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—— Abstract

We consider the algorithmic problem of generating each subset of [n] := {1,2,...,n} whose size is
in some interval [k,], 0 < k <1 < n, exactly once (cyclically) by repeatedly adding or removing
a single element, or by exchanging a single element. For & = 0 and [ = n this is the classical
problem of generating all 2" subsets of [n] by element additions/removals, and for k = [ this is
the classical problem of generating all (Z) subsets of [n] by element exchanges. We prove the
existence of such cyclic minimum-change enumerations for a large range of values n, k, and [,
improving upon and generalizing several previous results. For all these existential results we
provide optimal algorithms to compute the corresponding Gray codes in constant time O(1) per
generated set and space O(n). Rephrased in terms of graph theory, our results establish the
existence of (almost) Hamilton cycles in the subgraph of the n-dimensional cube @, induced
by all levels [k,l]. We reduce all remaining open cases to a generalized version of the middle
levels conjecture, which asserts that the subgraph of Qo1 induced by all levels [k — ¢,k + 1+ ],
c€{0,1,...,k}, has a Hamilton cycle. We also prove an approximate version of this conjecture,
showing that this graph has a cycle that visits a (1 — o(1))-fraction of all vertices.
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1 Introduction

Generating all objects in a combinatorial class such as permutations, subsets, combinations,
partitions, trees, strings etc. is one of the oldest and most fundamental algorithmic problems,
and such generation algorithms appear as core building blocks in a wide range of practical
applications (see the survey [30]). In fact, half of the most recent volume [21] of Donald
Knuth’s seminal series The Art of Computer Programming is devoted entirely to this funda-
mental subject. The ultimate goal for algorithms that efficiently generate each object of a
particular combinatorial class exactly once is to generate each new object in constant time,
which is best possible. Such optimal algorithms are sometimes called loopless algorithms, a
term coined by Ehrlich in his influential paper [10]. Note that a constant-time algorithm
requires in particular that consecutively generated objects differ only in a constant amount,
e.g., in a single transposition of a permutation, in adding or removing a single element from
a set, or in a single tree rotation operation. These types of orderings have become known as
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combinatorial Gray codes. Here are two fundamental examples for this kind of generation
problems: (1) The so-called reflected Gray code is a method to generate all 2 many subsets
of [n] :=={1,2,...,n} by repeatedly adding or removing a single element. It is named after
Frank Gray, a physicist and researcher at Bell Labs, and appears in his patent [13]. The
reflected Gray code has many interesting properties (see [21, Section 7.2.1.1]), and there is a
simple loopless algorithm to compute it [2, 10]. (2) Of similar importance in practice is the
problem of generating all (Z) many k-element subsets of [n] by repeatedly exchanging a single
element. Also for this problem, loopless algorithms are well-known [2, 4, 8, 9, 10, 18, 28, 35]
(see also [21, Section 7.2.1.3]).

In this work we consider far-ranging generalizations of the classical problems (1) and (2).
Specifically, we consider the algorithmic problem of generating all (or almost all) subsets of
[n] whose size is in some interval [k,[], 0 < k < < n, by repeatedly adding or removing a
single element, or by exchanging a single element (this will made more precisely in a moment).
We recover the classical problems (1) and (2) mentioned before as special cases by setting
k =0 and | = n, or by setting k = [, respectively. It turns out that the entire parameter
range in between these special cases offers plenty of room for surprising discoveries and hard
research problems (take a peek at the known results in Figure 1 below).

In a computer a subset of [n] is conveniently represented by the corresponding character-
istic bitstring = of length n, where all the 1-bits of x correspond to the elements contained in
the set, and the 0-bits to the elements not contained in the set. The before-mentioned subset
generation problems can thus be rephrased as Hamilton cycle problems in subgraphs of the
cube @, the graph that has as vertices all bitstrings of length n, with an edge between any
two vertices (=bitstrings) that differ in exactly one bit. We refer to the number of 1-bits
in a bitstring x as the weight of x, and we refer to the vertices of @, with weight k as the
k-th level of @Q,, (there are (}) vertices on level k). Moreover, we let Q, 5., 0 <k <1 <mn,
denote the subgraph of @,, induced by all levels [k,{]. In terms of sets, the vertices of the
cube @, correspond to subsets of [n], and flipping a bit along an edge corresponds to adding
or removing a single element. The weight of a bitstring corresponds to the size of the set,
and the vertices on level k correspond to all k-element subsets of [n].

