
Applications of Algorithmic Metatheorems to
Space Complexity and Parallelism
Till Tantau

Institute for Theoretical Computer Science, Universität zu Lübeck, Germany
tantau@tcs.uni-luebeck.de

Abstract
Algorithmic metatheorems state that if a problem can be described in a certain logic and the
inputs are structured in a certain way, then the problem can be solved with a certain amount
of resources. As an example, by Courcelle’s Theorem all monadic second-order (“in a certain
logic”) properties of graphs of bounded tree width (“structured in a certain way”) can be solved
in linear time (“with a certain amount of resources”). Such theorems have become a valuable
tool in algorithmics: If a problem happens to have the right structure and can be described in
the right logic, they immediately yield a (typically tight) upper bound on the time complexity
of the problem. Perhaps even more importantly, several complex algorithms rely on algorithmic
metatheorems internally to solve subproblems, which considerably broadens the range of applic-
ations of these theorems. The talk is intended as a gentle introduction to the ideas behind
algorithmic metatheorems, especially behind some recent results concerning space classes and
parallel computation, and tries to give a flavor of the range of their applications.

1998 ACM Subject Classification F.4.1 Mathematical Logic, G.2.2 Graph Theory

Keywords and phrases Algorithmic metatheorems, Courcelle’s Theorem, tree width, monadic
second-order logic, logarithmic space, parallel computations

Digital Object Identifier 10.4230/LIPIcs.STACS.2017.4

Category Invited Talk

1 Talk Summary1

Alice, a first-year student of computer science, has an evil homework assignment: Devise
an efficient algorithm for the vertex cover problem (at least I feel that tasking first-year
students with solving NP-complete problems is a trifle unfair). I guess you are right now
mentally weighing the different tools at your disposal from the vast machinery developed in
complexity theory for attacking such problems – but what would a first-year student do?
Being smart, Alice tries to apply the arguably most important and ubiquitous algorithmic
approach in computer science: divide-and-conquer. After all, the approach lies at the heart
of the fundamental algorithms she just learned about, including merge sort, quick sort, and
binary search.

Solving Vertex Cover Using Divide-And-Conquer? Naturally, Alice soon notices that the
divide-and-conquer approach fails quite miserably when applied to finding small vertex covers.

1 This summary contains some revised material from the introduction of the paper [9]. That paper is a
good starting point for a more detailed introduction to algorithmic metatheorems for logarithmic space
and circuit classes.

© Till Tantau;
licensed under Creative Commons License CC-BY

34th Symposium on Theoretical Aspects of Computer Science (STACS 2017).
Editors: Heribert Vollmer and Brigitte Vallée; Article No. 4; pp. 4:1–4:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2017.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


4:2 Applications of Algorithmic Metatheorems to Space Complexity and Parallelism

The problem lies in the dividing phase: She finds no way of dividing, for instance, a clique
into parts. Alice learns an important lesson here: divide-and-conquer is only applicable to
problems whose inputs are “amenable” to dividing them into parts. After telling her professor
about her difficulties, she relents and makes the problem (much) easier by restricting the
input to trees. Now, clearly, dividing the input is no longer a problem: For a tree T with
root r we can recurse on the subtrees T1 to Tm rooted at the children c1 to cm of the root.

Alice still has to tackle the merging phase in her divide-and-conquer algorithm: How
does one assemble optimal vertex covers for the Ti into a vertex cover for the whole tree T?
Clearly, this is not a trivial task since optimal vertex covers for each subtree do not suffice to
build an optimal overall vertex cover. The trick is to compute two optimal vertex covers for
each subtree: one for the case that the root is part of the vertex cover and one for the case
that it is not. This yields a divide-and-conquer algorithm for the vertex cover problem on
trees that runs in linear time.

The Question of Why. Algorithmic metatheorems, which this talk is about, help us in
understanding why the vertex cover problem behaves the way it does with respect to the
divide-and-conquer approach. Why does the division phase fail? Why does the merging
phase work? The first question has a fairly easy answer: arbitrary graphs do not have any
“decomposition property” at all. On the other hand, trees certainly can be decomposed very
well, and it turns out that this is still the case when the graph is “nearly” a tree, namely
a graph of bounded tree width. The second question seems harder: The answer “because
solutions can be assembled using a trick” does not generalize very well. It took the research
community quite some time to find a better answer: In 1990, Bruno Courcelle found that
the merging phase works “because the vertex cover problem can be described in monadic
second-order logic.”

