 for any initial vector x ∈ Q4. Given
a non-zero target y ∈ Q4 that does not lie in the orbit x,Ax,A2x, . . ., a natural candidate for
an invariant is an initial segment of the orbit, together with some neighbourhood N of the
origin in R4 that excludes y and is invariant under A. Note though that A is not contractive
with respect to either the 1-norm or the 2-norm, so we cannot simply take N to be a ball of
suitably small radius with respect to either of these norms. However, for ε > 0, the set

Nε =
{
u ∈ R4 : u2

1 + u2
2 ≤ ε2 ∧ u2

3 + u2
4 ≤ 1

16ε
2}

is invariant under A. Thus we obtain a semialgebraic invariant as the union of Nε, where ε
is chosen sufficiently small such that y 6∈ Nε, together with an (easily computable) initial
segment of the orbit x,Ax,A2x, . . . comprising all points in the orbit that lie outside Nε.

STACS 2017
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I Example 3. Consider the following scaled version of the matrix from the previous example:

A = 1
5


4 −3 4 −3
3 4 3 4
0 0 4 −3
0 0 3 4

 .

Note that A is a non-diagonalisable matrix with spectral radius 1. Example 1 concerned an
orthogonal matrix, while the matrix in Example 2 was (morally speaking, if not literally)
length-decreasing. Here, by contrast, the idea is to identify a subset Q ⊆ R4 that is invariant
under A, together with a “length measure” f : Q → R that increases under application of A.
Fixing a constant c > 0, such a set is

Q =
{
u ∈ R4 : u2

1 + u2
2 ≥ c ∧ u1u3 + u2u4 ≥ 0

}
with length measure f(u) = u2

1 + u2
2. A key property of Q is that for any vector x ∈ R4 such

that x3 6= 0 or x4 6= 0, the orbit x,Ax,A2x, . . . eventually enters Q. By choosing c suitably
large, we can exclude y from Q. Thus we obtain an invariant as the union of Q and an
appropriate finite intitial segment of the orbit x,Ax,A2x, . . ..

We would like to draw the reader’s attention to the critical role played by the underlying
domain D of potential invariants. In the examples above as well as the rest of this paper, we
focus exclusively on the domain of semialgebraic sets. However one might naturally consider
instead the domain of semilinear sets, i.e., sets defined by Boolean combinations of linear
inequalities with integer coefficients, or equivalently consisting of finite unions of (bounded or
unbounded) rational polytopes. As pointed out above, in Example 1 no non-trivial instance
admits a semilinear invariant, whereas one can show that in Example 2 semilinear invariants
can always be found. Interestingly, the question of relative completeness (i.e., determining
in general whether or not a suitable semilinear invariant exists in non-reachability instances)
is not known to be decidable, and appears to be a challenging problem.

2 Preliminaries

It is convenient in this paper to work over the field of (complex) algebraic numbers, denoted
A. All standard algebraic operations, such as sums, products, root-finding of polynomials
and computing Jordan normal forms of matrices with algebraic entries can be performed
effectively; we refer the reader to [4] for more details on the matter.

An instance of the Orbit Problem, or Orbit instance for short, is given by a square matrix
A ∈ Ad×d and two vectors x, y ∈ Ad. The triple (A, x, y) is a reachability instance if there is
n ∈ N such that Anx = y, and otherwise is a non-reachability instance.

We are interested in non-reachability certificates given as invariants. Formally, given
an Orbit instance (A, x, y) in dimension d, a set P ⊆ Cd is a non-reachability invariant if
AP ⊆ P, x ∈ P, and y /∈ P.

For the remainder of this paper, we focus on semialgebraic invariants. Identifying Cd with
R2d, a set P is semialgebraic if it is the set of real solutions of some Boolean combination of
polynomial inequalities with integer coefficients.

A central result about semialgebraic sets is the Tarski-Seidenberg Theorem: if S ⊆
Rn+1 is semialgebraic then the image π(S) under the projection π : Rn+1 → Rn, where
π(x1, . . . , xn+1) = (x1, . . . , xn), is also semialgebraic. Among the consequences of this result
is the fact that the topological closure of a semialgebraic set (in either Rn or Cn) is again
semialgebraic.
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3 Semialgebraic Invariants

Our main result is the following.