One of the hard instances of the before-mentioned general enumeration problem in Q,, 1
is when n = 2k+1 and | = k+1. The existence of a Hamilton cycle in the graph Qag 41,k k41]
for any k > 1 is asserted by the well-known middle levels conjecture, raised independently in
the 80’s by Havel [16] and Buck and Wiedemann [3]. The conjecture has also been attributed
to Dejter, Erdds, Trotter [20] and various others, and also appears in the popular books
[5, 21, 36]. The middle levels conjecture has attracted considerable attention over the last 30
years [6, 7, 12, 15, 17, 19, 20, 27, 29, 31, 32, 33|, and a positive solution, an existence proof
for a Hamilton cycle in Qapy1,[x,k+1) for any k& > 1, has been announced only recently.

» Theorem 1 ([23]). For any k > 1, the graph Qapi1,k,k+1) has a Hamilton cycle.
The following generalization of the middle levels conjecture was proposed in [15].

» Conjecture 2 ([15]). For any k > 1 and c € {0,1,...,k}, the graph Qapi1,(h—ckt+14¢ has
a Hamilton cycle.

Conjecture 2 clearly holds for all k > 1 and ¢ = k as Qapq1,j0,26+1] = Q2x11 (this is
problem (1) from before). It is known that the conjecture also holds for all k¥ > 1 and
c=k—11[11, 22] and ¢ = k — 2 [15]. By Theorem 1 it also holds for all K > 1 and ¢ = 0.

Another generalization of Theorem 1 in a slightly different direction (still a special case
in our general framework) is the following result.
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» Theorem 3 ([26]). For anyn >3 and k € {1,2,...,n — 2}, the graph Q, k4+1) has a
cycle that visits all vertices in the smaller bipartite class.

The idea for the proof of Theorem 3 (induction over n) was first presented in [16]. In
that paper, the theorem was essentially proved conditional on the validity of the hardest case
n = 2k + 1, the middle levels conjecture, which was established as a theorem (Theorem 1)
only much later. In [26], Theorem 3 was proved unconditionally, and the proof technique was
refined further to also prove Hamiltonicity results for the so-called bipartite Kneser graphs,
another generalization of the middle levels conjecture.

Conjecture 2 and Theorem 3 immediately suggest the following common generalization:
For which intervals [k, ] does the cube @y, ;) have a Hamilton cycle? The graph Q,, 1 is
bipartite (the two partition classes are given by the parity of the number of 1-bits of the
vertices), and it is clear that a Hamilton cycle can exist only if the two partition classes
have the same size, which happens only for odd dimension n and between two symmetric
levels k and | = n — k (Conjecture 2). However, we may slightly relax this question, and
ask for a long cycle. To this end, we denote for any bipartite graph G by v(G) the number
of vertices of G, and by §(G) the difference between the larger and the smaller partition
class. Note that in any bipartite graph G (as Qy[x,;)) the length of any cycle is at most
v(G) — 6(G) (i-e., the cycle visits all vertices in the smaller partition class). We call such

a cycle a saturating cycle. Observe that if both partition classes have the same size (i.e.

d(G) = 0), then a saturating cycle is a Hamilton cycle. Hence saturating cycles naturally
generalize Hamilton cycles for unbalanced bipartite graphs. The right common generalization
of Conjecture 2 and Theorem 3 therefore is:

» Question 4. For which intervals [k, (] does the cube @, [, have a saturating cycle?

A saturating cycle necessarily omits some vertices (exactly 0(Qp, ;) many) from the
larger bipartite class. However, if we insist on all vertices of @, [, to be included in a
cycle, then this can be achieved by allowing steps where instead of only a single bitflip, two
bits are flipped (the underlying graph @, (] is augmented by adding distance-2 edges). In
this case we may ask for a (cyclic) enumeration of all vertices of @, ;) that minimizes the
number of these ‘cheating’ distance-2 steps, i.e., for an enumeration that has only 6(Q,x,)
many distance-2 steps (this is clearly the least number one can hope for). We call such an
enumeration a tight enumeration. A tight enumeration can be seen as a travelling salesman
tour of length v(Qy, k1) + 6(Qn k) through all vertices of @, [, where distances are
measured by Hamming distance (=number of bitflips). We may ask in full generality:

» Question 5. For which intervals [k, [] is there a tight enumeration of the vertices of Qy, x11?

If both partition classes of @, [, have the same size (i.e. §(Qy x,y) = 0), then a tight
enumeration is a Hamilton cycle in this graph. Note also that Question 5 is a sweeping
generalization of the following well-known result regarding problem (2) mentioned before.

» Theorem 6 ([35]). For anyn >2 and 1 <k <n —1 there is a cyclic enumeration of all
weight k bitstrings of length n such that any two consecutive bitstrings differ in exactly 2 bits.

In fact, several of the subsequently mentioned results of this paper will be proved by
extending the original approach from [35] to prove Theorem 6.

