
Circuit Evaluation for Finite Semirings∗

Moses Ganardi1, Danny Hucke2, Daniel König3, and
Markus Lohrey4

1 University of Siegen, Siegen, Germany
ganardi@eti.uni-siegen.de

2 University of Siegen, Siegen, Germany
hucke@eti.uni-siegen.de

3 University of Siegen, Siegen, Germany
koenig@eti.uni-siegen.de

4 University of Siegen, Siegen, Germany
lohrey@eti.uni-siegen.de

Abstract
The circuit evaluation problem for finite semirings is considered, where semirings are not assumed
to have an additive or multiplicative identity. The following dichotomy is shown: If a finite
semiring R (i) has a solvable multiplicative semigroup and (ii) does not contain a subsemiring
with an additive identity 0 and a multiplicative identity 1 6= 0, then its circuit evaluation problem
is in DET ⊆ NC2. In all other cases, the circuit evaluation problem is P-complete.
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1 Introduction

Circuit evaluation problems are among the most well-studied computational problems
in complexity theory. In its most general formulation, one has an algebraic structure
A = (D, f1, . . . , fk), where the fi are mappings fi : Dni → D. A circuit over the structure A
is a directed acyclic graph (dag) where every inner node is labelled with one of the operations
fi and has exactly ni incoming edges that are linearly ordered. The leaf nodes of the dag are
labelled with elements of D (for this, one needs a suitable finite representation of elements
from D), and there is a distinguished output node. The task is to evaluate this dag in the
natural way, and to return the value of the output node.

In his seminal paper [19], Ladner proved that the circuit evaluation problem for the
Boolean semiring B2 = ({0, 1},∨,∧) is P-complete. This result marks a cornerstone in the
theory of P-completeness [15], and motivated the investigation of circuit evaluation problems
for other algebraic structures. A large part of the literature is focused on commutative
(possibly infinite) semirings [1, 23, 31] or circuits with certain structural restrictions (e.g.
planar circuits [14, 18, 27] or tree-like circuits [9, 24]). In [25], Miller and Teng proved that
circuits over any finite semiring can be evaluated with polynomially many processors in
time O((logn)(log dn)) on a CRCW PRAM, where n is the size of the circuit and d is the
formal degree of the circuit. The latter is a parameter that can be exponential in the circuit
size n. On the other hand, the authors are not aware of any NC-algorithms for evaluating
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35:2 Circuit Evaluation for Finite Semirings

general (exponential degree) circuits even for finite semirings. The lack of such algorithms is
probably due to Ladner’s result, which excludes efficient parallel algorithms in the presence
of a Boolean subsemiring unless P = NC. On the other hand, in the context of semigroups,
there exist NC-algorithms for circuit evaluation. In [8], the following dichotomy result was
shown for finite semigroups: If the finite semigroup is solvable (meaning that every subgroup
is a solvable group), then circuit evaluation is in NC (in fact, in DET, which is the class of
all problems that are AC0-reducible to the computation of an integer determinant [10, 11]),
otherwise circuit evaluation is P-complete.

In this paper, we extend the work of [8] from finite semigroups to finite semirings. On
first sight, Ladner’s result seems to exclude efficient parallel algorithms: It is not hard to
show that if the finite semiring has an additive identity 0 and a multiplicative identity 1 6= 0
(where 0 is not necessarily absorbing with respect to multiplication), then circuit evaluation
is P-complete, see Lemma 6. Therefore, we take the most general reasonable definition of
semirings: A semiring is a structure (R,+, ·), where (R,+) is a commutative semigroup,
(R, ·) is a semigroup, and · distributes (on the left and right) over +. In particular, we neither
require the existence of a 0 nor a 1. Our main result states that in this general setting
there are only two obstacles to circuit evaluation in NC: non-solvability of the multiplicative
structure and the existence of a zero and a one (different from the zero) in a subsemiring.
More precisely, we show the following two results, where a semiring is called {0, 1}-free if
there exists no subsemiring with an additive identity 0 and a multiplicative identity 1 6= 0:
1. If a finite semiring is not {0, 1}-free, then the circuit evaluation problem is P-complete.
2. If a finite semiring (R,+, ·) is {0, 1}-free, then its circuit evaluation problem can be solved

with AC0-circuits equipped with oracle gates for (a) graph reachability and (b) the circuit
evaluation problems for the commutative semigroup (R,+) and the semigroup (R, ·).

Together with the dichotomy result from [8] (and the fact that commutative semigroups are
solvable) we get the following result: For every finite semiring (R,+, ·), the circuit evaluation
problem is in NC (in fact, in DET) if (R, ·) is solvable and (R,+, ·) is {0, 1}-free. Moreover,
if one of these conditions fails, then circuit evaluation is P-complete.

The hard part of the proof is to show the above statement 2. We will proceed in two
steps. In the first step we reduce the circuit evaluation problem for a finite semiring R to the
evaluation of a so-called type admitting circuit. This is a circuit where every gate evaluates
to an element of the form eaf , where e and f are multiplicative idempotents of R. Moreover,
these idempotents e and f have to satisfy a certain compatibility condition that will be
expressed by a so-called type function. In a second step, we present a parallel evaluation
algorithm for type admitting circuits. Only for this second step we need the assumption that
the semiring is {0, 1}-free.