I Theorem 4. It is decidable whether an Orbit instance admits a semialgebraic invariant.
Furthermore, there exists an algorithm which constructs such an invariant when it exists,
and the invariant produced has polynomial-size description.

The remainder of the paper is devoted to proving Theorem 4. To this end, let ` = (A, x, y)
be a non-reachability Orbit instance in dimension d.2

As a first step, recall that every matrix A can be written in the form A = Q−1JQ, where
Q is invertible and J is in Jordan normal form. The following lemma transfers semialgebraic
invariants through the change-of-basis matrix Q.

I Lemma 5. Let ` = (A, x, y) be an Orbit instance, and Q an invertible matrix in Ad×d.
Construct the Orbit instance `Q = (QAQ−1, Qx,Qy). Then P is a semialgebraic invariant

for `Q if, and only if, Q−1P is a semialgebraic invariant for `.

Proof. First of all, Q−1P is semialgebraic if, and only if, P is semialgebraic. We have:
QAQ−1P ⊆ P if, and only if, AQ−1P ⊆ Q−1P,
Qx ∈ P if, and only if, x ∈ Q−1P,
Qy /∈ P, if, and only if, y /∈ Q−1P.

This concludes the proof. J

Thanks to Lemma 5, we can reduce the problem of the existence of semialgebraic invariants
for Orbit instances to cases in which the matrix is in Jordan normal form, i.e., is a diagonal
block matrix, where the blocks (called Jordan blocks) are of the form:

λ 1

λ
. . .
. . . 1

λ


Note that this transformation can be achieved in polynomial time [1, 2].

Formally, a Jordan block is a matrix λI +N with λ ∈ A, I the identity matrix and N
the matrix with 1’s on the upper diagonal, and 0’s everywhere else. The number λ is an
eigenvalue of A. A Jordan block of dimension one is called diagonal, and A is diagonalisable
if, and only if, all Jordan blocks are diagonal.

The d dimensions of the matrix A are indexed by pairs (J, k), where J ranges over the
Jordan blocks and k ∈ {1, . . . , δ} where δ is the dimension of the Jordan block J . For
instance, if the matrix A has two Jordan blocks, J1 of dimension 1 and J2 of dimension
2, then the three dimensions of A are (J1, 1) (corresponding to the Jordan block J1) and
(J2, 1), (J2, 2) (corresponding to the Jordan block J2).

For a vector v and a subset S of {1, . . . , d}, we denote vS the projection vector of v on
the dimensions in S, and extend this notation to matrices. As a special case, vJ,>k denotes
the vector restricted to the coordinates of the Jordan block J whose index is greater than k.
We denote S the complement of S in {1, . . . , d}.

2 Kannan and Lipton showed the decidability of reachability for Orbit instances over rational numbers;
their proof carries over to instances with algebraic entries, however without the polynomial-time
complexity.
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There are a few degenerate cases which we handle now. We say that an Orbit instance
` = (A, x, y) in Jordan normal form is non-trivial if:

There is no Jordan block associated with the value 0, or equivalently A is invertible,
For each Jordan block J , both xJ and yJ are not the zero vector,
For each non-diagonal Jordan block J , the vector xJ has at least a non-zero coordinate
other than the first one, i.e., xJ,>1 is not the zero vector.

I Lemma 6. The existence of semialgebraic invariants for Orbit instances reduces in poyl-
nomial time to the same problem for non-trivial Orbit instances in Jordan normal form.

Proof. Let ` = (A, x, y) be an Orbit instance in Jordan normal form.
If A is not invertible, we distinguish two cases.