1.1 Our results

In this work we answer Question 4 and Question 5 for a large range of values n, k£ and

l. The different ranges of parameters covered by our results are illustrated in Figure 1.
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Moreover, we provide optimal algorithms to compute the corresponding saturating cycles/tight
enumerations.

Our first set of results resolves Question 4 positively for all possible values of k and [
except the cases covered by Conjecture 2 (the case [ = k+1 is already covered by Theorem 3),
see the left-hand side of Figure 1.

» Theorem 7. For any n > 3 the graph Q, 1 has a saturating cycle in the following

cases:

() fo=k<i<nor0<k<l=nandl—k>2.

(i) f1<k<l<n-1landl—Fk>2is even.

(iii) f1<k<i<[n/2] or |n/2] <k<l<n—1andl—k >3 is odd.

(iv) If 1 <k<l<n-—1andl—Fk > 3 is odd, under the additional assumption that
Q2m+1,[m—c;mt14¢, ¢ = (I =k —1)/2, has a Hamilton cycle for all m = c,c +
1,...,(min(k +1,2n -k —1)—1)/2.

Our second set of results resolves Question 5 positively for all possible values of k and [
except the cases covered by Conjecture 2 (the case [ = k is already covered by Theorem 6),
see the right-hand side of Figure 1.

» Theorem 8. For any n > 3 there is a tight enumeration of the vertices of Qy [k, in the

following cases:

() fo=k<l<nor0<k<l=n.

(i) f1<k<l<nandl—k>2is even.

(iii) If 1<k<i<n—-1landl-k=1

(iv) If 1<k<l<[n/2] or|n/2] <k<lI<n—1andl—Fk>3is odd.

(W) Ifl<k<l<n-—1andl—k > 3 is odd, under the additional assumption that
Q2m+1,[m—c;mt14¢), ¢ = (I =k —1)/2, has a Hamilton cycle for all m = c,c +
1,...,(min(k +1,2n —k—1)—1)/2.

Note that the last part (iv) of Theorems 7 and 8 is conditional on the validity of
Conjecture 2. In fact, by what we said before (recall the paragraph below Conjecture 2)
we know that the additional assumption in (iv) is satisfied for m € {¢,c+ 1,¢+ 2} (so the
statement could be slightly strengthened).

The tight enumerations we construct to prove Theorem 8 have the additional property
that all distance-2 steps are within single levels (but never between two different levels & and
k + 2). In terms of sets, these steps therefore correspond to exchanging a single element.

For all the unconditional results in Theorems 7 and 8 we provide corresponding optimal
generation algorithms.

» Theorem 9.

(a) For any interval [k,1] as in case (i) or (ii) of Theorems 7 and 8, respectively, there is a
corresponding loopless algorithm that generates each bitstring of a saturating cycle or a
tight enumeration of the vertices of Qp [y in time O(1).

(b) For any interval [k,l] as in case (iii) of Theorems 7 and 8, respectively, there is a
corresponding algorithm that generates each bitstring of a saturating cycle or a tight
enumeration of the vertices of of Qy 1,y in time O(1) on average.

It should be noted that the algorithms for part (a) of Theorem 9 are considerably simpler
than those for part (b). The reason is that the underlying constructions are entirely different.
In particular, for part (b) we repeatedly call the (average) constant-time algorithm to compute
a Hamilton cycle in Qapy1,[m,m+1], m < [(n —1)/2], an algorithmic version of Theorem 1,
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Figure 1 The different cases of k and [ covered by our two main theorems on saturating cycles
(left, Theorem 7) and on tight enumerations (right, Theorem 8) in Q, [, for the case n = 11. A
more extensive animation of the entire parameter space (n, k,!) is available on the second author’s
website [1].

presented in [24, 25] (and this algorithm is admittedly rather complex). The initialization
time of our algorithms is O(n), and the required space is O(n).

We implemented all these algorithms in C++, and we invite the reader to experiment
with this code, which can be found on our website [1].

In view of these results, the only remaining (and therefore even more interesting) open
case is the question whether the cube of odd dimension has a Hamilton cycle between any two

symmetric levels, i.e., Conjecture 2 (these open cases are represented by crosses in Figure 1).

Given the results from [15] and [23], the next natural step towards resolving this conjecture
would be to investigate whether the graphs Qoyy1,(3,2k—2] OF Q2x+1,[k—1,k+2) have a Hamilton
cycle for all k£ > 1.

In this work we provide the following partial result towards the general conjecture: We
show the existence of long cycles in the graph Qapt1 [k—c,k+14¢)> ¢ € {0,1,...,k}. This
approximate version of the conjecture is similar in spirit to the line of work [12, 19, 29, 31]
that preceded the proof of Theorem 1.