The general pattern underlying algorithmic metatheorems is as follows: If a problem can
be described in a certain logic (“are amenable to merging” for the right logic) and instances
can be decomposed in a certain tree-wise fashion (“are amenable to division”), they can be
solved within a certain amount of time. The first and most famous of these theorems is
the just-mentioned Theorem of Courcelle [1]: All monadic second-order properties of graphs
of bounded tree width can be decided in linear time. A long line of further theorems have
later been obtained by varying the three “parameters” of algorithmic metatheorems: the
logic, the instance structure, and the required resources. By weakening one of them, one can
often strengthening another. For instance, for problems describable in first-order logic, we
can change the requirement on the decomposition property to, for instance, nowhere dense
graphs (a much larger class of graphs than those of bounded tree width) and still obtain
a (near) linear time bound [7] or to planar graphs and still obtain a linear time bound [4].
In another direction, when we increase the time bound to polynomial (rather than linear)
time, we can broaden the class of graphs to graphs of bounded clique-width [2]. In yet
another direction, which this talk will mainly be about, instead of the classical sequential
worst-case time bounds, one can look at the space complexity or the parallel complexity. One
important result in that direction [3] is that Courcelle’s Theorem also holds when “linear
time” is replaced by “logarithmic space.”

The Range of Applications of Algorithmic Metatheorems. The power of algorithmic
metatheorems lies in their ease of application. Had Alice known about Courcelle’s Theorem,
she could have finished her homework much more quickly: The vertex cover problem can be
described in monadic second-order logic and trees are clearly very “tree-like,” so the theorem



T. Tantau 4:3

tells her (and us) that there is a linear-time algorithm for the problem. Admittedly, devising
a linear time algorithm for the vertex cover problem on trees is not all that hard – but by the
logspace version of Courcelle’s Theorem, we also get a logspace algorithm for this problem
for free. You are cordially invited to try to come up with such an algorithm directly (or,
failing that, make it a homework assignment for your students).

To make the vertex cover problem accessible to algorithmic metatheorems, we had to
insist that all input graphs are trees (a ridiculously strong restriction) or, at least, that they
are tree“-like” (no longer a ridiculous restriction, but still a strong restriction). It is thus
somewhat surprising that algorithmic metatheorems can be used in contexts where the inputs
are not tree-like graphs. The underlying algorithmic approach is quite ingenious: On input
of a graph, if the graph is tree-like, apply an algorithmic metatheorem; and if the graph
is not tree-like, it must be “highly cyclic internally,” which we may be able to use to our
advantage in solving the problem.

One deceptively simple problem where the just-mentioned approach works particularly
well is the even cycle problem, which just asks whether there is a cycle of even length in
a graph. It is not difficult to show that, like the vertex cover problem and just about any
other interesting problem, the even cycle problem can be described in monadic second-order
logic. Thus, it can be solved efficiently on tree-like graphs. Now, what about those “highly
cyclic” graphs that are not tree-like? Intuitively, these many internal cycles might very well
make it easier to decide whether the graph has an even cycle. Indeed, they make it very
easy: such graphs always have an even cycle [10]. In other words, we can solve the even cycle
problem on arbitrary graphs as follows: If the input graph is not tree-like, simply answer
“yes,” otherwise apply Courcelle’s Theorem to it.

We will not always be so lucky that the to-be-solved problem more or less disappears
for non-tree-like graphs, but in the talk several interesting problems are presented where
algorithmic metatheorem play a key role in the internals of algorithms.