In Section 6 we present an application of our main result for circuit evaluation to
formal language theory. We consider the intersection non-emptiness problem for a given
context-free language and a fixed regular language L. If the context-free language is given
by an arbitrary context-free grammar, then we show that the intersection non-emptiness
problem is P-complete as long as L is not empty (Theorem 19). It turns out that the
reason for this is non-productivity of nonterminals. We therefore consider a restricted
version of the intersection non-emptiness problem, where every nonterminal of the input
context-free grammar must be productive. To avoid a promise problem (testing productivity
of a nonterminal is P-complete), we in addition provide a witness of productivity for every
nonterminal. This witness consists of exactly one production A→ w for every nonterminal
of A where w may contain nonterminal symbols such that the set of all selected productions
is an acyclic grammar H. This ensures that H derives for every nonterminal A exactly one
string that is a witness of the productivity of A. We then show that this restricted version of
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the intersection non-emptiness problem with the fixed regular language L is equivalent (with
respect to constant depth reductions) to the circuit evaluation problem for a certain finite
semiring that is derived from the syntactic monoid of the regular language L.

Full proofs can be found in the long version [12].

Further related work. We mentioned already existing work on circuit evaluation for (pos-
sibly infinite) semirings [1, 23, 25, 31]. For infinite groups, the circuit evaluation problem
is also known as the compressed word problem [20]. In the context of parallel algorithms,
the third and fourth author recently proved that the circuit evaluation problem for finitely
generated (but infinite) nilpotent groups belongs to DET [17]. For finite non-associative
groupoids, the complexity of circuit evaluation was studied in [26], and some of the results
from [8] for semigroups were generalized to the non-associative setting. In [6], the problem of
evaluating tensor circuits is studied. The complexity of this problem is quite high: Whether a
given tensor circuit over the Boolean semiring evaluates to the (1× 1)-matrix (0) is complete
for nondeterministic exponential time. Finally, let us mention the papers [22, 30], where
circuit evaluation problems are studied for the power set structures (2N,+, ·,∪,∩, ) and
(2Z,+, ·,∪,∩, ), where + and · are evaluated on sets via A ◦ B = {a ◦ b | a ∈ A, b ∈ B}.
Completeness results for a large range of complexity classes are shown in [22, 30].

A variant of our intersection non-emptiness problem was studied in [29]. There, a context-
free language L is fixed, a non-deterministic finite automaton A is the input, and the question
is, whether L ∩ L(A) = ∅ holds. The authors present large classes of context-free languages
such that for each member the intersection non-emptiness problem with a given regular
language is P-complete (resp., NL-complete).

2 Computational complexity

For background in complexity theory the reader might consult [4]. We assume that the reader
is familiar with the complexity classes NL (non-deterministic logspace) and P (deterministic
polynomial time). A function is logspace-computable if it can be computed by a deterministic
Turing-machine with a logspace-bounded work tape, a read-only input tape, and a write-only
output tape. Note that the logarithmic space bound only applies to the work tape. P-hardness
will refer to logspace reductions.

We use standard definitions concerning circuit complexity, see e.g. [33]. All circuit
families in this paper are implicitly assumed to be DLOGTIME-uniform. We will consider
the class AC0 of all problems that can be recognized by a polynomial size circuit family of
constant depth built up from NOT-gates (which have fan-in one) and AND- and OR-gates
of unbounded fan-in. The class NCk (k ≥ 1) is defined by polynomial size circuit families of
depth O(logk n) that use NOT-gates, and AND- and OR-gates of fan-in two. One defines
NC =

⋃
k≥1 NCk. The above language classes can be easily generalized to classes of functions

by allowing circuits with several output gates. Of course, this only allows to compute
functions f : {0, 1}∗ → {0, 1}∗ such that |f(x)| = |f(y)| whenever |x| = |y|. If this condition
is not satisfied, one has to consider a suitably padded version of f .

We use the standard notion of constant depth reducibility: For functions f1, . . . , fk let
AC0(f1, . . . , fk) be the class of all functions that can be computed with a polynomial size
circuit family of constant depth that uses NOT-gates and unbounded fan-in AND-gates,
OR-gates, and fi-oracle gates (1 ≤ i ≤ k). Here, an fi-oracle gate receives an ordered tuple
of inputs x1, x2, . . . , xn and outputs the bits of fi(x1x2 · · ·xn). By taking the characteristic
function of a language, we can also allow a language Li ⊆ {0, 1}∗ in place of fi. Note that
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35:4 Circuit Evaluation for Finite Semirings

the function class AC0(f1, . . . , fk) is closed under composition (since the composition of two
AC0-circuits is again an AC0-circuit). We write AC0(NL, f1, . . . , fk) for AC0(GAP, f1, . . . , fk),
where GAP is the NL-complete graph accessibility problem. The class AC0(NL) is studied
in [3]. It has several alternative characterizations and can be viewed as a nondeterministic
version of functional logspace. As remarked in [3], the restriction of AC0(NL) to 0-1 functions
is NL. Clearly, every logspace-computable function belongs to AC0(NL): The NL-oracle can
be used to directly compute the output bits of a logspace-computable function.

Let DET = AC0(det), where det is the function that maps a binary encoded integer matrix
to the binary encoding of its determinant, see [10]. Actually, Cook originally defined DET as
NC1(det) [10], but later [11] remarked that the above definition via AC0-circuits seems to be
more natural. For instance, it implies that DET is equal to the #L-hierarchy.

We defined DET as a function class, but the definition can be extended to languages by
considering their characteristic functions. It is well known that NL ⊆ DET ⊆ NC2 [11]. From
NL ⊆ DET, it follows easily that AC0(NL, f1, . . . , fk) ⊆ DET whenever f1, . . . , fk ∈ DET.