» Theorem 10. For any k > 1 and c € {0,1,...,k}, the graph Q2k+1,[k—c,k+1+c] has a cycle

that visits at least a (1 — €)-fraction of all vertices, where € := ﬁ ~
In particular, for any ¢ and k — oo, the cycle visits a (1 — o(1))-fraction of all vertices.

1.2 Related work

In [10] an algorithm is presented that generates the vertices of Q[ (for an arbitrary
interval [k, []) such that any two consecutive vertices have Hamming distance 1 or 2, where
the value 2 appears only between vertices on level k£ and [, but the Hamming distance between

min (l,exp((cl:r%f) —-1).
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the first and last vertex is arbitrary (possibly n). The running time of this algorithm is O(n)
per generated vertex. In addition, this paper presents a loopless algorithm (time O(1) per
vertex) to generate all vertices in Q,, (,; level by level, using only distance-2 steps in each
level. In particular, these enumerations are not cycles in @, [, and they are not tight.

In [34] the authors present algorithms for enumerating all vertices of @, (for an
arbitrary interval [k, []) such that any two consecutive bitstrings have Levenshtein distance at
most 2 and Hamming distance at most 4. The Levenshtein distance is the minimum number
of bit insertions, deletions, and bitflips necessary to transform one bitstring into the other.
Again, these enumerations are not cycles in @, [ and they are not tight. However, the
corresponding generation algorithms are very simple and fast (loopless). Improving on this,
as a byproduct of the results mentioned in the previous section we obtain a simple loopless
algorithm to enumerate all vertices of Q,, [z (for an arbitrary interval [k, []) such that any
two consecutive bitstrings have Hamming distance (and Levenshtein distance) at most 2.

1.3 Outline of this paper

In this extended abstract we restrict ourselves to only explaining the main ideas behind
our constructions, algorithms and proofs. Lengthy pseudocode and proofs of auxiliary
statements are omitted. Specifically, in Sections 2 and 3 we present our constructions for
proving Theorems 7 and 8, respectively. In Section 4 we present our algorithm for part (a) of
Theorem 9. The algorithm for part (b) and the proof of Theorem 10 as well as other omitted
proofs can be found in the full version [14].

2 Saturating cycles

2.1 Trimming Gray codes and proof of Theorem 7 (i)+(ii)

In this section we sketch how to prove cases (i) and (ii) from Theorem 7 by showing that
the standard reflected Gray code in @, mentioned in the introduction (see [13] and [21,
Section 7.2.1.1]) can be ‘trimmed’ to any number of consecutive levels of @, so that it visits
all these vertices except possibly some vertices from the first and last levels. This technique
is a generalization of the approach presented in [35] to prove Theorem 6, and it yields the
following result:

» Theorem 11. For anyn >3 and k,l with 0 <k <l <n andl —k > 2, the graph Q.
has a cycle that visits all vertices except possibly some vertices from levels k and I.

Note that if [ — k is even, then the first and last level of @, [ ; are from the same
bipartite class, so the cycle obtained from Theorem 11 is saturating, which immediately
yields Theorem 7 (ii).

The (n-dimensional) reflected Gray code T'y, is a (cyclic) sequence I',, of all vertices of @y,
defined recursively by

' = (Oa 1) ’ (la)
Iy =Tpo0,rev(Ty,)o0l) , n>1, (1b)
where I';, 00 and T'), o 1 denote the sequences obtained from I',, by attaching a 0-bit or 1-bit

to every entry of T',, respectively, and rev(T",,) denotes the reversed sequence. See Figure 2
for an illustration.
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400 rev(l’y) o1

Figure 2 The hypercube Qs (left), where the grey area represents all 16 edges along which the
last bit is flipped, and the reflected Gray code I's in Q5 (right), where the numbers are indices of
vertices in I's (starting from 0). The dashed edge represents the adjacency between the last and first
vertex of I's.

The reflected Gray code T';, is the standard example how to enumerate all bitstrings of
length n such that any two consecutive bitstrings differ in exactly one bit. For an explicit
definition of T';, and further interesting properties see [21, Section 7.2.1.1].

For any 0 < k < n let I, ;. be the subsequence of I';, that contains all vertices in level k.
Moreover, we let sp, , () = s(z) denote the successor of  in Iy, (if 2 is the last vertex of
Tk, then s(z) is the first vertex of T'y, ). Similarly, let sp, (z) denote the successor of z in
Ty.

As already observed in [35], any two consecutive vertices in I',, 5, differ in exactly two
positions. The sequence Iy,  therefore provides an enumeration of all k-element subsets of [n]
such that any two consecutive k-sets differ in exchanging a single element (recall Theorem 6).