Related Work. As the title suggests, this talk focuses on algorithmic metatheorems for
space classes and parallel computation (mainly in the form of circuits of polylogarithmic
depth). In contrast, most algorithmic metatheorems in the literature concern time classes.
There are a number of excellent surveys on algorithmic metatheorems and their applications
regarding time-efficient computations [5, 6, 8]. An interesting aspect of the theorems covered
in the talk is that they can be used to establish completeness results for many problems for
which the classical algorithmic metatheorems do not yield an exact complexity-theoretic
classification: Using Courcelle’s Theorem and the tricks hinted at earlier, the even cycle
problem can be solved in linear time and, clearly, this is also a tight lower bound. However,
from a structural complexity-theoretic point of view, the problem is most likely not complete
for linear time; indeed, it is complete for logarithmic space and the algorithmic metatheorems
presented in the talk lie at the heart of the proof.

References

1 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite
graphs. Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)
90043-H.

2 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150,
2000. doi:10.1007/s002249910009.

STACS 2017

http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1016/0890-5401(90)90043-H
http://dx.doi.org/10.1007/s002249910009


4:4 Applications of Algorithmic Metatheorems to Space Complexity and Parallelism

3 Michael Elberfeld, Andreas Jakoby, and Till Tantau. Logspace versions of the theorems
of Bodlaender and Courcelle. In Proceedings of the 51st Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2010), pages 143–152, 2010. doi:10.1109/FOCS.
2010.21.

4 Markus Frick and Martin Grohe. Deciding first-order properties of locally tree-
decomposable structures. J. ACM, 48(6):1184–1206, November 2001. doi:10.1145/504794.
504798.

5 Martin Grohe. Logic, graphs, and algorithms. In Jörg Flum, Erich Grädel, and
Thomas Wilke, editors, Logic and Automata: History and Perspectives, volume 2 of
Texts in Logic and Games, pages 357–422. Amsterdam University Press, 2007. URL:
http://www2.informatik.hu-berlin.de/~grohe/pub/meta-survey.pdf.

6 Martin Grohe and Stephan Kreutzer. Methods for algorithmic meta theorems. In Model
Theoretic Methods in Finite Combinatorics, volume 558 of Contemporary Mathematics,
pages 181–206. American Mathematical Society, 2011. URL: http://www2.informatik.
hu-berlin.de/~grohe/pub/grokre11.pdf.

7 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties
of nowhere dense graphs. In Proceedings of the 46th Annual ACM Symposium on Theory
of Computing, STOC’14, pages 89–98, New York, NY, USA, 2014. ACM. doi:10.1145/
2591796.2591851.

8 Stephan Kreutzer. Algorithmic meta-theorems. In Javier Esparza, Christian Michaux, and
Charles Steinhorn, editors, Finite and Algorithmic Model Theory, volume 379 of London
Mathematical Society Lecture Note Series. Cambridge University Press, 2011. URL: http:
//logic.las.tu-berlin.de/Kreutzer/Publications/amt-survey.pdf.

9 Till Tantau. A gentle introduction to applications of algorithmic metatheorems for space
and circuit classes. Algorithms, 9(3):44, 2016. URL: http://www.mdpi.com/1999-4893/
9/3/44, doi:10.3390/a9030044.

10 Carsten Thomassen. On the presence of disjoint subgraphs of a specified type. Journal of
Graph Theory, 12(1):101–111, 1988. doi:10.1002/jgt.3190120111.

http://dx.doi.org/10.1109/FOCS.2010.21
http://dx.doi.org/10.1109/FOCS.2010.21
http://dx.doi.org/10.1145/504794.504798
http://dx.doi.org/10.1145/504794.504798
http://www2.informatik.hu-berlin.de/~grohe/pub/meta-survey.pdf
http://www2.informatik.hu-berlin.de/~grohe/pub/grokre11.pdf
http://www2.informatik.hu-berlin.de/~grohe/pub/grokre11.pdf
http://dx.doi.org/10.1145/2591796.2591851
http://dx.doi.org/10.1145/2591796.2591851
http://logic.las.tu-berlin.de/Kreutzer/Publications/amt-survey.pdf
http://logic.las.tu-berlin.de/Kreutzer/Publications/amt-survey.pdf
http://www.mdpi.com/1999-4893/9/3/44
http://www.mdpi.com/1999-4893/9/3/44
http://dx.doi.org/10.3390/a9030044
http://dx.doi.org/10.1002/jgt.3190120111

	Talk Summary