3 Algebraic structures, semigroups, and semirings

An algebraic structure A = (D, f1, . . . , fk) consists of a non-empty domain D and operations
fi : Dni → D for 1 ≤ i ≤ k. We often identify the domain with the structure, if it is clear
from the context. A substructure of A is a subset B ⊆ D that is closed under each of the
operations fi. We identify B with the structure (B, g1, . . . , gk), where gi : Bni → B is the
restriction of fi to Bni for all 1 ≤ i ≤ k. We mainly deal with semigroups and semirings.
In the following two subsection we present the necessary background. For further details
concerning semigroup theory (resp., semiring theory) see [28] (resp., [13]).

3.1 Semigroups

A semigroup (S, ◦) (or briefly S) is an algebraic structure with a single associative binary
operation. We usually write st for s ◦ t. If st = ts for all s, t ∈ S, we call S commutative. A
set I ⊆ S is called a semigroup ideal if for all s ∈ S, a ∈ I we have sa, as ∈ I. An element
e ∈ S is called idempotent if ee = e. It is well-known that for every finite semigroup S and
s ∈ S there exists an n ≥ 1 such that sn is idempotent. In particular, every finite semigroup
contains an idempotent element. By taking the smallest common multiple of all these n, one
obtains an ω ≥ 1 such that sω is idempotent for all s ∈ S. The set of all idempotents of S is
denoted with E(S). If S is finite, then SE(S)S = Sn where n = |S|. Moreover, Sn = Sm

for all m ≥ n.
A semigroup M with an identity element 1 ∈ M , i.e. 1m = m1 = m for all m ∈ M , is

called a monoid. With S1 we denote the monoid that is obtained from a semigroup S by
adding a fresh element 1, which becomes the identity element of S1 by setting 1s = s1 = s for
all s ∈ S ∪ {1}. In case M is a monoid and N is a submonoid of M , we do not require that
the identity element of N is the identity element of M . But, clearly, the identity element of
the submonoid N must be an idempotent element of M . In fact, for every semigroup S and
every idempotent e ∈ E(S), the set eSe = {ese | s ∈ S} is a submonoid of S with identity
e, which is also called a local submonoid of S. The local submonoid eSe is the maximal
submonoid of S whose identity element is e. A semigroup S is aperiodic if every subgroup
of S is trivial. A semigroup S is solvable if every subgroup G of S is a solvable group, i.e.,
repeatedly taking the commutator subgroup leads from G to 1. Since Abelian groups are
solvable, every commutative semigroup is solvable.
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3.2 Semirings
A semiring (R,+, ·) consists of a non-empty set R with two operations + and · such that
(R,+) is a commutative semigroup, (R, ·) is a semigroup, and · left- and right-distributes
over +, i.e., a · (b + c) = ab + ac and (b + c) · a = ba + ca (as usual, we write ab for a · b).
Note that we neither require the existence of an additive identity 0 nor the existence of a
multiplicative identity 1. We denote with R+ = (R,+) the additive semigroup of R and with
R• = (R, ·) the multiplicative semigroup of R. For n ≥ 1 and r ∈ R we write n · r or just
nr for r + · · ·+ r, where r is added n times. For a non-empty subset T ⊆ R we denote by
〈T 〉 the subsemiring generated by T , i.e., the smallest set containing T which is closed under
addition and multiplication. An ideal of R is a subset I ⊆ R such that for all a, b ∈ I, s ∈ R
we have a+ b, sa, as ∈ I. Clearly, every ideal is a subsemiring. With E(R) we denote the
set of multiplicative idempotents of R, i.e., those e ∈ R with e2 = e. Note that for every
multiplicative idempotent e ∈ E(R), eRe is a subsemiring of R in which the multiplicative
structure is a monoid. Let B2 = ({0, 1},∨,∧) be the Boolean semiring.

A crucial definition in this paper is that of a {0, 1}-free semiring. This is a semiring R
which does not contain a subsemiring T with an additive identity 0 and a multiplicative
identity 1 6= 0. Note that it is not required that 0 is absorbing in T , i.e., a · 0 = 0 · a = 0 for
all a ∈ T . The class of {0, 1}-free finite semirings has several characterizations:

I Lemma 1. For a finite semiring R, the following are equivalent:
1. R is not {0, 1}-free.
2. B2 or Zd for some d ≥ 2 is a subsemiring of R.
3. B2 or Zd for some d ≥ 2 is a homomorphic image of a subsemiring of R.
4. There exist elements 0, 1 ∈ R such that 0 6= 1, 0 + 0 = 0, 0 + 1 = 1, 0 · 1 = 1 · 0 = 0 · 0 = 0,

and 1 · 1 = 1 (but 1 + 1 6= 1 is possible).

As a consequence of Lemma 1 (point 4), one can check in time O(n2) for a semiring of size
n whether it is {0, 1}-free. We will not need this fact, since in our setting the semiring will
be always fixed, i.e., not part of the input. Moreover, the class of all {0, 1}-free semirings is a
pseudo-variety of finite semirings, i.e., it is closed under taking subsemirings (this is trivial),
taking homomorphic images (by point 3), and direct products. For the latter, assume that
R × R′ is not {0, 1}-free. Hence, there exists a subsemiring T of R × R′ with an additive
zero (0, 0′) and a multiplicative one (1, 1′) 6= (0, 0′). W.l.o.g. assume that 0 6= 1. Then
the projection π1(T ) onto the first component is a subsemiring of R, where 0 is an additive
identity and 1 6= 0 is a multiplicative identity.