» Lemma 12 ([35]). For anyn >2 and 0 < k < n let x be a vertez of ' and y := sr, , ().
Then x and y differ in exactly 2 bits.

Clearly, any two vertices x,y in level k at distance 2 have a unique common neighbor in
level k—1 and a unique common neighbor in level k+1, let us denote them by down(z,y) and
up(z,y), respectively. The key idea in trimming the reflected Gray code to a given sequence
of consecutive levels [k, (], where | — k > 2, is to replace the subpath P of I';, in Q,, between
a vertex x in level [ — 1 and its consecutive vertex sr, ,_, (x) by the path (z,up(z, s(x)), s(z))
if P ascends above level [ — 1, and between a vertex x in level k£ + 1 and its consecutive
vertex sr, ,,, (z) by the path (z,down(z,s(x)),s(z)) if P descends below level k + 1. See
Figure 3 for an illustration.

Formally, we say that a vertex z of @, in level k is an upward vertez if sp,(x) is in
level k + 1, and a downward vertex if sp, (x) is in level k£ — 1 (no other case is possible).
Thus, the reflected Gray code I';, ascends from upward vertices and descends from downward
vertices. For any 0 < k < n, we let up(I',, 1) denote the sequence of all vertices up(z, s(x))
in level k + 1, where x is an upward vertex of I'y, , in the order induced by I';, ;.. Similarly,
for any 0 < k < n we let down(I', 1) denote the sequence of all vertices down(z, s(x)) in
level k — 1, where x is a downward vertex of Iy, i, in the order induced by I'y, j.

The next lemma captures the key property guaranteeing that in trimming the reflec-
ted Gray code as described above we will never visit the same vertex twice. Note that
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21 26

23\ 26

down(T's2)

Figure 3 Schematic drawing of I's (left) highlighting the order in which levels are visited, and the
corresponding sequences I's , 0 < k < 5. See Figure 2 what the actual vertices are. The sequences
up(L's 2), down(I's2), and I's trimmed to levels 1 up to 3 of Qs (right).

by a cyclic rotation of a sequence (uq,...,Um—1,Uy) to the right we mean the sequence

(s Uy -y U —1).

» Lemma 13. For anyn > 2 and 0 < k < n, up(T'y k) is a subsequence of T'y, 41, and
cyclically rotating down(T',, i) once to the right yields a subsequence of I'y j—1.

With Lemma 13 in hand we are ready to prove Theorem 11.

Proof of Theorem 11. We build the desired cycle by trimming the reflected Gray code T,
to levels [k,[]. Subpaths of I',, within the levels [k + 1,1 — 1] remain unchanged (including
the orientation). Each subpath P of T',, that descends from some downward vertex z at
level k + 1 to lower levels returns back to level k + 1 at the vertex y := sp, ,,, (z). As x and
y differ in exactly 2 bits by Lemma 12, we may replace P by the path P’ = (z,down(z,y),y).
Note that P’ has the same end vertices and orientation as P, and visits only a single vertex
at level k. After trimming all these descending paths, we visit on level k precisely the vertices
of down(I'y, x41). Since down(I',, r+1) (after one rotation to the right) is a subsequence of
I',, » by Lemma 13, all these vertices are distinct, and hence distinct trimmed paths may
have at most end vertices in level k in common.

Similar arguments apply for trimming subpaths of I';,, ascending from upward vertices at
level [ — 1 to levels above. In this case the trimmed subpaths visit at level [ precisely the
vertices of up(I'y, ;—1), and since this is a subsequence of T',,; by Lemma 13, all these vertices
are distinct. Therefore trimming correctly produces a cycle visiting all vertices in levels [k, ]
except the vertices from level k that are not in down(I',, x4+1) and the vertices from level [
that are not in up(I'y, ;—1). <

Proof of Theorem 7 (ii). Follows immediately from Theorem 11, using that if [ — & is even,
then the first and last level of @Q,, ;) are from the same bipartite class. |

Proof of Theorem 7 (i). We only consider the case 0 = k < [ < n, the other case follows by
symmetry, using that @, [ is isomorphic to @y (n—;n—k)- The proof proceeds very similarly
to the proof of Theorem 11, but we only trim the subpaths of I';,, ascending above level [ — 1,
so that the highest level where vertices are visited is level [ (no trimming is applied at the
bottom level 0). We therefore obtain a cycle that visits all vertices in levels [0, ], except the
vertices from level [ that are not in up(I',;—1). As the cycle omits only vertices from level I,
it must be saturating. <
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k + 3 Qo3 l lbk+3

\ / /
/ /
k+2 !
Cri2 Q42 bi+2
k+1 28] bi+1
\
\
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Ch b
\/

Figure 4 Notations used in the proof of Theorem 7 (iii). The removed edges are dashed, the
added edges are bold.