If for some Jordan block J associated with the eigenvalue 0, we have that y is not the
zero vector, i.e., yJ 6= 0, then consider P =

{
x,Ax, . . . , Ad−1x

}
∪
{
z ∈ Cd | zJ = 0

}
is

a semialgebraic invariant. Indeed, the Jordan block J is nilpotent, so for any vector u
and n ≥ d, we have that Jnu = 0, so in particular (Anx)J = 0. Moreover, since by
assumption y is not reachable, it is not one of Anx for n < d, and yJ 6= 0, so y /∈ P.
Otherwise, denote J the dimensions corresponding to Jordan blocks associated with the
eigenvalue 0, we have that yJ = 0. Consider the Orbit instance `J = (AJ , (A

dx)J , yJ ).
We claim that ` admits a semialgebraic invariant if, and only if, `J does.
Let P be a semialgebraic invariant for `. Construct PJ the set of vectors z in CJ
such that z augmented with 0’s in the J dimensions yields a vector in P, we argue
that PJ is a semialgebraic invariant for `J . Indeed, (Adx)J ∈ PJ since Adx ∈ P and
(Adx)J = 0, because the Jordan block J is nilpotent. The stability of PJ under AJ is
clear, and yJ /∈ PJ because yJ = 0, so yJ ∈ PJ would imply y ∈ P.
Conversely, let PJ be a semialgebraic invariant for `J , extend it to P ⊆ Cd by
allowing any complex numbers in the J dimensions, then

{
x,Ax, . . . , Ad−1x

}
∪ P is a

semialgebraic invariant for `.
We reduced the existence of semialgebraic invariants from ` to `J , with the additional
property that the matrix is invertible.

Suppose A contains a Jordan block J such that either xJ = 0 or yJ = 0. We distinguish
three cases.

If for some Jordan block J we have xJ = 0 and yJ 6= 0, then P =
{
z ∈ Cd | zJ = 0

}
is

a semialgebraic invariant for `.
If for some Jordan block J we have xJ 6= 0 and yJ = 0, let k such that xJ,k 6= 0 and
xJ,>k = 0, then P =

{
z ∈ Cd | zJ,k 6= 0 and zJ,>k = 0

}
is a semialgebraic invariant for

`.
Otherwise, denote J the dimensions corresponding to Jordan blocks for which xJ =
yJ = 0. Consider the Orbit instance `J = (AJ , xJ , yJ), we claim that ` admits a
semialgebraic invariant if, and only if, `J does.
Let P be a semialgebraic invariant for `. Construct PJ the set of vectors z in CJ
such that z augmented with 0 in the J dimensions yields a vector in P, then PJ is a
semialgebraic invariant for `J .
Conversely, let PJ be a semialgebraic invariant for `J , extend it to P ⊆ Cd by allowing
only 0 in the J dimensions, then P is a semialgebraic invariant for `.
We reduced the existence of semialgebraic invariants from ` to `J , with the additional
property that for each Jordan block J , both xJ and yJ are not the zero vector.

If A contains a non-diagonal Jordan block J such that the vector xJ is zero except on
the first coordinate (J, 1), we distinguish two cases.
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O xJ,k

λxJ,k
λ2xJ,k

λ3xJ,k

λ4xJ,k

λ5xJ,k

λ6xJ,k

λ7xJ,k

P

yJ,k

Figure 1 Case |λ| > 1. This figure represents the complex plane, which is the projection on the
coordinate (J, k).

If for some non-diagonal Jordan block J we have that xJ,>1 = 0 and yJ,>1 6= 0, then
P =

{
z ∈ Cd | zJ,>1 = 0

}
is a semialgebraic invariant for `.

Otherwise, denote J the dimensions corresponding to non-diagonal Jordan blocks for
which xJ,>1 = yJ,>1 = 0. Let S = J ∪

⋃
J(J, 1), i.e., the dimensions outside J plus

the first dimensions of each block in J . Consider the Orbit instance `S = (AS , xS , yS),
we claim that ` admits a semialgebraic invariant if, and only if, `S does.
Let P be a semialgebraic invariant for `. Construct PS the set of vectors z in CS
such that z augmented with 0 in the S dimensions yields a vector in P, then PS is a
semialgebraic invariant for `S .
Conversely, let PS be a semialgebraic invariant for `S , extend it to P ⊆ Cd by allowing
only 0 in the S dimensions, then P is a semialgebraic invariant for `.
We reduced the existence of semialgebraic invariants from ` to `S , with the additional
property that for each non-diagonal Jordan block J , xJ,>1 is not the zero vector.