4 Circuit evaluation and main results

We define circuits over general algebraic structures. Let A = (D, f1, . . . , fk) be an algebraic
structure. A circuit over A is a triple C = (V,A0, rhs) where V is a finite set of gates,
A0 ∈ V is the output gate and rhs (for right-hand side) is a function that assigns to
each gate A ∈ V an element a ∈ D or an expression of the form fi(A1, . . . , An), where
n = ni and A1, . . . , An ∈ V are called the input gates for A. Moreover, the binary relation
{(A,B) ∈ V × V | A is an input gate for B} must be acyclic. The reflexive and transitive
closure of it is a partial order on V that we denote with ≤C. Every gate A evaluates
to an element [A]C ∈ A in the natural way: If rhs(A) = a ∈ D, then [A]C = a and if
rhs(A) = fi(A1, . . . , An) then [A]C = fi([A1]C , . . . , [An]C). Moreover, we define [C] = [A0]C
(the value computed by C). If the circuit C is clear from the context, we also write [A]
instead of [A]C. Two circuits C1 and C2 over the structure A are equivalent if [C1] = [C2].
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35:6 Circuit Evaluation for Finite Semirings

Sometimes we also use circuits without an output gate; such a circuit is just a pair (V, rhs).
A subcircuit of C is the restriction of C to a downwards closed (w.r.t. ≤C) subset of V . A
gate A with rhs(A) = fi(A1, . . . , An) is called an inner gate, otherwise it is an input gate
of C. Quite often, we view a circuit as a directed acyclic graph, where the inner nodes are
labelled with an operations fi, and the leaf nodes are labelled with elements from D. In
our proofs, it is sometimes convenient to allow arbitrary terms built from V ∪D using the
operations f1, . . . , fk in right-hand sides. For instance, over a semiring (R,+, ·) we might
have rhs(A) = s · B · t + C + s for s, t ∈ R and B,C ∈ V . A circuit is in normal form, if
all right-hand sides are of the form a ∈ D or fi(A1, . . . , An) with A1, . . . , An ∈ V . We will
make use of the following simple fact:

I Lemma 2. A circuit can be transformed in logspace into an equivalent normal form circuit.

The circuit evaluation problem CEP(A) for some algebraic structure A (say a semigroup
or a semiring) is the following computational problem:

Input: A circuit C over A and an element a ∈ D from its domain.
Output: Decide whether [C] = a.

Note that for a finite structure A, CEP(A) is basically equivalent to its computation variant,
where one actually computes the output value [C] of the circuit: if CEP(A) belongs to a
complexity class C, then the computation variant belongs to AC0(C), and if the latter belongs
to AC0(C) then CEP(A) belongs to the decision fragment of AC0(C).

Clearly, for every finite structure the circuit evaluation problem can be solved in polynomial
time by evaluating all gates along the partial order ≤C . Ladner’s classical P-completeness
result for the Boolean circuit value problem [19] can be stated as follows:

I Theorem 3 ([19]). CEP(B2) is P-complete.

For semigroups, the following dichotomy was shown in [8]:

I Theorem 4 ([8]). Let S be a finite semigroup.
If S is aperiodic, then CEP(S) is in NL.
If S is solvable, then CEP(S) belongs to DET.
If S is not solvable, then CEP(S) is P-complete.

In fact, in [8], the authors use the original definition DET = NC1(det) of Cook. But
the arguments in [8] actually show that for a finite solvable semigroup, CEP(S) belongs to
AC0(det) (which is our definition of DET). Moreover, in [8], Theorem 4 is only shown for
monoids, but the extension to semigroups is straightforward: If the finite semigroup S has a
non-solvable subgroup, then CEP(S) is P-complete, since the circuit evaluation problem for a
non-solvable finite group is P-complete. On the other hand, if S is solvable (resp., aperiodic),
then also the monoid S1 is solvable (resp., aperiodic). This holds, since the subgroups of S1

are exactly the subgroups of S together with {1}. Hence, CEP(S1) is in DET (resp., NL),
which implies that CEP(S) is in DET (resp., NL).

Let us fix a finite semiring R = (R,+, ·) for the rest of the paper. Note that CEP(R+)
(resp., CEP(R•)) is the restriction of CEP(R) to circuits without multiplication (resp., addition)
gates. Since every commutative semigroup is solvable, Theorem 4 implies that CEP(R+)
belongs to DET. The main result of this paper is:

I Theorem 5. If the finite semiring R is {0, 1}-free, then the problem CEP(R) belongs to
the class AC0(NL,CEP(R+),CEP(R•)). Otherwise CEP(R) is P-complete.
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Note that CEP(R) can also be P-complete for a {0, 1}-free semiring (namely in the case that
CEP(R•) is P-complete) and that AC0(NL,CEP(R+),CEP(R•)) = AC0(CEP(R+),CEP(R•))
whenever CEP(R+) or CEP(R•) is NL-hard. For example, this is the case, if R+ or R• is an
aperiodic nontrivial monoid [8, Proposition 4.14] (for aperiodic nontrivial monoids one can
easily reduce the NL-complete of graph reachability problem to the circuit value problem).

The P-hardness statement in Theorem 5 is easy to show:

I Lemma 6. If the finite semiring R is not {0, 1}-free, then CEP(R) is P-complete.

Proof. By Lemma 1, R contains either B2 or Zd for some d ≥ 2. In the former case,
P-hardness follows from Ladner’s theorem. Furthermore, one can reduce the P-complete
Boolean circuit value problem over {0, 1,∧,¬} to CEP(Zd): A gate z = x ∧ y is replaced by
z = x · y and a gate y = ¬x is replaced by y = 1 + (d− 1) · x. J

Theorem 4 and 5 yield the following corollaries:

I Corollary 7. Let R be a finite semiring.
If R is {0, 1}-free and R• and R+ are aperiodic, then CEP(R) belongs to NL.
If R is {0, 1}-free and R• is solvable, then CEP(R) belongs to DET.
If R is not {0, 1}-free or R• is not solvable, then CEP(R) is P-complete.