2.2 Gluing saturating cycles and proof sketch of Theorem 7 (iii)+(iv)

Trimming the reflected Gray code T, to levels [k,[] as described in the last section does
not yield a saturating cycle when [ — k > 3 is odd unless £k = 0 or [ = n. In general the
trimmed cycle omits some vertices from both levels k and [, which are from different bipartite
classes for odd I — k. We therefore use a different strategy to prove Theorem 7 (iii): We glue

together several saturating cycles obtained from Theorem 3 (see Figure 4 for an illustration).

To be able to join the cycles across different levels, each cycle between levels ¢ and ¢ + 1 is
first transformed by applying a suitable bit permutation (an automorphism of @, [; i+1]), in
such a way that the permuted cycle visits certain distinguished vertices a; and b; in levels ¢
and 7+ 1 in a certain order, and so that it omits certain other vertices. The cycles are then
glued together by removing one or two edges from each cycle and by joining the resulting
paths by adding a few other cube edges. The details of this construction, in particular the
definition of the vertices a; and b;, can be found in the full version [14]. This gluing approach
yields a saturating cycle only if all involved levels are either below or above the middle (this
is reflected by the conditions I < [n/2] or |n/2] < k in Theorem 7 (iii)). Otherwise the
omitted vertices would be from different bipartite classes, so the resulting cycle would not be
saturating. To prove Theorem 7 (iv), we inductively glue together pairs of saturating cycles
of smaller dimension. Both proofs are similar to the approach presented in [26].

3 Tight enumerations

We call a sequence C' that contains each vertex of @, [ exactly once an enumeration
of the vertices of Q) (recall that the successor of the last vertex of C' equals the first
vertex of C'). The total distance of the enumeration C' is td(C) := .~ d(u, sc(u)), where
d(x,y) denotes the Hamming distance between x and y. As any two consecutive bitstrings
in any enumeration have distance at least 1 and distance at least 2 if they are from the same
bipartite class of @y, x,;, we have

td(C) > v(Qn, k1)) + 0(Qn, k1)) (2)

40:9
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(both the number of vertices v(Q,x,)) and the difference between the larger and smaller
partition class §(Q,,z,)) can be easily computed explicitly). A tight enumeration is an
enumeration for which the lower bound (2) is attained. Clearly, an enumeration is tight, if
and only if it has only distance-1 and distance-2 steps, and all the distance-2 steps are within
the same partition class of @, ;) (this will be the larger partition class, and there will be
exactly 6(Qy, k) such distance-2 steps in this class).

The proof of Theorem 8 is very similar to the proof of Theorem 7, and the key ideas
in the different cases (i)—(iv) are the same. In this extended abstract, we only present the
proofs for cases (i)—(ii). The proofs for cases (iii)—(iv) can be found in [14].

3.1 Proof of Theorem 8 (i)—(ii)

For k = I we have v(Qn,k,x) = 6(Qn,[k,k) = (Z) and a tight enumeration of all weight &
bitstrings of length n is given by I'y, i, by Lemma 12 (this is exactly the proof of Theorem 6
presented in [35]). We now proceed to prove cases (i)—(ii) of Theorem 8.

Proof of Theorem 8 (ii). We trim the reflected Gray code T',, to levels [k, ], but in a slightly
different fashion from the proof of Theorem 11. Specifically, subpaths of I';, within the
levels [k, ] remain unchanged (including the orientation). Moreover, each subpath P of T,
that descends from a downward vertex x in level k returns back to level k£ at the vertex
y := sr, , (z), and we replace P by the distance-2 step (z,y) (recall Lemma 12). Similarly,
each subpath P of I',, that ascends from an upward vertex z in level [ returns back to level [
at the vertex y := sp, ,(x), and we replace P by the distance-2 step (x,y). This yields an
enumeration C of all vertices of @, ;- Moreover, since [ — k is even, levels k and [ of Q,, 1]
belong to the same bipartite class, so all distance-2 steps of C' are within the same bipartite
class. It follows that C' is a tight enumeration. <

Proof of Theorem 8 (i). We only consider the case 0 = k < I < n, the other case follows by
symmetry. The proof proceeds very similarly as the proof of part (ii), but we only trim the
subpaths of T'), ascending above level | (no trimming is applied at the bottom level 0). This
yields an enumeration C of all vertices of @, [9,;;. Moreover, all distance-2 steps of C' are
within the same bipartite class (in level 1), implying that C' is a tight enumeration. |

4 A loopless algorithm for trimmed Gray codes

In this section we present a loopless algorithm to generate trimmed Gray codes, which is
needed to prove part (a) of Theorem 9 (algorithms for cases (i) and (ii) of Theorems 7 and
8). The correctness proof and the runtime analysis for this algorithm can be found in the
full version [14]. Also, the description of an efficient algorithm to compute glued Gray codes,
which is needed to prove part (b) of Theorem 9 (algorithms for case (iii) of Theorems 7 and
8), can be found in [14].