This concludes the proof. J

3.1 Some eigenvalue has modulus different from one

I Lemma 7. Let ` = (A, x, y) be a non-trivial Orbit instance in Jordan normal form. Assume
that ` is a non-reachability instance. If the matrix A has an eigenvalue whose modulus is not
equal to 1, then there exists a semialgebraic invariant for `.

Proof. We distinguish two cases according to whether there exists an eigenvalue of modulus
strictly more than 1 or en eigenvalue of modulus strictly less than 1.

Suppose that A contains a Jordan block J associated with an eigenvalue λ with |λ| > 1.
In this case, some coordinate of (Anx)n∈N diverges to infinity, so eventually gets larger
in modulus than the corresponding coordinate in y. This allows us to construct a

STACS 2017
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semialgebraic invariant for ` by taking the first points and then all points having a large
coordinate in the diverging dimension. This case is illustrated in Figure 1.
By assumption xJ is non-zero, let k such that xJ,k 6= 0 and xJ,>k = 0 (Note that if the
Jordan block J is diagonal, k = 1). For all n ∈ N, we have (Anx)J,k = λnxJ,k, so |(Anx)J,k|
diverges to infinity. It follows that there exists n0 ∈ N such that |(An0x)|J,k > |yJ,k|. Let

P =
{
x,Ax, . . . , An0−1x

}
∪
{
z ∈ Cd | |zJ,k| ≥ |(An0x)J,k| and zJ,>k = 0

}
.

We argue that P is a semialgebraic invariant for `. The non-trivial point is that P
is stable under A. Note that (An0x)J,>k = 0, so An0x ∈ P. Let z ∈ Cd such that
|zJ,k| ≥ |(An0x)J,k| and zJ,>k = 0. Then (Az)J,k = λzJ,k and (Az)J,>k = 0, so Az ∈ P.
If A contains a Jordan block J associated with an eigenvalue λ with |λ| < 1.
The situation is similar to the former, except that the convergence is towards the origin.
The construction of the semialgebraic invariant is much more subtle though, for the
following reason: for k such that xJ,k 6= 0 and xJ,>k = 0, we may have that yJ,k = 0,
implying that ((Anx)J,k)n∈N does not become smaller than yJ,k. Working on another
dimension implies to give up the following diagonal behaviour: (Anx)J,k = λnxJ,k, making
it hard to find a stable set under A. To overcome this problem, the invariant we define
depends upon all the coordinates of the Jordan block J .
Denote d(J) the dimension of the Jordan block J . We have that ((Anx)J )n∈N converges
to 0. It follows that there exists n0 ∈ N such that for each dimension k of the Jordan
block J , i.e., for k ∈ {1, . . . , d(J)}, we have |(An0x)J,k| ≤ (1− |λ|)k · ||yJ ||∞.
Let

P =
{
x,Ax, . . . , An0−1x

}
∪
{
z ∈ Cd | ∀k ∈ {1, . . . , d(J)} , |zJ,k| ≤ (1− |λ|)k · ||yJ ||∞

}
.

We argue that P is a semialgebraic invariant for `. Note that y /∈ P since for k such that
||yJ ||∞ = |yJ,k|, this would imply ||yJ ||∞ ≤ (1 − |λ|)k · ||yJ ||∞, which cannot be since
k ≥ 1, yJ 6= 0 and |λ| < 1. We examine the stability of P under A. Let z ∈ Cd such that
for each dimension k ∈ {1, . . . , d(J)}, we have |zJ,k| ≤ (1− |λ|)k · ||yJ ||∞. Let k < d(J),
then

|(Az)J,k| = |λzJ,k + zJ,k+1| ≤ |λ||zJ,k|+ |zJ,k+1|
≤ |λ|(1− |λ|)k · ||yJ ||∞ + (1− |λ|)k+1 · ||yJ ||∞
= (|λ|+ (1− |λ|))(1− |λ|)k · ||yJ ||∞
= (1− |λ|)k · ||yJ ||∞.

The case k = d(J) is similar but easier.
This concludes the proof. J

3.2 All eigenvalues have modulus one and the matrix is not
diagonalisable

I Lemma 8. Let ` = (A, x, y) be a non-trivial Orbit instance in Jordan normal form and
assume that ` is a non-reachability instance. If all the eigenvalues of the matrix A have
modulus 1 and A is not diagonalisable, then there exists a semialgebraic invariant for `.