Let us present an application of Corollary 7.

I Example 8. An important semigroup construction found in the literature is the power
construction. For a finite semigroup S one defines the power semiring P(S) = (2S \ {∅},∪, ·)
with the multiplication A ·B = {ab | a ∈ A, b ∈ B}. Notice that if one includes the empty
set, then the semiring would not be {0, 1}-free: Take an idempotent e ∈ S. Then ∅ and {e}
form a copy of B2. Hence, the circuit evaluation problem is P-complete.

Let us further assume that S is a monoid with identity 1 (the general case will be
considered below). If S contains an idempotent e 6= 1 then also P(S) is not {0, 1}-free: {e}
and {1, e} form a copy of B2. On the other hand, if 1 is the unique idempotent of S, then
S must be a group G. Assume that G is solvable; otherwise P(G)• is not solvable as well
and has a P-complete circuit evaluation problem by Theorem 4. It is not hard to show that
the subgroups of P(G)• correspond to the quotient groups of subgroups of G; see also [21].
Since G is solvable and the class of solvable groups is closed under taking subgroups and
quotients, P(G)• is a solvable monoid. Moreover P(G) is {0, 1}-free: Otherwise, Lemma 1
implies that there are non-empty subsets A,B ⊆ G such that A 6= B, A ∪B = B (and thus
A ( B), AB = BA = A2 = A, and B2 = B. Hence, B is a subgroup of G and A ⊆ B. But
then B = AB = A, which is a contradiction. By Corollary 7, CEP(P(G)) for a finite solvable
group G belongs to DET.

Let us now classify the complexity of CEP(P(S)) for arbitrary semigroups S. A semigroup S
is a local group if for all e ∈ E(S) the local monoid eSe is a group. In a finite local group S
of size n the minimal semigroup ideal is Sn = SE(S)S [2, Proposition 2.3].

I Theorem 9. Let S be a finite semigroup. If S is a local group and solvable, then CEP(P(S))
belongs to DET. Otherwise CEP(P(S)) is P-complete.

Proof. If S is a solvable local group, then the multiplicative semigroup P(S)• is solvable as
well [5, Corollary 2.7]. It remains to show that the semiring P(S) is {0, 1}-free. Towards a
contradiction assume that P(S) is not {0, 1}-free. By Lemma 1, there exist non-empty sets
A ( B ⊆ S such that AB = BA = A2 = A and B2 = B. Hence, B is a subsemigroup of S,
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35:8 Circuit Evaluation for Finite Semirings

which is also a local group, and A is a semigroup ideal in B. Since the minimal semigroup
ideal of B is Bn for n = |B| and Bn = B, we obtain A = B, which is a contradiction.

If S is not a local group, then there exists a local monoid eSe which is not a group and
hence contains an idempotent f 6= e. Since {{f}, {e, f}} forms a copy of B2 it follows that
CEP(P(S)) is P-complete. Finally, if S is not solvable, then also P(S) is not solvable and
CEP(P(S)) is P-complete by Theorem 4. J

5 Proof of Theorem 5

The proof of Theorem 5 will proceed in two steps. In the first step we reduce the problem to
evaluating circuits in which the computation admits a type-function defined in the following.
In the second step, we show how to evaluate such circuits.

I Definition 10. Let E = E(R) be the set of multiplicative idempotents. Let C = (V, rhs)
be a circuit in normal form such that [A]C ∈ ERE for all A ∈ V . A type-function for C is a
mapping type : V → E × E such that for all gates A ∈ V :

If type(A) = (e, f), then [A]C ∈ eRf .
If A is an addition gate with rhs(A) = B + C, then type(A) = type(B) = type(C).
If A is a multiplication gate with rhs(A) = B ·C, type(B) = (e, e′), and type(C) = (f ′, f),
then type(A) = (e, f).

A circuit is called type admitting if it admits a type-function.

A function α : Rm → R (m ≥ 0) is called affine if there are a1, b1, . . . , am, bm, c ∈ R such
that α(x1, . . . , xm) =

∑m
i=1 aixibi + c or α(x1, . . . , xm) =

∑m
i=1 aixibi for all x1, . . . , xm ∈ R.

We represent this affine function by the tuple (a1, b1, . . . , am, bm, c) or (a1, b1, . . . , am, bm).
Theorem 5 is an immediate corollary of the following two propositions (and the obvious fact
that an affine function with a constant number of inputs can be evaluated in AC0).

I Proposition 11. Given a circuit C over the finite semiring R, one can compute in
AC0(NL,CEP(R+))

an affine function α : Rm → R for some 0 ≤ m ≤ |R|4,
a type admitting circuit C′ = (V ′, rhs′), and
a list of gates A1, . . . , Am ∈ V ′ such that [C] = α([A1]C′ , . . . , [Am]C′).

I Proposition 12. If R is {0, 1}-free, then the restriction of CEP(R) to type admitting
circuits is in AC0(NL,CEP(R+),CEP(R•)).

Notice that in Proposition 12 we do not need explicitly a type function as part of the
input. Moreover, it is not clear how to test efficiently whether a circuit is type admitting.
On the other hand, this is not a problem for us, since we will apply Proposition 12 only to
circuits resulting from Proposition 11, which are type admitting by construction.