Loopless algorithms both for the reflected Gray code I';, and for its restriction I';, ;, to
one level of the cube (i.e, an algorithmic version of Theorem 6) were already provided in
[2, 10]. However, these two algorithms cannot simply be merged into a loopless algorithm
producing the trimmed Gray code. Instead, we provide a loopless algorithm that is based
on an explicit description of successor vertices. This description is a simple (constant-time
computable) rule describing which bit positions of a given vertex = from T, ;, have to be
flipped to reach the next vertex sr, , («). In this extended abstract we do not explicitly state
these rules, they are however used implicitly in the following pseudocode.
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Algorithm 1: TRIMGC(n, k, 1)

Input: Integers n >2and 0 < k<l <n,l—k > 2.
Result: The algorithm visits all vertices of the trimmed Gray code in Q,, [z, (Which is

a saturating cycle in cases (i) and (ii) of Theorem 7).

Tl c:=k+1; z:=1°0"" ¢ /* initialize current level c, vertex = ... */
T2 ve:=1;fori:=1tocdop,:=c—i+1 /* ... and (vi,...,v:), (P1,-..,pc) */
T3 while not enough vertices visited do

T4 if (ciseven Azy =0)V (cis odd A pc < n A xp,41 = 0) then up := true else up := false

T5 if (up =true A ¢<l—1) then /* follow I'y, up */
T6 if cis even then /* t1 =0 */
T7 z1:=1; VISIT(z); c:=c+ 1; pc := 1

T8 if 2o =0 then v. :=celse v, :=v._1

T9 else /* ¢ is odd and x;41 =0 */
T10 1:=pe; Tiy1 := 1; VISIT(z); c:=c+ 1; pec :=4; pe—1 : =1+ 1

T11 if(i+1=nV zi42=0)thenv.:=c—1else vc:=v. 2

T12 else if (up = false A ¢>k+1) then /* follow I';, down */
T13 if c is even then /* x1 =1 %/
T14 x1:=0; VISIT(z); c:=c—1

T15 if z2 =1 then ve := veq1

T16 else /* ¢ is odd and x;y1 =1 */
T17 1:=pe; Tig1 :=0; VISIT(z); c:=c—1; pc := 45 ve :=¢

T18 if ;42 =1 then ve—1 := veq1

T19 else if (up=true A c¢=0—1) then /* follow I'n . through up(z,sr, (z)) */
T20 if cis even then /* xi—1 =0 and z; =1 */
T21 i :=pe; Ti—1 = 1; VISIT(z); x; := 0; VISIT(z); pe :=1— 1

T22 if xi41 =1then ve_1 :=v;;vei=c

T23 else /* ¢ is odd, ;41 =0 and x; =1 */
T24 i := pe; Tiy1 := 1; VISIT(2); z; := 0; VISIT(2); pc : =1+ 1

T25 B if (14+2<n A zij42=1) then vc :=ve1

T26 else /* up = false A ¢c=k+1; follow I'y . through down(z,sr, (x)) */
T27 if xt1y =0theni:=1lelsei:=p, +1 /* 7 is minimal s.t. x; =0 */
T28 if ¢ Z i mod 2 then /* xi_o=1 and x; =0 */
T29 Zi—g := 0; VISIT(2); x; := 1; VISIT(2); pv+1 :=%— 1; Dy, :=1

T30 if(i+1<n A zijy1=1)thenv, 11 :=v, 1 elsev, +1:=1,

T31 if i > 3 then v, := v, + 2

T32 else /* c=imod2; j>i is minimal s.t. z; =1 */
T33 if xt1 =0thena:=c¢;j:=pgelsea:=v.—1;j:=p,

T34 if j = n then z, := 0; VISIT(2z); z; := 1; VISIT(2); p1 :=%; ve:=1

T35 else if ;11 = 0 then /* j<mn, xi-1 =1 and zj11 =0 */
T36 xi—1 = 0; VISIT(2); ®j41 := 1; VISIT(2); pu, := J; Pv.—1 =7 +1

T37 if (j+2<n A zjp2=1)thenv,, :=v,,_selserv,, :=v.—1

T38 if i >2then v, :=v.+1

T39 else /¥ j<n, zjy1 =1 and 2; =0 */
T40 Zjt1 = 0; VISIT(z); z; := 1; VISIT(2); pa =i} Pa—1 :=J

T41 if (j+2<n A xj42=1)thenv,_2:=v,

T42 if j=i4+1thenv.:=a—1lelsevg,_1:=a—1,v.:=a

40:11
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Consider now the algorithm TRIMGC(n, k, 1) that computes a trimmed Gray code between
levels k and I with [ —k > 2 of Q,, as described in Section 2.1 (Theorem 11), i.e., the algorithm
produces a saturating cycle for cases (i) and (ii) of Theorem 7. At the end of this section we
describe how to modify the algorithm to produce a tight enumeration for cases (i) and (ii) of
Theorem 8.