We illustrate the construction of the semialgebraic invariant in an example following the
proof. (See also Example 3 from the Introduction.)



N. Fijalkow, P. Ohlmann, J. Ouaknine, A. Pouly, and J. Worrell 29:9

Proof. By assumption, there exists a non-diagonal Jordan block J . Since ` is non-trivial,
x has a non-zero coordinate in J which is not the first one. Let k such that xJ,k 6= 0 and
xJ,>k = 0, we have k ≥ 2 and

(Anx)J,k−1 = λnxJ,k−1 + nλn−1xJ,k,

so (|(Anx)J,k−1|)n∈N diverges to infinity since |λ| = 1. It follows that there exists n0 ∈ N such
that |(An0x)J,k−1| > |yJ,k−1|. Without loss of generality we assume n0 ≥ − 〈λxJ,k−1,xJ,k〉

|xJ,k|2 .
The notation 〈u, v〉 designates the scalar product of the complex numbers u and v viewed as
vectors in R2, defined by Re (uv). This quantity will appear later; note that it only depends
on x and A.

Let

P =
{
x,Ax, . . . , An0−1x

}
∪
{
z ∈ Cd

∣∣∣∣ |zJ,k−1| ≥ |(An0x)J,k−1|, and
〈λzJ,k−1, zJ,k〉 ≥ 0, and zJ,>k = 0

}
.

We argue that P is a semialgebraic invariant for `. It is a semialgebraic set: the condition
〈λzJ,k−1, zJ,k〉 ≥ 0 is of the form P (z) ≥ 0 for a polynomial P with algebraic coefficients,
where z is seen as a vector in R2d. The part to be looked at closely is the stability of P
under A.

First, An0x ∈ P. Indeed, using |λ| = 1 and the assumption on n0:

〈λ(An0x)J,k−1, (An0x)J,k〉 = 〈λ ·
(
λn0xJ,k−1 + n0λ

n0−1xJ,k
)
, λn0xJ,k〉

= |λn0 |2〈λxJ,k−1, xJ,k〉+ n0|λn0xJ,k|2
= 〈λxJ,k−1, xJ,k〉+ n0|xJ,k|2
≥ 0.

Now, let z ∈ Cd such that |zJ,k−1| ≥ |(An0x)J,k−1|, 〈λzJ,k−1, zJ,k〉 ≥ 0 and zJ,>k = 0.
We have (Az)J,k−1 = λzJ,k−1 + zJ,k, (Az)J,k = λzJ,k and (Az)J,>k = 0. It follows that:

|(Az)J,k−1|2 = |λzJ,k−1 + zJ,k|2

= |zJ,k−1|2 + 2〈λzJ,k−1, zJ,k〉+ |zJ,k|2
≥ |zJ,k−1|2
≥ |(An0x)J,k−1|2 ,

and:

〈λ(Az)J,k−1, (Az)J,k〉 = 〈λ(λzJ,k−1 + zJ,k), λzJ,k〉
= |λ|2〈λzJ,k−1 + zJ,k, zJ,k〉
= 〈λzJ,k−1, zJ,k〉+ |zJ,k|2
≥ 0.

Hence Az ∈ P, and P is a semialgebraic invariant for `. J

I Example 9. Consider the following matrix:

A =
[
eiθ 1
0 eiθ

]
,

where θ ∈ R is an angle such that θ
π /∈ Q. We start from the vector x = [1, 1]T . We have

Anx =
[
einθ + nei(n−1)θ, einθ

]
,
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so the projection on the second coordinate is a dense subset of the unit circle, and the
projection on the first coordinate describes a growing spiral (similar to that shown in
Figure 1). A tentative invariant for excluding some vector y is the complement of a circle on
the first coordinate, large enough not to include y. However, this set is not a priori invariant.
Geometrically, the action of A on a vector [z1, z2] is to rotate both z1 and z2 by an angle of
θ, and to push the first coordinate in the direction of z2:

A [z1, z2] =
[
eiθz1 + z2, e

iθz2
]
.

A natural way to restrict the above set to make it invariant is to ensure that z2 pushes away
from the origin, i.e., that the norm of (Az)1 increases. This is achieved by requiring that
〈eiθz1, z2〉 ≥ 0.