5.1 Step 1: Reduction to typing admitting circuits
In this section, we sketch a proof of Proposition 11. Let C be a circuit in normal form over our
fixed finite semiring (R,+, ·) of size n = |R| ≥ 2 (the case n = 1 is trivial). Let E = E(R).
Note that Rn = RER is closed under multiplication with elements from R. Thus, 〈Rn〉 is an
ideal. Every element of 〈Rn〉 is a finite sum of elements from Rn.

In a first step, we compute from C in AC0(NL,CEP(R+)) a semiring element r and a
circuit D over the subsemiring 〈Rn〉 = 〈RER〉 such that [C] = r + [D], where r or D (but
not both) can be missing. For the proof of this, we interpret the circuit C over the free
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semiring N[R]. It consists of all mappings f : R+ → N (where R+ is the set of non-empty
words over the alphabet R) such that supp(f) := {w ∈ R+ | f(w) 6= 0} (the support of f) is
finite and non-empty. We view an element f ∈ N[R] as a polynomial

∑
w∈supp(f) f(w) · w,

where R is a set of non-commuting variables. Addition and multiplication of such non-
commuting polynomials is defined as usual. Words w ∈ supp(f) are also called monomials of
f . Let h : N[R]→ R be the canonical evaluation homomorphism, which evaluates a given
non-commutative polynomial in R. Thereby a monomial w = a1a2 · · · an is mapped to the
corresponding product in R. Since a semiring is not assumed to have a multiplicative identity
(resp., additive identity), we have to exclude the empty word from supp(f) for every f ∈ N[R]
(resp., exclude the mapping f with supp(f) = ∅ from N[R]).

The idea is to split each polynomial computed in a gate A into two parts: Those monomials
(i.e., non-empty words over R) that have length < n = |R| (called the short part of A) and
those monomials that have length ≥ n (called the long part of A). Of course the short (resp.
long) part of a gate can be empty. We then compute from the circuit C the following data:
(i) for every gate A the h-image of the short part of A if it is non-empty and (ii) a circuit over
〈Rn〉 that contains for every gate A of C the h-image of its long part (if it exists). For (i),
we need oracle access to CEP(R+). Oracle access to NL is needed to compute those gates
whose short (resp., long) part is non-empty.

In a second step, we compute from a circuit D over 〈RER〉 a type admitting circuit C′
such that the value of D is an affine combination of certain gate values in C′. The main idea
is the following: In the circuit D all input values are sums of elements of the form set (e ∈ E,
s, t ∈ R), which we can write as se3t. Hence, if we evaluate the circuit freely in N[R], then
every monomial that arises at a gate A is of the form segft, where g starts (resp., ends)
with the symbol e ∈ E (resp., f ∈ E) and s, t ∈ R. Let PA is the set of all tuples (s, e, f, t)
such that at gate A a monomial of the form segft arises. One can show that PA can be
computed in AC0(NL). The circuit C′ contains for every (s, e, f, t) ∈ PA a gate As,e,f,t that
computes the sum of all monomials g such that segft is a monomial that appears at gate A.
The type of gate As,e,f,t is (e, f). Moreover, [A]D is equal to

∑
(s,e,f,t)∈PA

(se)[As,e,f,t]C′(ft).
This shows that [D] is indeed an affine combination of certain gate values in C′.

5.2 Step 2: A parallel evaluation algorithm for type admitting circuits

In this section we prove Proposition 12. We present a parallel evaluation algorithm for type
admitting circuits. This algorithm terminates after at most |R| rounds, if R has a so-called
rank-function, which we define first. As before, let E = E(R).

I Definition 13. We call a function rank : R→ N \ {0} a rank-function for R if it satisfies
the following conditions for all a, b ∈ R:
1. rank(a) ≤ rank(a ◦ b) and rank(b) ≤ rank(a ◦ b) for ◦ ∈ {+, ·}.
2. If a, b ∈ eRf for some e, f ∈ E and rank(a) = rank(a+ b), then a = a+ b.

If R• is a monoid, then one can choose e = 1 = f in the second condition in Definition 13,
which is therefore equivalent to: If rank(a) = rank(a+ b) for a, b ∈ R, then a = a+ b.

I Example 14 (Example 8 continued). Let G be a finite group and consider the semiring
P(G). One can verify that the function A 7→ |A|, where ∅ 6= A ⊆ G, is a rank-function for
P(G). On the other hand, if S is a finite semigroup, which is not a group, then S cannot be
cancellative. Assume that ab = ac for a, b, c ∈ S with b 6= c. Then {a} · {b, c} = {ab}. This
shows that the function A 7→ |A| is not a rank-function for P(S).
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I Theorem 15. If the finite semiring R has a rank-function rank, then the restriction of
CEP(R) to type admitting circuits belongs to AC0(NL,CEP(R+),CEP(R•)).

Proof. Let C = (V,A0, rhs) be a circuit with the type function type. We present an algorithm
which partially evaluates the circuit in a constant number of phases, where each phase can
be carried out in AC0(NL,CEP(R+),CEP(R•)) and the following invariant is preserved:

Invariant: After phase k all gates A with rank([A]C) ≤ k are evaluated, i.e., are input gates
in phase k + 1 onwards.

Initially, i.e., for k = 0, the invariant holds, since 0 is not in the range of the rank-function.
After max{rank(a) | a ∈ R} (which is a constant) many phases, the output gate A0 is
evaluated. We present phase k of the algorithm, assuming that the invariant holds after
phase k − 1. Thus, all gates A with rank([A]C) < k of the current circuit C are input gates.
In phase k we evaluate all gates A with rank([A]C) = k. For this, we proceed in two steps:

Step 1. As a first step the algorithm evaluates all subcircuits that only contain addition and
input gates. This maintains the invariant and is possible in AC0(NL,CEP(R+)). After this
step, every addition-gate A has at least one inner input gate, which we denote by inner(A)
(if both input gates are inner gates, then choose one arbitrarily). The NL-oracle access is
needed to compute the set of all gates A for which no multiplication gate B ≤C A exists.