The algorithm maintains the current vertex in the variable  and the current level in the
variable ¢, k < ¢ < [. Both are initialized in line T1 to ¢ = k 4+ 1 and z = 1°0" ¢, where b*
denotes the k-fold repetition of the symbol b € {0,1} (the code can easily be modified to
start at a different vertex). The algorithm visits the sequence of vertices along the trimmed
Gray code by the calls VisiT(z), which could be some user-defined function that reads z. For
simplicity the main while-loop does not have an explicit termination criterion, but this can
be added easily (e.g., by providing an additional argument to the algorithm that specifies
the number of vertices to be visited before termination). If the while-loop is not terminated,
then the same cycle is traversed over and over again. There are four main cases distinguished
in the while-loop of the algorithm: If the current level is between k + 1 and [ — 1, then we
either follow I',, by flipping a 0-bit to a 1-bit (if the condition in line T5 is satisfied), or we
follow T, by flipping a 1-bit to a 0-bit (if the condition in line T12 is satisfied). If the current
level is ¢ =1 — 1 and x is an upward vertex (the condition in line T19 is satisfied), then we
first flip a 0-bit to the vertex up(z,y), ¥ := sr,, .(x), and then a 1-bit to the vertex y. On
the other hand, if the current level is ¢ = k + 1 and x is a downward vertex (the condition in
line T26 is satisfied), then we first flip a 1-bit to the vertex down(z,y), y := sr, .(z), and
then a 0-bit to the vertex y.

The key to our loopless algorithm is to be able to determine in constant time the smallest
integer ¢ > 1 with z; = 1 or with x; = 0 (this part of the before-mentioned successor
rule computation). Furthermore, we also need the smallest integer j > ¢ with z; = 1. To
achieve this the algorithm maintains the following data structures: We maintain an array
(p1,p2, - - -,p) with the positions of the 1-bits in z = (x1, o, ..., z,) where p;, 1 <i<g¢, is
the position of the i-th 1-bit in = counted from the right (from the highest index n). Thus
pe is the position of the first 1-bit in « from the left (from the lowest index 1). It turns out
that adding and removing 1’s happens around the position p., so the length of this array
changes dynamically. For ¢ > ¢ the value of p; is undefined (the algorithm does not ‘clean
up’ those values after using them). We also maintain an array (vq,vs,...,v.) to quickly find
the smallest integer j > i with x; = 0 where 7 is the smallest integer with x; = 1. However,
the value of v;, 1 < i < ¢, is defined only if p; is a starting position of a substring of 1-bits in
x;ie., xp, =1 and 2,1 = 0, or p; = 1. In this case, the value of v; is the index such that
Dy, is the position where the corresponding substring of 1-bits ends in z. In particular, since
pc is the position of the first 1 in z, the value p,, + 1 is the smallest integer greater than
pe such that x has a 0-bit at this position. Initially, there is only one substring of 1-bits in
x = 1°0™¢ that starts at position p. = 1 and ends at position p; = ¢, so we have v, =1 (see
line T2). Assuming that the algorithm correctly computes the positions to flip the next bit(s)
of z, it can be verified straightforwardly that it also correctly updates all relevant entries of
p and v in the four main cases (and their subcases).

To obtain a loopless algorithm that generates a tight enumeration of the vertices of
Qn, [k, (instead of a saturating cycle), we simply call TRIMGC(n,k — 1,1+ 1) and omit the
first of the two VISIT(z) calls in each of the lines T21, T24, T29, T34, T36 and T40. The
algorithm then moves directly with a distance-2 step from a vertex z in level k or [ to the
vertex sr, , (z) or sp, ,(z), respectively, without visiting down(z, sr,, , (x)) or up(z, sr,, ,(z))
in between. Also, if £k = 0 then line T2 has to be omitted, and the special case ¢ = 1 and
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2 = 0" 11 must be treated separately in lines T17 and T18 (by setting i := n — 1). This
completes the description of the algorithms for part (a) of Theorem 9. As mentioned before,
the missing correctness proofs and the runtime analysis can be found in [14].
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