3.3 All eigenvalues have modulus one and the matrix is diagonalisable
This case is the most involved and is the only one in which it might hold that y not be
reachable and yet no semialgebraic invariant exists. (Recall Example 1 from the Introduction.)
Using results from Diophantine approximation and algebraic number theory, we show that
the topological closure of the orbit {Anx : x ∈ N} is (effectively) semialgebraic. Furthermore,
using topological properties of semialgebraic sets we show that any semialgebraic invariant
must contain the closure of the orbit. It follows that there exists a semialgebraic invariant
just in case y 6∈ {Anx : x ∈ N}.

We start with the following topological fact about semialgebraic sets.

I Lemma 10. Let E,F ⊆ Rn be two sets such that E = F and F is semialgebraic. Then
E ∩ F 6= ∅.

Proof. The proof uses the notion of the dimension of a semialgebraic set. The formal definition
of dimension uses the cell-decomposition theorem (see, e.g., [5, Chapter 4]). However to
establish the lemma it suffices to note the following two properties of the dimension. First,
for any semi-algebraic set X ⊆ Rn set we have dim(X) = dim(X) [5, Chapter 4, Theorem
1.8]. Secondly, if X ⊆ Y are semi-algebraic subsets of Rn that have the same dimension,
then X has non-empty interior in Y [5, Chapter 4, Corollary 1.9].

In the situation at hand, since dim(F ) = dim(F ) it follows that F has non-empty interior
(with respect to the subspace topology) in F = E. But then E is dense in E while F has
non-empty interior in E, and thus E and F meet. J

I Lemma 11. Let ` = (A, x, y) be an Orbit instance, where A = diag(λ1, . . . , λd) is a diagonal
d× d matrix with entries λ1, . . . , λd ∈ C all having modulus one. Write O = {Anx : n ∈ N}
for the orbit of x under A. Then

The topological closure of O in Cd is a semi-algebraic set that is computable from ` in
polynomial space.
Any semi-algebraic invariant for ` contains O.

Proof. We start by proving the first item.
Write T for the unit circle in C. Let

LA =
{
v ∈ Zd | λv1

1 · · ·λ
vd

d = 1
}

be the set of all multiplicative relations holding among λ1, . . . , λd. Notice that LA is an
additive subgroup of Zd. Consider the set of diagonal d× d matrices

TA =
{

diag(µ1, . . . , µd) | µ ∈ Td and ∀v ∈ LA (µv1
1 · · ·µ

vd

d = 1)
}
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whose diagonal entries satisfy the multiplicative relations in LA. Notice that TA forms a
group under matrix multiplication that is also a closed subset of Cd×d.

Using Kronecker’s Theorem on inhomogeneous simultaneous Diophantine approxima-
tion [3], it is shown in [11, Proposition 3.5] that {An : n ∈ N} is a dense subset of TA. This
immediately gives

O = {Anx : n ∈ N} = {Mx : M ∈ TA} . (1)

We now show that O is semi-algebraic. Observe that LA is finitely generated, being a
subgroup of a finitely generated group. Moreover, if B ⊆ LA is a basis of LA then we can
write

TA =
{

diag(µ1, . . . , µd) | µ ∈ Td and ∀v ∈ B (µv1
1 · · ·µ

vd

d = 1)
}
.

It follows that TA is a semi-algebraic subset of Cd×d and thus from (1) that O is a semi-
algebraic set.

From an upper bound on the length of B due to Masser [10], it can be shown that one
can compute a basis for LA in polynomial space in the description of A (see [11, Corollary
3.3]) and thereby compute a description of TA as a semi-algebraic set, also in polynomial
space in the description of A.

Now we move to the second item in the statement of the lemma. Let P be a semi-algebraic
invariant for `. Our goal is to show that O ⊆ P. To show this we can, without loss of
generality, replace P by P ∩ O, since the latter is also a semi-algebraic invariant. Moreover,
since any invariant necessarily contains the orbit O, we may suppose that O ⊆ P ⊆ O, and
hence P = O.