Step 2. Define the multiplicative circuit C′ = (V,A0, rhs′) by

rhs′(A) =
{

inner(A) if A is an addition-gate,
rhs(A) if A is a multiplication gate or input gate.

(1)

The circuit C′ can be brought in logspace into normal form by Lemma 2 and then evaluated in
AC0(CEP(R•)). A gate A ∈ V is called locally correct if (i) A is an input gate or multiplication
gate of C, or (ii) A is an addition gate of C with rhs(A) = B+C and [A]C′ = [B]C′+[C]C′ . We
compute the set W := {A ∈ V | all gates B with B ≤C A are locally correct} in AC0(NL).
A simple induction shows that for all A ∈ W we have [A]C = [A]C′ . Hence we can set
rhs(A) = [A]C′ for all A ∈W . This concludes phase k of the algorithm.

To prove that the invariant holds after phase k, we show that for each gate A ∈ V with
rank([A]C) ≤ k we have A ∈W . This is shown by induction over the depth of A in C. Assume
that rank([A]C) ≤ k. By the first condition from Definition 13, all gates B <C A satisfy
rank([B]C) ≤ k. Thus, the induction hypothesis yields B ∈W and hence [B]C = [B]C′ for all
gates B <C A. It remains to show that A is locally correct, which is clear if A is an input gate
or a multiplication gate. So assume that rhs(A) = B +C where B = inner(A), which implies
[A]C′ = [B]C′ by (1). Since B is an inner gate, which is not evaluated after phase k − 1, it
holds that rank([B]C) ≥ k and therefore rank([A]C) = rank([B]C) = k. By Definition 10 there
exist idempotents e, f ∈ E with type(B) = type(C) = (e, f) and thus [B]C , [C]C ∈ eRf . The
second condition from Definition 13 implies that [A]C = [B]C + [C]C = [B]C . We finally get
[A]C′ = [B]C′ = [B]C = [A]C = [B]C + [C]C = [B]C′ + [C]C′ . Therefore A is locally correct. J

I Example 16 (Example 8 continued). Figure 1 shows a circuit C over the power semiring
P(G) of the group G = (Z5,+). Recall from Example 14 that the function A 7→ |A| is a rank
function for P(G). We illustrate one phase of the algorithm. All gates A with rank([A]) < 3
are evaluated in the circuit C shown on the left. The goal is to evaluate all gates A with
rank([A]) = 3. The first step would be to evaluate maximal ∪-circuits, which is already done.
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∪
{0, 1, 2, 3, 4}

∪
{1, 2, 3}

∪
{0, 1, 2, 3, 4}

+
{1, 2, 3}

+
{1, 2, 3, 4}

{0, 1} {1, 2} {0, 2}

∪
{1, 2, 3, 4}

∪
{1, 2, 3}

∪
{1, 2, 3, 4}

+
{1, 2, 3}

+
{1, 2, 3, 4}

{0, 1} {1, 2} {0, 2}

∪

{1, 2, 3} ∪

{1, 2, 3} {1, 2, 3, 4}

{0, 1} {1, 2} {0, 2}

Figure 1 The parallel evaluation algorithm over the power semiring P(Z5).

In the second step the circuit C′ (shown in the middle) from the proof of Theorem 15 is
computed and evaluated using the oracle for CEP(Z5,+). The dotted wires do not belong
to the circuit C′. All locally correct gates are shaded. Note that the output gate is locally
correct but its right child is not locally correct. All other shaded gates form a downwards
closed set, which is the set W from the proof. These gates can be evaluated such that in
the resulting circuit (shown on the right) all gates which evaluate to elements of rank 3 are
evaluated.

To show Proposition 12, it remains to equip every finite {0, 1}-free semiring with a
rank-function.

I Lemma 17. If R is {0, 1}-free and e, f ∈ E(R) are such that ef = fe = f + f = f , then
e+ f = f .

Proof. With f = 0, e+f = 1 all equations from Lemma 1 (point 4) hold; hence e+f = f . J

I Lemma 18. If the finite semiring R is {0, 1}-free, then R has a rank-function.

Proof. For a, b ∈ R we define a � b if b can be obtained from a by iterated additions and
left- and right-multiplications of elements from R. This is equivalent to the existence of
`, r, c ∈ R such that b = `ar + c, where each of the elements `, r, c can be missing. Since � is
a preorder on R, there is a function rank : R → N \ {0} such that for all a, b ∈ R we have
(i) rank(a) = rank(b) if and only if a � b � a, and (ii) rank(a) ≤ rank(b) if a � b.