We now prove that O ⊆ P , that is, we pick an arbitrary element z ∈ O and show that z ∈
P . To this end, consider the orbit of z under the matrix A−1. Now A−1 = diag(λ−1

1 , . . . , λ−dd )
and we may define groups LA−1 and TA−1 analogously with LA and TA. In fact it is clear
that LA and LA−1 coincide (i.e., λ1, . . . , λd satisfy exactly the same multiplicative relations
as λ−1

1 , . . . , λ−1
d ), and hence also TA = TA−1 .

Now we claim that the following chain of equalities holds:

{A−nz : n ∈ N} = {Mz : M ∈ TA−1} (2)
= {Mz : M ∈ TA} (3)
= {Mx : M ∈ TA} (4)
= O = P .

Indeed, Equation (2) is an instance of (1), but with A−1 and z in place of A and x. Equation
(3) follows from the fact that TA = TA−1 . To see Equation (4), observe from (1) that z has
the form M0x for some M0 ∈ TA. But {MM0x : M ∈ TA} = {Mx : M ∈ TA} since TA,
being a group, contains M−1

0 .
Now we have established that

{A−nz : n ∈ N} = P .

Then by Lemma 10 we have that A−nz lies in P for some n ∈ N. But since P is invariant
under A we have z ∈ P. J

I Corollary 12. Let the Orbit instance ` be as described in Lemma 11. Then ` admits a
semi-algebraic invariant if and only if y /∈ O.
Proof. If y /∈ O, then O is a semi-algebraic invariant for ` by the first item in Lemma 11.
Conversely, if there exists a semi-algebraic invariant P for `, then O ⊆ P by the second item
in Lemma 11, implying that y /∈ O. J
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3.4 Proof of Theorem 4
We now draw together the results of the previous sections to prove our main result, Theorem 4,
giving an effective characterisation of the existence of semialgebraic invariants and a procedure
to compute such an invariant when it exists.

Let ` = (A, x, y) be a non-reachability Orbit instance. First we put A in Jordan normal
form and simplify ` to obtain a non-trivial Orbit instance. We then divide into three cases.

If some eigenvalue of A has modulus different from 1 then there is a semialgebraic invariant
(see Section 3.1).
If all eigenvalues have modulus 1 and the matrix is not diagonalisable then there is a
semialgebraic invariant (see Section 3.2).
If all eigenvalues have modulus 1 and the matrix is diagonalisable, then there exists a
semialgebraic invariant if and only if the topological closure of the orbit {Anx : n ∈ N}
is such an invariant, which holds if and only if the closure does not contain y (see
Section 3.3). Note therefore that non-reachability Orbit instances for which there do not
exist semialgebraic invariants are extremely sparse.

Thus we obtain an effective characterisation of the class of Orbit instances for which there
exists a semialgebraic invariant. Moreover in those cases in which there exists an invariant
we have shown how to compute such an invariant in polynomial space.

4 Conclusions

This paper is a first step towards the study of invariants for discrete linear dynamical
systems. At present, the question of the existence and of the algorithmic synthesis of suitable
invariants for higher-dimensional versions of the Orbit Problem (i.e., when the ‘target’ y to
be avoided consists of either a vector space, a polytope, or some other higher-dimensional
object) is completely open. Given, as pointed out earlier, that reachability questions with
high-dimensional targets appear themselves to be very difficult, one does not expect the
corresponding invariant synthesis problems to be easy, yet this approach might prove a
tractable alternative well worth exploring.

Our main result is a polynomial-space procedure for deciding existence and computing
semialgebraic invariants in instances of the Orbit Problem. The only obstacle to obtaining a
polynomial-time bound is the problem of computing a basis of the group of all multiplicative
relations among a given collection of algebraic numbers α1, . . . , αd, which is not known to be
solvable in polynomial time. Less ambitiously one can ask for a polynomial-time procedure
to verify a putative relation αn1

1 . . . αnd

d

?= 1. Assuming that α1, . . . , αd are represented as
elements of an explicitly given finite-dimensional algebra K over Q, Ge [6] gave a polynomial-
time algorithm for verifying multiplicative relations. In our setting, however, where α1, . . . , αd
are roots of the characteristic polynomial of matrix A, the dimension of K may be exponential
in d.
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