We claim that rank satisfies the conditions of Definition 13. The first condition is clear,
since a � a+ b and a, b � ab. For the second condition, let e, f ∈ E, a, b ∈ eRf such that
rank(a + b) = rank(a), which is equivalent to a + b � a. Assume that a = `(a + b)r + c =
`ar+ `br+ c for some `, r, c ∈ R (the case without c can be handled in the same way). Since
a = eaf and b = ebf , we have a = `e(a+ b)fr+ c and hence we can assume that ` and r are
not missing. Moreover, a = eaf = (e`e)(a+ b)(frf) + (ecf), so we can assume that ` = e`e

and r = frf . After m applications of a = `ar + `br + c we get

a = `marm +
m∑

i=1
`ibri +

m−1∑
i=0

`icri. (2)

Let n ≥ 1 such that nx is additively idempotent and xn is multiplicatively idempotent for
all x ∈ R. Hence nxn is both additively and multiplicatively idempotent for all x ∈ R. If
we choose m = n2, the right hand side of (2) contains the partial sum P :=

∑n
i=1 `

inbrin.
Furthermore, e(n`n) = (n`n)e = n`n and f(nrn) = (nrn)f = nrn. Therefore, Lemma 17
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implies that n`n = n`n + e and nrn = nrn + f , and hence:

P =
n∑

i=1
`inbrin = n(`nbrn) = n2(`nbrn) = (n`n)b(nrn) = (n`n + e)b(nrn)

= (n`n)b(nrn) + eb(nrn) = (n`n)b(nrn) + eb(nrn + f)

= (n`n)b(nrn) + eb(nrn) + ebf =
(

n∑
i=1

`inbrin

)
+ b = P + b.

Thus, the partial sum P in (2) can be replaced by P + b, which shows a = a+ b. J

6 An application to formal language theory

In this section we briefly report on an application of Corollary 7 to a particular intersection
non-emptiness problem. We assume some familiarity with context-free grammars. A circuit
over the free monoid Σ∗ can be seen as a context-free grammar producing exactly one word.
Such a circuit is also called a straight-line program, briefly SLP. It is an acyclic context-free
grammar H that contains for every non-terminal A exactly one rule with left-hand side A.
We denote with valH(A) the unique terminal word that can be derived from A.

For an alphabet Σ and a language L ⊆ Σ∗, the intersection non-emptiness problem for L,
denoted by CFG-IP(L,Σ), is the following decision problem: Given a context-free grammar
G over Σ, does L(G) ∩ L 6= ∅ hold? For every regular language L, this problem belongs to
P: One constructs in polynomial time a context-free grammar for L(G) ∩ L from G and a
finite automaton for L and tests this grammar for emptiness, which is possible in polynomial
time. However, testing emptiness of a given context-free language is P-complete. An easy
reduction shows that the problem CFG-IP(L,Σ) is P-complete for every L 6= ∅:

I Theorem 19. For every non-empty language L ⊆ Σ∗, CFG-IP(L,Σ) is P-complete.

By Theorem 19 we have to put some restriction on context-free grammars in order to get
NC-algorithms for intersection non-emptiness. It turns out that productivity of all non-
terminals is the right assumption. Thus, we require that every non-terminal A is productive,
i.e., a terminal word can be derived from A. In order to avoid a promise problem (testing
productivity of a non-terminal is P-complete [16]) we add to the input grammar G an SLP
H, which uniformizes G in the sense that H contains for every non-terminal A exactly one
rule A → α from G. Hence, the word valH(A) is a witness for the productivity of A. For
instance, a uniformizing SLP for the grammar S → SS | aSb | A, A→ aA | B, B → bB | b
would be S → A, A→ B, B → b.

We define the following restriction PCFG-IP(L,Σ) of CFG-IP(L,Σ): Given a productive
context-free grammar G over Σ and a uniformizing SLP H for G, does L(G) ∩ L 6= ∅ hold?
The theorem below classifies regular languages L ⊆ Σ∗ by the complexity of PCFG-IP(L,Σ).
To do this we use the standard notion of the syntactic monoid ML of L (which is a finite
monoid for L regular). There is a surjective morphism h : Σ∗ → L and a subset F ⊆ ML

such that L = h−1(ML). Let us fix the regular language L ⊆ Σ∗, M = ML, h : Σ∗ → M

and F ⊆M . Define the equivalence relation ∼F on P(M) by: A1 ∼F A2 (A1, A2 ∈ P(M))
if and only if ∀`, r ∈ M : `A1r ∩ F 6= ∅ ⇐⇒ `A2r ∩ F 6= ∅. It can be shown that ∼F is a
congruence relation. In particular, P(M)/∼F is a semiring.

I Theorem 20. PCFG-IP(L,Σ) is equivalent to CEP(P(M)/∼F ) with respect to constant
depth reductions. Hence, PCFG-IP(L,Σ) is in DET (resp., NL) if (P(M)/∼F )• is solvable
(resp., aperiodic) and P(M)/∼F is {0, 1}-free; otherwise PCFG-IP(L,Σ) is P-complete.
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As an application of Theorem 20 one can show that PCFG-IP(L,Σ) is in NL for every language
of the form L = Σ∗a1Σ∗a2Σ∗ . . . akΣ∗ for a1, . . . , ak ∈ Σ.

7 Conclusion and outlook

We proved a dichotomy result for the circuit evaluation problem for finite semirings: If
(i) the semiring has no subsemiring with an additive and multiplicative identity and both
are different and (ii) the multiplicative subsemigroup is solvable, then the circuit evaluation
problem is in DET ⊆ NC2, otherwise it is P-complete.

The ultimate goal would be to obtain such a dichotomy for all finite algebraic structures.
One might ask whether for every finite algebraic structure A, CEP(A) is P-complete or in
NC. It is known that under the assumption P 6= NC there exist problems in P \ NC that
are not P-complete [32]. In [7] it is shown that every circuit evaluation problem CEP(A) is
equivalent to a circuit evaluation problem CEP(A, ◦), where ◦ is a binary operation.

Acknowledgement. We are grateful to Ben Steinberg for fruitful discussions and to Volker
Diekert for pointing out to us the proof of the implication (3⇒ 4) in the proof of Lemma 1.
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